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An important task in the application of Markov models to the analysis of ion channel data is
the determination of the correct gating scheme of the ion channel under investigation. Some
prior knowledge from other experiments often allows to reduce the number of possible models
signi"cantly. If these models are nested, standard statistical procedures, like likelihood ratio
testing, provide reliable selection methods. In the case of non-nested models information
criteria like AIC, BIC, etc., are used. However, it is not known if any of these criteria provide
a reliable selection method and which is the best one in the context of ion channel gating. We
provide an alternative approach to model selection in the case of non-nested models with an
equal number of open and closed states. The models to choose from are embedded in
a properly de"ned general model. Therefore, we circumvent the problems of model selection in
the non-nested case and can apply model selection procedures for nested models.

( 2001 Academic Press

1. Introduction

The physiological research on ion channels
focuses on uncovering the correlation between
the structure of a channel protein and its physio-
logical function. Biochemical studies and cloning
experiments provide detailed static information
about the structure of the channel protein and its
sub-units (Hille, 1992; Aidley & Stan"eld, 1996).
The dynamics of an ion channel are determined
by conformational changes of the sub-units of the
channel protein or binding of ligand molecules.
Therefore, the identi"cation of the sub-units
allows assumptions to be made about possible
mechanisms which govern the dynamics of the
opening and closing of an ion channel and which
are compatible with the identi"ed sub-units. Gat-
ing schemes summarize these assumptions about
the dynamical behavior by specifying the number
of open and closed states and the allowed
transitions between the states.

Besides the electrophysiological character-
ization, patch clamp recordings provide the
additional complementary information about
dynamical features of ion channels needed to
discriminate between di!erent assumptions about
the true gating scheme of an ion channel
(Sakmann & Neher, 1995). Thus, the analysis of
recorded patch clamp data requires statistical
procedures to infer the gating scheme from the
data.

Markov chains in continuous time have
proven to be a suitable model class to describe
the transitions among the unobserved states in an
ion channel (Colquhoun & Hawkes, 1977, 1982).
As the ion channel current is observed and not
the states themselves, only an aggregated image
of the underlying process is available and so the
measured currents are modelled either by an ag-
gregated Markov chain (Ball & Rice, 1992) or
by its generalization, a hidden Markov model
(Chung et al., 1990; Fredkin & Rice, 1992; Chung
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& Kennedy, 1996; Michalek et al., 1999, 2000)
depending on the signal-to-noise ratio. In the
following, we do not distinguish between aggreg-
ated Markov chains and hidden Markov models
and generally use the term hidden Markov model
for both cases.

For nested gating schemes, i.e. one gating
scheme is a sub-model of the other gating scheme,
possibly after applying a similarity transforma-
tion (Kienker, 1989), likelihood ratio testing pro-
vides an appropriate method for model selection.
The selection criterion of likelihood ratio testing
is a principle of parsimony because likelihood
ratio testing favors the simpler gating scheme due
to the null hypothesis that the gating scheme with
the smaller number of parameters is the true one.
In addition, likelihood ratio testing has favorable
asymptotic properties under the null hypothesis.
Its test statistic asymptotically follows a s2 distri-
bution with a number of degrees of freedom given
by the di!erence of the number of parameters in
both models, and, in particular, the distribution
is independent of the unknown true parameters.
The main assumptions for this result are: the
gating schemes are not misspeci"ed, all para-
meters are identi"able both under the null hy-
pothesis and under the alternative and the true
parameters are in the interior of the parameter
space (Cox & Hinkley, 1974). These assumptions,
however, may sometimes not be full"lled and the
problem of likelihood ratio tests under non-stan-
dard conditions may arise, for example, if some
transition rates are on the boundary of the para-
meter space or not identi"able under the null
hypothesis (Self & Liang, 1987; Wagner et al.,
1999).

Likelihood ratio testing is not directly applic-
able for the model selection of non-nested gating
schemes. In order to use this method from the
nested case, the non-nested gating schemes have
to be embedded in a general model. Arbitrary
complex gating schemes, however, cannot serve
this purpose because of the following di$culties:
"rstly, the number of identi"able parameters in
hidden Markov models is limited to 2 times the
number of open states times the number of closed
states (Fredkin et al., 1983; Fredkin & Rice,
1986); secondly, gating schemes are typically em-
bedded in other gating schemes by constraining
certain transition rates to zero, so that these

transition rates are part of the boundary of the
parameter space. For selecting between di!erent
gating schemes it is not necessary that a general
model be interpreted as a gating scheme, it is
su$cient that this model provides a parameteriz-
ation of the likelihood functions of all proposed
gating schemes and that these gating schemes are
not on the boundary of the parameter space.

In the following section, we develop a partial
solution by deriving a parameterization of the
likelihood functions for hidden Markov models
with the only restriction that these models
must have the same number of open and closed
states. Section 5 presents some simulation
studies where we apply the results of Section 2.
In Section 6, we compare the proposed selec-
tion method to common procedures based on
information criteria.

2. Notation and Model Equivalence

In this section, we develop the notation used
throughout the subsequent sections and state
a result on the equivalence of two hidden
Markov models needed in Section 4 for the infer-
ence on hidden Markov models.

We assume, that we observe a continuous
process at discretely sampled time points with
sampling time *t. We denote with y

1
,2, y

T
the

observation sequence of length ¹, the unobser-
ved sequence of the background states with
x
1
,2, x

T
. The state space of the unobserved

Markov chain has dimension n, and is par-
titioned into n

o
open states and n

c
closed states

with n"n
o
#n

c
. For convenience, the states are

ordered: the states 1,2, n
o

are the open states,
followed by the closed states: n

o
#1,2, n. O de-

notes the set of indices of the open states
M1,2, n

o
N, C denotes the set of indices of the

closed states Mn
o
#1,2, nN. The generator

matrix Q determines the dynamics of the Markov
chain. It is partitioned according to the open and
closed states:

Q"A
Q

oo
D Q

oc
**D

D
**

Q
co

D
D
Q

cc
B . (1)

The transition probability matrix A for the
discretely sampled process is obtained by the
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matrix exponential of QDt:

A"exp (QDt). (2)

The observation sequence y
1
,2, y

T
is condi-

tionally independent given the unobserved se-
quence of background states x

1
,2,x

T
:

p (y
1
,2, y

T
Dx

1
,2, x

T
)

"p (y
1
Dx

1
)2p (y

T
Dx

T
) . (3)

Furthermore, the conditional density of observ-
ing y given background state x simpli"es in the
case of ion channel gating to

p (yDx)"g (yDx)"G
g
o
(y) if x3O

g
c
(y) if x3C.

(4)

For aggregated Markov chains, g (yDx) is the
indicator function of the open states, for hidden
Markov models g

o
(y) and g

c
(y) may be Gaussian

densities taking into account a di!erent noise in
the open states and the closed states, respectively,
besides the di!erent conductance levels.

The probability density for an observation
sequence y

1
,2, y

T
follows from the Markov

property and the conditional independence of the
observation sequence (Baum & Petrie, 1966;
Baum et al., 1970):

p (y
1
,2, y

T
)" n

+
x1,2,xT/1

n
x1

g(y
1
Dx

1
)A

x1,x2

]g (y
2
Dx

2
)2A

xT~1,xT
g(y

T
Dx

T
), (5)

where n denotes the initial distribution of the
Markov chain.

We now transform eqn (5) taking the partition-
ing into open and closed states into account.
Each of the index variables a

i
3MO,CN, i"

1,2,¹, denotes either the whole index set of the
open or the closed states. Then, A

ai,aj
is the sub-

matrix of A formed from the index sets a
i
and

a
j

and A
ai,al

A
al,aj

denotes the matrix multiplica-
tion between the sub-matrices A

ai,al
and A

al,aj
. The

probability density for an observation sequence
y
1
,2, y

T
is now given by

p (y
1
,2, y

T
)" +

a1,2,aT|MO,CN
(n

a1
A

a1,a22A
aT~1,aT

1
aT
)

](g
a1

(y
1
)2g

aT
(y

T
)), (6)

where n
a1

is a row vector with the entries of
n from the index set a

1
, 1

aT
is a column vector of

ones with the dimension of the index set a
T
. Note

that in the case of aggregated Markov chains,
there is only one non-zero summand in eqn (6).
A generalization of eqn (6) for an arbitrary
number of aggregation classes is the starting
point for a general investigation of the identi"a-
bility problem in hidden Markov models (Ito
et al., 1992).

In Kienker (1989) it is shown that the out-
comes of two aggregated Markov models are
statistically not distinguishable if their generator
matrices are related by a similarity transforma-
tion with a transformation matrix of the follow-
ing form:

S"A
S
oo

D 0
**D

D
**

0 D
D
S
cc
B , (7)

where S is invertible and the rows S are nor-
malized to one. This result may also be derived
from eqn (6) and thereby extended to the case of
hidden Markov models. The probability density
is invariant under transformations of the
transition probability matrix A and the initial
distribution n which leave the coe$cients
n
a1

A
a1,a22A

aT~1,aT
1
aT

in eqn (6) numerically in-
variant. Assuming that two hidden Markov mod-
els with an equal output conditional density
g(yDx) but di!erent generator matrices Q, Q@ and
initial distributions n, n@ are related by a trans-
formation matrix S: Q@"S~1QS and n@"nS,
then the probability densities of both models are
the same because the transition probability ma-
trices are related by the same similarity trans-
formation A@"S~1AS due to eqn (2) and the
coe$cients in eqn (6) agree:

n@
a1

A @
a1,a22A @

aT~1,aT
1
aT

"(na
1
Sa

1
,a

1
) (S~1a

1
,a

1
Aa

1
,a

2
Sa

2
,a

2
)

hgigj
"1

2(S~1a
T~1

,a
T~1

Aa
T~1

,a
T
Sa

T
,a

T
)1a

T

hgigj
"1

"na
1
Aa

1
,a

2
2Aa

T~1
,a

T
1a

T
. (8)
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3. Likelihood Parameterizations

Any model-selection procedure requires the
estimation of the model parameters as a prelimi-
nary step. A gating scheme determines a model
in the case of ion channel gating and so its
transition rates have to be estimated from the
measured data. This can be achieved by the max-
imum likelihood method (Horn & Lange, 1983;
Fredkin & Rice, 1992; Albertsen & Hansen, 1994;
Qin et al., 1997; Michalek & Timmer, 1999). In
addition, the estimation of the transition rates is
often burdened with di$culties like time-interval
omission (Roux & Sauve, 1985; Ball et al., 1993;
Qin et al., 1996; Colquhoun et al., 1996) or
colored noise on the data (Venkataramanan
et al., 1998a,b; Michalek et al., 2000). In the case
of aggregated Markov models, time-interval
omission requires methods for missed event cor-
rection, which has been solved exactly by
Hawkes et al. (1990, 1992).

In the following, we emphasize the fact that the
likelihood function ¸ depends only through the
transitions probability matrix A on the transition
rates by writing: ¸ (A (Q))"p (y

1
,2, y

T
). Under

mild regularity conditions the maximum likeli-
hood estimator for hidden Markov models is
asymptotically normally distributed (Bickel
et al., 1998). The covariance matrix of the
maximum likelihood estimator can be estimated
by the inverse of the Hessian matrix of the
likelihood function at the maximum likelihood
point.

In the following paragraphs, we derive a para-
meterization of the likelihood functions of all
hidden Markov models which have the same
number of open and closed states. The derivation
is divided into two steps. Firstly, we investigate
the special case of models which follow the law of
detailed balance, and then we drop this restric-
tion and generalize the parameterization to arbit-
rary hidden Markov models.

3.1. MODELS WHICH OBEY DETAILED BALANCE

The gating of an ion channel is subject to the
principle of detailed balance in the absence of an
external energy source (Song & Magleby, 1994).
Under these conditions the sub-matrices Q

oo
and

Q
cc

of the generator matrix can be diagonalized
with real eigenvalues (Fredkin et al., 1983; Kijima

& Kijima, 1987). The same line of reasoning can
be applied to the sub-matrices A

oo
and A

cc
of

the transition probability matrix A"exp(QDt).
Therefore, we can choose the sub-matrices
S
oo

and S
cc

of a similarity transformation S to
be the transformation matrices diagonalizing
A

oo
and A

cc
. By applying this transformation to

the transition probability matrix A, we de"ne the
following matrix:

A(S) (Q)"A
a(o)
1 2 0

F } F S~1
oo

A
oc

S
cc

0 2 a(o)n
o

a(c)
1 2 0

S~1
cc

A
co

S
oo

F } F
0 2a(c)n

c

B , (9)

the scalars a(o)
1

,2, a(o)
no

and a(c)
1

,2, a(c)
nc

are the eig-
envalues of the sub-matrices A

oo
and A

cc
, respec-

tively. In general, the matrix A(S)(Q) is not a
transition probability matrix because its entries
may be negative, but the rows are still normalized
to one. With regard to model selection, this
matrix possesses the following important prop-
erty because of eqns (8) and (6):

¸ (A(S)(Q))"¸ (A(Q)). (10)

Due to the row normalization A(S) has 2n
o
n
c

parameters, namely the entries in A(S)
oc

and A(S)
co

.
The likelihood function of an arbitrary hidden
Markov model with n

o
open states and n

c
closed

states following the principle of detailed balance,
depends on the transition rates only through
these 2n

o
n
c

independent parameters of A(S).
Therefore, all likelihood functions of hidden
Markov models satisfying the law of detailed
balance are embedded in the function space
which is parameterized by A(S). We denote this
space by F. In addition, we again "nd the result
that the maximum number of identi"able para-
meters in hidden Markov models is bounded by
2n

o
n
c
(Fredkin et al., 1983; Kienker, 1989). Since

the entries in the sub-matrices A(S)
oc

and A(S)
co

are
not required to be positive, a gating scheme can-
not be part of the boundary of this parameter
space and so the problem of tests under non-
standard conditions can be avoided (Self &
Liang, 1987; Wagner et al., 1999).
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3.2. THE GENERAL CASE

If the gating of an ion channel does not follow
the principle of detailed balance, the generator
matrix of the underlying Markov process need
not have real eigenvalues. Then the matrix
A(S) does not provide a parameterization of all
possible likelihood functions of hidden Markov
models with n

o
open states and n

c
closed states

including the models which may violate the law
of detailed balance. In the general case, there is
no single parameterization of all possible likeli-
hood functions as in the case of detailed balance.

In the following, we will show that a small
number of non-overlapping parameterizations is
su$cient to cover the whole functions space of
likelihood functions. This result is based on
a lemma of unitary spectral theory: any n]n-
matrix M with real-valued components which is
diagonalizable with some complex eigenvalues is
equivalent to a diagonal matrix of the following
form (Lang, 1987):

S~1MS"A
j

} 0

j
r

Z
r`1

0 }

Z
r`k

B , (11)

j
j
,1)j)r, are the real eigenvalues of A, Z

j
,

r#1)j)r#k, are 2]2 matrices which con-
tain the real and imaginary parts of the complex
eigenvalues: j

j
"a

j
#ib

j
of A: Z

j
"( a

i!b
b
ja
j
). As

the complex conjugate of a non-real eigenvalue is
also an eigenvalue, k is one-half of the total num-
ber of non-real eigenvalues. S is the real-valued
transformation matrix for this operation.

If the gating of an ion channel is out of thermo-
dynamic equilibrium and the sub-matrices A

oo
and A

cc
of the transition probability matrix

A have some complex eigenvalues, we can choose
S
oo

and S
cc
, respectively, in a similarity transforma-

tion S to be the transformation matrices which
transform A

oo
and A

cc
to the form of eqn (11):

A(S)r
o
,r

c
"A

A(S)r
o
,r

c
)
oo

S~1
oo

A
oc

S
cc

S~1
cc

A
co

S
oo

(A(S)r
o
,r
c
)
cc B . (12)

The subscripts r
o

and r
c

denote the number of
real eigenvalues of A

oo
and A

cc
and we identify

A(S)
no,nc

with A(S) from eqn (9). Analogous to the case
of detailed balance, the likelihood function can be
expressed in terms of A(S)

ro,rc
:

¸(A(S)
ro,rc

(Q))"¸ (A(Q)) . (13)

A(S)
ro,rc

has 2n
o
n
c

independent parameters, namely
the sub-matrices (A(S)

ro,rc
)
oc

and (A(S)
ro,rc

)
co
, because the

rows of A(S)
ro,rc

are standardized to one and the 2]2
Z matrices are antisymmetric.

For a given number r
o

of real eigenvalues of
A

oo
and a given number r

c
of real eigenvalues

of A
cc
, A(S)

ro,rc
only parameterizes a sub-set of

the possible likelihood functions of arbitrary
hidden Markov models with n

o
open and

n
c
closed states. So, we enlarge the function space

F introduced in the previous section by the
union of the non-overlapping parameterizations
A(S)

ro,rc
. For example, the set of parameterizations:

(A(S),A(S)
3,1

, A(S)
1,3

, A(S)
1,1

) covers the function
space F for n

o
"n

c
"3. In particular, note

that only for more than two open states or more
than two closed states complex eigenvalues can
occur.

4. Model Selection

In this section, we use the parameterizations of
the likelihood function derived in Section 3 to
develop a model selection procedure based on the
likelihood ratio statistic LR. We assume that
a small number r of non-nested hidden Markov
models HMM

1
,2, HMM

r
with the same num-

ber of open states n
o
and closed states n

c
, respec-

tively, are promising candidates for being the true
model for an observation sequence y

1
,2, y

T
.

Each hidden Markov model HMM
j

represents
a set of likelihood functions and these functions
are all contained in the function space F.
Furthermore, we assume that the observation
sequence y

1
,2, y

T
is generated by an element of

F denoted by A(true): A(536%)3F.
The selection is divided into two steps: "rst, we

test the null hypothesis that the data are consis-
tent with one of the models HMM

1
,2, HMM

r
against the alternative that another model not
contained in the given selection with the n

o
open

states and n
c
closed states, respectively, is the true
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model:

H
0
: A(536%)3 r

Z
i/1

HMM
i
,

H
1
: A(536%)3F C r

Z
i/1

HMM
i
. (14)

If we cannot reject the null hypothesis, we pro-
ceed in the second step with the selection among
the models under consideration using the likeli-
hood ratio statistic LR.

The transition rates of each model to choose
from are parameterized by a parameter vector
h
i
of dimension k

i
for 1)i)r. In the simplest

case, the elements of each parameter vector h
i
are

the transition rates themselves. The number of
parameters must be less than or equal to 2n

o
n
c
.

Each generator matrix Q
i

is a function of the
parameter vector h

i
: Q

i
"Q

i
(h

i
).

As a prerequisite for the selection procedure,
the following result on the asymptotic distribu-
tion of the likelihood ratio under the null hypo-
thesis is needed: we assume that the observation
sequence y

1
,2, y

T
is generated by one of the

given hidden Markov models, e.g. HMM
j
.

The parameter vector h
j

as well as the
independent entries in the matrix A(S) can be
estimated by the maximum likelihood method.
hK
j

denotes the parameter vector maximizing
ln¸ (A(Q

j
(hK

j
))) and AK (S) denotes the matrix maxi-

mizing ln¸ (A(S)). In the general case, AK (S) has to
be searched in all possible parameterizations
A(S)

ro,rc
. Then the two-fold log likelihood ratio LR is

asymptotically s2-distributed with a number of
degrees of freedom df

j
given by the di!erence of

2n
o
n
c

and the number of parameters k
j

[Cox
& Hinkley, 1974):

LR
j
"2[ln¸(AK (S))!ln¸ (A(Q

j
(hK

j
)))] T?=& s2

$&j
,

df
j
"2n

o
n
c
!k

j
. (15)

If the hidden Markov model HMM
j

does not
contain the true model for the data, the distribu-
tion of likelihood ratio LR

j
moves towards in"n-

ity for the number of data points ¹ going to
in"nity and is asymptotically normally distrib-
uted (Vuong, 1989).

4.1. STEP ONE: TEST FOR CONSISTENCY

Under the null hypothesis, exactly one of the
LR

j
follows the s2

$&j
-distribution whereas the re-

maining likelihood ratios are large compared to
the likelihood ratio of the true model for a su$-
ciently large number ¹ of data points. Thus, we
use the vector (LR

1
,2,LR

r
) as test statistic and

choose for each component a (1!a)-quantile
q
1~a,j according to the corresponding s2

$&j
-distri-

bution. We reject the null hypothesis if all likeli-
hood ratios LR

j
are greater than the chosen

quantile q
1~a,j .

For a test of at most size b, in principle, the
a for the quantiles q

1~a,j,1)j)r, has to be
adjusted according to the following equation
for the rejection probability under the null
hypothesis:

PH
0
(LR

1
'q

1~a,1,2,LR
r
'q

1~a,r))b. (16)

Although eqn (16) cannot be solved for a, a can be
chosen to be equal to b without changing the
actual size of test too dramatically for a su$-
ciently large number ¹ of data points. This is due
to the following inequality assuming that, for
ease of notation, the model HMM

1
contains the

true model:

PH
0
(B

1
,2, B

r
))b,

aPH
0
(B

2
,2, B

r
DB

1
))b,

a) b
PH

0
(B

2
,2,B

r
DB

1
)

hgggigggj
6 1 for ¹PR (17)

with B
j
"MLR

j
'q

1~a,jN. Since the complements
of B

2
,2,B

r
converge to the empty set under the

above-stated assumption, PH
0
(B

2
,2, B

r
DB

1
) con-

verges to one for an increasing number of data
points ¹.

4.2. STEP TWO: SELECTION

A successful &&step one'' gives con"dence that
one of the models HMM

1
,2,HMM

r
is the true

one. The likelihood ratios are now used to select
a model: if exactly one likelihood ratio LR

j0
is smaller than the corresponding quantile
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q
1~a,j0 and all other likelihood ratios exceed their

quantiles, we decide for the model HMM
j0
. We

interpret the event that more than one likelihood
ratio is smaller than the corresponding quantile
as an indication that the number of data points is
not su$cient to distinguish reliably between the
models to choose from.

In the next section, we demonstrate the feasi-
bility of the proposed selection procedure in
a simulation study.

5. Simulation Study

We exemplify the model selection procedure
proposed in Section 4 by the following simula-
tion study. We suppose that the ion channel
under investigation has two open states and two
closed states justi"ed by hypothetical prior
knowledge, e.g. some previous experiments. Fur-
thermore, we make the assumption that we can
summarize this prior knowledge into the follow-
ing hypotheses about the gating scheme:

Gating scheme 1: O
1

H O
2

H C
1

H C
2
, (18)

Gating scheme 2: O
1

H C
1

H C
2

H O
2
. (19)

Gating scheme 1 has one gateway state; suc-
cessive open and closed dwell times, therefore, are
independent (Fredkin et al., 1983). In gating
scheme 2, the two-dimensional distribution of
successive open and closed dwell times does not
factor into the product of the one-dimensional
dwell time distributions and for this reason the
two models are not nested. As both gating
schemes do not contain any loops, both models
always satisfy the principle of detailed balance
and the matrix A(S) [eqn (9)] provides a su$cient
parameterization of all possible likelihood func-
tions of both models. Gating schemes 1 and
2 have six transition rates and matrix A(S) has
eight independent entries, namely the four entries
in A(S)

oc
and in A(S)

co
. Thus, the di!erence in the

number of degrees of freedom between the general
model and the two speci"c models is two. In
summary, our model selection procedure requires
the following steps for this simulation study.

Preliminary step: estimate the eight parameters
A(S)

oc
and A(S)

co
of the general model, the transition

rates of gating schemes 1 and 2 and calculate for

each of gating schemes 1 and 2 the two-fold log
likelihood ratios LR

1
and LR

2
[eqn (15)] be-

tween the general model and the speci"c gating
scheme.

Step 1: test for consistency: for a test of approx-
imate size a, choose a 1!a quantile q

1~a of the
s2-distribution with two degrees of freedom. Re-
ject the null hypothesis that either gating scheme
1 or gating scheme 2 is the true model if both
two-fold log likelihood ratios, LR

1
and LR

2
, are

above the chosen quantile q
1~a . If the null hy-

pothesis is not rejected, proceed with &&step 2'',
otherwise neither gating scheme 1 nor gating
scheme 2 is an acceptable model for the given
data.

Step 2: selection: select gating scheme 1 if the
two-fold log likelihood ratio LR

1
for gating

scheme 1 is smaller than or equal to the quantile
q
1~a as well as the two-fold log likelihood ratio

LR
2

for gating scheme 2 is greater than the quan-
tile q

1~a . Select gating scheme 2 accordingly. If
both two-fold log likelihood ratios LR

1
and LR

2
fall below the quantile q

1~a , we take this as an
indication that the number of data points is not
su$cient to distinguish reliably between gating
schemes 1 and 2.

In particular, we have four possible outcomes
of our model-selection procedure: none of the
gating schemes is acceptable, either gating
scheme 1 or gating scheme 2 is selected or the
number of data points does not allow a reliable
distinction between the two models.

We investigate the model selection procedure
for an increasing measurement time: 66, 131, 262,
and 524 s with a sampling rate of 1 kHz. Accord-
ingly, the number of data points varies from:
¹"216, 217, 218 to 219. Gating scheme 1 should
be the true model with the following generator
matrix:

A
Q

oo
Q

oc

Q
co

Q
cc
B

"A
!75 75 0 0

150 !280 130 0

0 100 !250 150

0 0 70 !70 B
(in Hz). (20)
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For our model selection procedure, the entries
in the sub-matrices A(S)

oc
and A(S)

co
have to be esti-

mated from the data. As we know the true gener-
ator matrix given by eqn (20) in our simulation
study, we calculate the true matrix A(S) corre-
sponding to the true generator matrix in the
following in order to exemplify the calculations
involved in our model selection procedure.

First of all, the transition probability matrix
A is given by eqn (2):

A"expAQ
1

1000
sB A

A
oo

A
oc

A
co

A
cc
B

+A
0.9326 0.0632 0.0040 0.0002

0.1263 0.7653 0.1003 0.0080

0.0062 0.0772 0.7882 0.1285

0.0001 0.0029 0.0600 0.9370 B . (21)

The matrix A(S) and the transition probability
matrix A are related by the similarity transforma-
tion S that diagonalizes the sub-matrices A

oo
and A

cc
:

S"A
1.0998 !0.0998 0 0

0.6743 0.3257 0 0

0 0 0.7349 0.2651

0 0 1.0839 !0.0839 B .

(22)

Thus, the matrix A(S) corresponding to the true
generator matrix is given by

A(S)"S~1AS

+A
0.9714 0 0.0218 0.0069

0 0.7266 0.2080 0.0654

0.0157 0.0066 0.9777 0

0.1783 0.0742 0 0.7475 B . (23)

For each number of data points, we simulate
1000 noisy recordings. We approximate the
observational noise actually found in experi-
ments by a white Gaussian process. The ratio
between the standard deviation of the noise and

the di!erence between the conductance levels of
the open and closed states is set to one. For the
sake of simplicity, we assume that the conduc-
tance levels and the standard deviations of the
noise and the initial distribution of both gating
schemes are known in advance. The initial distri-
bution of the general model is determined from
the "xed initial distribution of gating scheme
1 and the similarity transformation given by eqn
(22). The transition rates of both gating schemes
as well as the entries in A(S)

oc
and A(S)

co
are estimated

directly from the simulated noisy data set by the
maximum likelihood method. The maximization
of the likelihood function is performed numer-
ically by the EM algorithm (Dempster et al.,
1977; Meng & van Dyk, 1997; Michalek & Tim-
mer, 1999) and a nonlinear maximization routine
based on a quasi-Newton method (the subroutine
E04UCF from NAG, 1997). For the calculation
of the "rst derivatives of the likelihood function,
we use Fisher's identity (Fisher, 1925; Jamshidian
& Jennrich, 1997) and the &&sinch''-algorithm de-
scribed by Najfeld & Havel (1995) to evaluate the
derivatives of the matrix exponential for estima-
ting the transition rates.

Figure 1 shows the distribution function of the
likelihood ratio statistic of gating scheme 1, LR

1
,

and of gating scheme 2, LR
2
, for ¹"216 and for

¹"219. LR
1

approximately follows a s2-distri-
bution with two degrees of freedom, which
corresponds to eqn (15). We expect that the
separation between the distributions of the true
model, LR

1
, and of the wrong model, LR

2
in-

creases with the number of data points due to the
dichotomy of Kakutani (Shiryaev, 1995). For the
long measurement time of ¹"219 the distribu-
tions of LR

1
and of LR

2
separate fairly well; for

216 data points, there is a considerable overlap of
the two distributions.

In Fig. 2, we investigate the scaling behavior of
the likelihood ratio statistic for the wrong model,
LR

2
, with the number of data points ¹. In the

case of independent random variables the two-
fold log likelihood ratio of the wrong model is
asymptotically normally distributed and its mean
and variance are proportional to the number of
data points ¹ (Vuong, 1989). Figure 2 illustrates
that the mean and the variance of LR

2
have the

same scaling behavior with the number of data
points. For each ¹, the simulated sample of

8 M. WAGNER AND J. TIMMER
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FIG. 1. Simulation study: the distribution functions of the likelihood ratio statistic for gating schemes 1 and 2, LR
1

and
LR

2
for ¹"216 and 219: x indicates either LR

1
or LR

2
. The likelihood ratio statistic of the true gating scheme 1 follows

asymptotically a s2-distribution with two degrees of freedom. The plot on the left-hand side compares the empirical
distribution of LR

1
for a di!erent number of data points with a s2

2
-distribution: ( ) s2

2
; ( ) LR

1
: 219; ( ) LR

1
: 216;

( ) LR
2
: 219; ( ) LR

2
: 216.

The separation of the distributions of the true and the wrong model increases with the number of data points. The plot on
the right-hand side shows the separation of the distributions of the true and the wrong model depending on the number of
data points.

FIG. 2. Scaling behavior of the distribution of LR
2

with the number of data points ¹. The plot on the left-hand side shows
the dependency of the mean of LR

2
on the number of data points ¹, the plot on the right-hand side the dependency of the

variance of LR
2

on the number of data points ¹. The error bars indicate the standard deviation of the estimated mean and
variance: ( ) mean of LR

2
; ( ) "tted line; ( ) variance of LR

2
.

LR
2
-values is standardized and the empirical dis-

tribution functions of these standardized samples
are compared with the standard normal distribu-
tion function in Fig. 3. Hence, the distribution of
the likelihood ratio statistic of the wrong model
has the same asymptotic properties as the distri-
bution function for independent random vari-
ables. Especially, the investigation of the scaling
behavior of the likelihood ratio statistic for the
wrong model allows to estimate the required
number of data points for which the overlap
between the distributions of the true model and
those of the wrong model becomes negligible.

Table 1 summarizes the results of the simula-
tion study; the percentage for all possible events
of the proposed selection procedure is shown.
The parameter a which "xes the rejection prob-

ability in &&step 1'' of the selection procedure [see
eqn (16)] is set to 5%. As indicated by eqn (17),
the actual size of the test in &&step 1'', the "rst row
in Table 1, does not di!er signi"cantly from the
parameter a. For ¹"216, in 11% of the cases,
we cannot reject either of the two models. This is
due to the signi"cant overlap of the distributions
of LR

1
and LR

2
shown in Fig. 1, so a reliable

distinction between both models cannot be made
under these conditions. Table 2 summarizes the
results of the simulation study for &&step 2'' of the
selection procedure; the percentage for all pos-
sible events conditioned on the acceptance of
the null hypothesis is shown. For ¹"218 and
219 the overlap between the distributions of LR

1
and LR

2
is negligible and we always select the

correct model. In particular, this suggests that
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FIG. 3. Asymptotic normality of the distribution of LR
2
.

For each ¹, the simulated LR
2

values are standardized and
the empirical distribution functions of these standardized
samples are plotted together with the standard normal dis-
tribution function. (- - - - - - -), 216; ( ) ) ) ) ) ) ) ), 217; ( ) ) ) ) ) ) ), 218;
(- ) - ) - ) -), 219; (**), N(0, 1).

TABLE 1
Summary of results of the simulation study: the
leftmost column contains the possible event of the
proposed model selection procedure. Each row con-
tains the percentage of the event mentioned in the

leftmost column

¹ 216 217 218 219

&&Accept H
0
'' 0.970 0.96 0.94 0.94

&&Reject H
0
'' 0.030 0.04 0.06 0.06

&&Select model 1'' 0.852 0.95 0.94 0.94
&&Select model 2'' 0.003 0.0 0.0 0.0
&&Not enough data'' 0.114 0.01 0.0 0.0

TABLE 2
Summary of results of the simulation study condi-
tioned on the acceptance of H0 . Each row contains
the percentage of the event mentioned in the left-

most column

¹ 216 217 218 219

&&Select model 1'' 0.880 0.994 1 1
&&Select model 2'' 0.003 0.0 0.0 0.0
&&Not enough data'' 0.117 0.006 0.0 0.0

the rejection probability of &&step 1'' should be
adjusted to the number of data points: the larger
the number of data points, the smaller the para-
meter a and the smaller the actual size of the test
by eqn (17) following the classical suggestion
(Neyman & Pearson, 1933; Bauer et al., 1988).

6. Discussion

Model selection methods are based either on
some criteria which compare some kind of
&&goodness of "t'' between several models or on
hypothesis tests which test for simpli"cations of
a general model to be still compatible with the
data.

The most prominent examples for the "rst
case are the information criteria (Akaike, 1993;
Schwarz, 1978; Burnham & Anderson, 1998). The
AIC and the BIC were "rst used by Ball &
Sansom, (1989) in the context of ion channel
gating. These criteria are estimates of the Kull-
back}Leibler distance between the true probabil-
ity distribution of the data and the probability
distribution of the model (Konishi & Kitagawa,
1996). A model selection procedure based on one
of these criteria will choose the model with the
smallest estimated Kullback}Leibler distance.
Konishi & Kitagawa (1996) show, however, that
these criteria do not always reliably estimate the
true Kullback}Leibler distance, especially, if the
models are misspeci"ed. Moreover, these criteria
do not provide a scale to assess the signi"cance of
di!erences between values of these criteria for
di!erent models.

The main advantage of our proposed model-
selection procedure over classical information
criteria is that the embedding of the gating
schemes in a general model gives us the needed
scale on which we can reliably compare likeli-
hood values of di!erent models. Moreover, this
allows to decide if the proposed models are at all
compatible with the measured data and if they
are, to decide if the number of data points is
su$cient to distinguish reliably between the
models. In the context of classical information
criteria, none of these decisions is possible and it
is common practice to choose the model with the
smallest estimated Kullback}Leibler distance.

As our proposed selection procedure is cur-
rently limited to models with the same number of
open and closed states, we will investigate gener-
alizations to drop this restriction in future work.
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