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Complex intracellular signalling networks integrate
extracellular signals and convert them into cellular
responses. In cancer cells, the tightly regulated
andfine-tuneddynamicsof informationprocessing in
signallingnetworks isaltered, leading touncontrolled
cell proliferation, survival and migration. Systems
biology combines mathematical modelling with com-
prehensive, quantitative, time-resolved data and is

most advanced in addressing dynamic properties of
intracellular signalling networks. Here, we introduce
different modelling approaches and their application
to medical systems biology, focusing on the identifi-
ability of parameters in ordinary differential equation
models and their importance in networkmodelling to
predict cellular decisions. Two related examples are
given, which include processing of ligand-encoded
information and dual feedback regulation in erythro-
poietin (Epo) receptor signalling. Finally, we review
the current understanding of how systems biology
could foster the development of new treatment strate-
gies in thecontextof lungcancerandanaemia.
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Introduction

Molecular and cell biologists frequently questionwhy
weneedmathematicalmodels to understandbiologi-
cal processes. However, owing to the complexity of
biological systems, it is evident that a higher level of
abstraction is required to decode the ‘language’ of
cells and to gain insights into how signals from the
environmentare integratedandhowdecisions for life,
death, proliferation or differentiation are regulated.
In recent years,much progress has beenmade in the
qualitative analyses of biological systems. Yet, to ad-
vance theunderstandingof complexdiseasesand the
process of drug discovery (including efficacy, safety
andconsequently theoutcomeinpatients), computa-
tional tools are essential that are able to integrate
the plethora of experimentally observed information
and facilitate thepredictionofcellular responses.The
reliability of these predictions critically depends on
theavailabilityofquantitativedata tocapturecellular
events over time with sufficient quality to calibrate
themathematicalmodels.

Cellular signal transductionpathwaysprocess extra-
cellularsignals thatarereceivedbycell surfacerecep-
tors; these receptors are activated and translate this
information via signalling networks to cellular re-
sponses. As the ‘omics’ technologies facilitated the
identification of key components of signalling path-
ways in high-throughput systems, the current focus
is the investigation of the connectivity, crosstalk and
dynamics of these networks. From systems-based
approaches,wehave learned that temporaldynamics
[1, 2], spatial distribution [3, 4] and cell-to-cell vari-
ability [5–7] are key systems properties that lead to
context-specific cellular responses. These insights
serve as inspiration to further investigate the emer-
gent properties of signalling pathways and how they
are quantitatively linked to decisions concerning cell
fate.

In this review we provide an overview of modelling
concepts describing biological systems, in particular
cancer signalling pathways, to demonstrate the
power of modelling approaches in addressing urgent
biological questions. We do not intend to give a theo-
retical introduction tomodelling strategies in general
as this has been previously provided elsewhere [8–10].
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Rather, we emphasize that when using mathematical
models to predict cellular behaviour, certain require-
ments concerning the modelling strategy have to be
accomplished to facilitate the prediction of cellular
behaviour and adeeper understanding of the biologi-
cal system. Therefore, a summary of modelling sig-
nalling pathways using ordinary differential equa-
tions (ODEs) is provided. Because the identifiability
of parameters in these models is one prerequisite for
achieving models with high predictive power, we
introduce the theoretical background on identifiabil-
ity inODE-basedmodels.

A signal transduction network that has been inten-
sively studied by systems-based approaches is the
erythropoietin receptor (EpoR) signalling system.
Therefore, we highlight the most recent advances in
this field anddemonstrate howmathematicalmodel-
ling enabled the identification of key system proper-
ties. Furthermore, we discuss how systems-based
approaches can be employed to address complex
questions in pharmacology. In particular, advances
in systems biology approaches that investigate the
risk of Epo treatment in patients with cancer are pre-
sented.

Two directions in systems biology

To unravel complex signalling networks and their
underlying regulatorymechanisms, two different ap-
proaches have evolved in the field of systems biology
(Fig. 1a). The ‘top down’ approach combines large-
scale ‘omics’ data including qualitative and static
informationaboutcellularcomponentswithbioinfor-
matics tools to analyse network topologies. The other
approach, ‘bottom-up’, generates low to medium-
throughput data with quantitative and dynamic
information content relevant for calibratingmedium-

sized mathematical models with high predictive
power. The current challenge in systems biology is to
combine both approaches to achieve large quantita-
tive networkmodels that are detailed enough to deci-
pher regulatory mechanisms and to accurately pre-
dict cellular behaviour aswell as the potential impact
ofpharmaceutical intervention.

Mathematical models address different levels of complexity

In the last decade, different mathematical methods
have been applied and refined to describe and ana-
lysecellularprocessesatdifferent levelsofcomplexity
(Fig. 1b). Starting with the lowest level, regression
analysis is the simplest form of a statistical model
that identifies correlations between biological enti-
ties. Boolean models are often applied if qualitative
informationanddetails of the temporal order of cellu-
lar events are available. In these logic models, reac-
tions of signalling pathways or transcriptional net-
works are represented as logic gates and the reaction
partners can have two states: on ⁄off. Despite the fact
that quantitative information about the individual
components cannot be integrated, logic models pro-
vide a good starting point to analyse large-scale bio-
logical systems where details of the system are only
partially defined [11–13]. The most common form to
describemolecular interactions and transformations
of signalling pathways in a mathematical form is a
chemical reaction network described by ODEs. ODE
networks represent the rates of the reactions (i.e.
association, dissociation, production and degrada-
tion of the individual species) usually in terms of
mass action kinetics. This approximation is derived
from physicochemical theory and states that the
rates are proportional to the concentrations of the
reactants [8]. For example, the Michaelis–Menten
approximation is derived from mass action ODEs

(a) (b)

Fig.1 Different levelsof complexity insystemsbiologyapproaches.Fordetails see text.
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and applied in enzyme kinetics [9]. Because ODE
models are able to integrate quantitative and time-re-
solved information, thesemodelsallow for interpreta-
tion and analysis of complex dynamic behaviour,
which can lead tononintuitive insights intobiological
systems [3, 14]. To integrate spatial information,
however, partial differential equations are required
that aremore difficult to use especially with regard to
parameter estimation in combinationwith high com-
plexity of the interaction between reactants. There-
fore,ODEmodelling that considers reactions tooccur
under well-mixed conditions is currently the most
widelyapplied trade-offbetweencomputational effort
and feasibility. If the abundance of reactants is low, it
can be important to consider the stochastic nature of
chemical reactions. However, in most cases, abun-
dances are larger than �100; therefore, the ODE
description isagoodapproximation [15].

Establishing ODE models of cancer signalling pathways

When establishing an ODE model for a specific bio-
logical system, such as a signalling cascade, a famil-
iar schematic of a ‘preliminary’ pathway from the
published literature or databases (e.g. the KEGG
pathway [16]) can be translated to an ODE network
as a starting point. After constructing the topology of
themodel and selecting the required level of abstrac-
tion, theparameters of the system (i.e. the rates of the
molecular interactions and transformations and the
abundanceof thereactants for the initial valuesof the
ODE system) have to be estimated or determined.
These parameters determine the behaviour of the
ODEmodel and are of critical importance for obtain-
ing a reliablemathematical description of the biologi-
cal system.However, for a given cell typeandspecies,
parameter values are often not available nor can they
bemeasureddirectly. In particular, ifmodelsare rep-
resentations of signalling pathways, parameters that
were determined in vitro are often not applicable as
they differ substantially from the in vivo situation.
Moreover, parameters could be cell context-specific
depending, for example, on the cell type. For these
reasons, a reverse engineeringapproach ismost suit-
able. Here, the dynamic behaviour of experimentally
accessible components is determined using quanti-
tative techniques such as quantitative immunoblot-
ting [17, 18], protein arrays [19–21], quantitative
mass spectrometry [22–25] or quantitative RT-PCR.
Of importance, defining standardized conditions for
experimental protocols [26, 27] and modelling tools
are crucial [28]. After obtaining time-resolved and
quantitative data, the parameters of the ODE model
are estimated by calibrating the model with these

measurements. The advantage of the reverse engi-
neering approach is that the dynamic behaviour of
themathematical model is tailored to the specific cell
type and species. There are two possible scenarios
after obtaining the estimates for the parameters and
the ‘fitted’mathematicalmodel (Fig.2).

The ODE model is not able to describe the experimental data

The first scenario is that the ODE model cannot de-
scribe thedata.A key advantage of a statisticalmodel
is that all available hypotheses regarding the biologi-
cal systemare explicitly considered in themathemat-
ical description. If the current model fails to explain
the data, it can be rejected, indicating that the actual
biological system is different from expected. As an
iterative process, several additional hypotheses can
now be included and tested. For example, these can
be differentmolecular interactions between the reac-
tants, unconsidered reactants or different levels of
abstractionconcerning the reaction rate equationsor
assumptions about model parameters. This process
is iterateduntil one ormore candidatemodels are de-
fined that are able to reproduce the experimental
data. Subsequently, model selection strategies [29]
can be used to rank the candidates. Furthermore,
experimental design techniques [30] enable new

Fig. 2 Workflow for establishing anODEmodel. See text for
details.
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experimentaldata tobecreatedundersuitable condi-
tions that allow better differentiation between the
models (Fig.3a).

The ODE model is able to describe the experimental data

In the second scenario, the ODE model can describe
the data. In this case, the model can be used for the
prediction of cellular behaviour, such as the dynam-
ics of components that are inaccessible by experi-
ments or the dynamics of all network reactants
under altered conditions (e.g. overexpression or
knockdown of components or inhibitor treatments).
Subsequently, the predictions can be used for vali-
dating or rejecting the current model. After gaining
confidence in this particularmathematical represen-
tation of the biological system, its behaviour can be
investigated. Here, it is important to consider that
the model¢s behaviour is a statistical prediction.
Therefore, uncertainties in the experimental data
and in any prior assumptionsused in themodel have
to be analysed to assess the accuracy of the model
predictions.

Accurate predictions of cellular behaviour requires models with identi-
fiable parameters

The scope of the ODE model should always corre-
sponds to the availability of data and the biological
question being addressed. ODE models are typi-
cally nonlinear with regard to the dependency of
model trajectories on the parameters. In combina-
tion with limited availability of biochemical data,
the problem of parameter identifiability may arise,

which reduces the predictive power of the model
[31]. Therefore, it is crucial to investigate the iden-
tifiability of the model parameters to facilitate
accurate predictions. In the following section, we
give a short theoretical overview of parameter esti-
mation and methods to investigate the identifiabil-
ity of model parameters.

Maximum likelihood estimation (MLE)

A maximum likelihood estimation (MLE) can be
applied to calibrate the mathematical model by
estimating the parameters of the ODE system
from experimental data [32]. For mathematical
definitions, refer to Box 1. If the measurement er-
ror of the experimental technique is normally dis-
tributed, the minimum of the residual sum of
squares v2 yields the MLE of the model parame-
ters. Optimization algorithms (e.g. see [33]) facili-
tate the numerical determination of the v2 mini-
mum. For biochemical measurement techniques
such as immunoblotting, the measurement noise
is often log-normally distributed [34] and a log-
transformation yields normally distributed noise.
In MLE, parameter uncertainties are usually
determined using confidence intervals. An interval
indicates that the true value of the parameter is
expected to be inside this interval with a certain
probability [35]. It is critically important that
uncertainties in the estimated parameter are con-
sidered and propagated to the model predictions
if model predictions are the goal of the investigation.
If the information contained in the experimental
data is not sufficient, parameter uncertainties and

(a) (b)

Fig.3 (a) To testagivenhypothesis, experimentaldataareused formathematicalmodelling.Frequently,modelparameterscan-
not be uniquely determined based on the existing data. To resolve this issue, experimental design techniques allow for the plan-
ning of new experiments, resulting in additional data. (b) Investigating parameter identifiability using the profile likelihood ap-
proach.The coloured lines indicate profiles of the residual sumof squares v2with respect to parameter p1. Three typical cases can
arise. The red profile is perfectly flat and indicates that the parameter is structurally nonidentifiable. The blue curve indicates
a practically nonidentifiable parameter. Its lower confidence bound is finite, given by the crossing of the threshold indicated by
the dashed line. Its upper confidence bound is infinite. The green curve indicates an identifiable parameterwith finite confidence
intervals.
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consequently uncertainties in the model predictions
can be very large. Some parameters can even be
undefined (i.e. nonidentifiable), leading to uncon-

strained model predictions. Identifiability and confi-
dence intervals can be investigated by calculations
of the profile of the likelihood [31].

Box 1 definitions

Ordinary differential equation (ODE) model

Cellular processes such as molecular interactions can be described by ODE models. The concentration
dynamicsofncompounds~x suchasproteins indifferentphosphorylationstates isgivenbyanODEsystem

~xðt; hÞ ¼~f ð~xðt; hÞ;~uðtÞ; hÞ: ð1Þ

The dynamical behavior may depend on a time dependent input function~uðtÞ such as a treatment as well as
model parameters h = {h1 … hl} such as rate constants and initial concentrations. The dynamical variables~x
are mapped tommodel outputs~y, the quantities that are accessible by experiments at discrete times ti, via a
function

~yðti; hÞ ¼~gð~xðti; hÞ; hÞ þ~ei: ð2Þ

Theoutputsmaydependonadditional parameters suchas scalingor offset parameters that are included in h.
Often, only a subset or combinations of compounds are accessible by experiments, meaning thatm < n. The
distributionof themeasurementnoise,e.g. eki � Nð0; r2

kiÞ, isassumed tobeknown.

Maximum likelihood estimation (MLE)

Often, manymodel parameters h are unknown and have to be estimated from experimental data. The agree-
ment of experimental yykðtiÞwith the predictedmodel out-putyk (ti, h) for parameters h ismeasured by an objec-
tive function, commonly theweightedsumofsquared residuals

x2ðhÞ ¼
Xm
k¼1

Xdk
i¼1

1
r2
ki

yykðtiÞ � ykðti; hÞ
� �2

ð3Þ

where dk denotes the number of data points for each observable k = 1 … m, measured at time points ti with
i = 1 … dk. The variances r2

ki of themeasurementnoise are assumed tobeknown.Theparameters canbe esti-
mated by finding the parameter values ĥ that minimize v2(h), i.e. the best model fit. For normally distributed
measurementnoise, v2(h) isproportional to the log-likelihoodandminimizing (3) corresponds toMLE.

Profile likelihood (PL)

Theprofile likelihood isdefinedby

v2PLðhiÞ ¼ min
hj 6¼i

v2ðhÞ
� �

: ð4Þ

The idea of this approach is to detect flatness of the likelihood in a high dimensional space by exploring each
parameter in the direction of least increase in v2(h). For each parameter hi a section is individually computed
along the minimum of the objective function with respect to all the other parameters hj 6¼ i. The profile likeli-
hoodenables tocalculate likelihood-basedconfidence intervals.Here,a thresholdDa in the likelihooddefinesa
confidence region

hjv2ðhÞ � v2ðĥÞ<Da

n o
: ð5Þ

Its borders represent confidence intervals. The threshold Da is the a quantile of the v2df -distribution,
e.g. a = 0.95 yields confidence intervals that contain the true value of the parameter with 95% probability.
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Structural (non) identifiability

Given that only a subset of themolecular compounds
involved in the model can be measured, some of the
model parameters may be structurally nonidentifi-
able [36]. This means that several parameters can
potentially cancel out their effects and produce ex-
actly the samemodel output for themeasurable com-
pounds. Therefore, structural nonidentifiability
indicates that these parameter values cannot be
determined at all, given the current experimental
conditionsandmeasurements.Structuralnonidenti-
fiability canbedetectedbycalculatingtheprofile like-
lihood [37]. A perfectly flat profile indicates a struc-
turalnonidentifiableparameter (Fig.3b, red line).

Practical (non) identifiability

A structural nonidentifiable parameter can still be
practically nonidentifiable. This case can arise for
nonlinear models and if the amount and quality of
data is limited. It is characterized by having a unique
MLE, but infinite confidence intervals. Likelihood-
based confidence intervals can be calculated by set-
ting a threshold for the residual sum of squares v2

[38].Using theprofile likelihoodapproach [31], a pro-

file that increases but plateaus to a level below the
threshold tooneorbothsides indicatespracticalnon-
identifiability (Fig. 3b, blue curve). Consequently,
likelihood-based confidence intervals are infinite. If
the amount or quality of experimental data is in-
creased, a practical nonidentifiability will finally be
resolved (Fig. 3b, green curve). Experimental design
based on the profile likelihood can be used to plan
suitable experiments [39]. Of note, it is often more
informative to measure additional molecular com-
pounds than to increase the quality of already avail-
ablemeasurements.

Afterparameteruncertaintieshavebeeninvestigated,
they can be translated to confidence intervals for the
model predictions. Nonidentifiability of the model
parameters often induces nonobservability of the
modelpredictionthat isaffectedbytheseparameters.
This indicates that the predictions are undetermined
giventhecurrentexperimentalsetupanddata.

Examples of predictive models revealing key system properties

Twoexamplesoferythropoietin (Epo)-inducedsignal-
ling in erythropoiesis are provided to demonstrate
mathematical modelling of signalling pathways

The choice of df yields confidence intervals that hold jointly for df number of parameters. Often, df = 1 is ap-
plicableyieldingconfidence intervals thathold individually foreachparameter.

Non-identifiability

Non-identifiability is characterized by flatness of the likelihood. The profile likelihood allows to investigate
non-identifiability also in a high dimensional space, see Fig. 3b. A structural non-identifiability is character-
izedbyaperfectly flat profile (red line). This indicates that theparameter cannot bedeterminedat all. A practi-
cal non-identifiability is characterized by a profile that flattens out and stays below the thresholdDa for confi-
dences intervals (blue line). This indicates that the lower and ⁄or theupper confidencebound is infinite. Figure
3bshowsacasewherea lowerboundaround)0.5canbedetermined.Aprofileof an identifiableparameteral-
lows fordeterminationofboth lowerandupperbound (green line).

Non-observability

The uncertainty of parameter estimates ĥ translates to uncertainty of model trajectories. In particular non-
identifiability can induce non-observability. For structurally non-identifiable parameters hsub, those compo-
nents of~x affected by hsub can benon-observable, whereas themodel observables~y are bydefinition invariant.
In contrast, for practical non-identifiable parameters, the model observables~y are affected but stay in agree-
ment with the uncertainties of the experimental data because the likelihood stays below the threshold Da.
Nevertheless, some components of~x might be affected strongly by a practical non-identifiability and hence
might be non-observable. Also, confidence intervals of parameter estimates translate to confidence intervals
ofmodel trajectories.

(c.f.Raueetal.2009)
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including identifiability analysis. The development of
red blood cells (erythrocytes) is a complex and fine-
tuned process that results in a precisely controlled
number of erythrocytes in the blood. This system en-
sures a continuous oxygen supply to tissues and at
the same timeavoids elevatedhaematocrit levels that
potentially lead to thrombosis. Epo binds to the hae-
matopoieticcytokinereceptor, theEpoR,which ispri-
marily present on erythroid progenitor cells, but has
been recently identified on tumour cells. By eliciting
signalling cascades such as the JAK2 ⁄STAT5, the
PI3K ⁄AKTand theMAPKpathways, theEpoRcoordi-
nates decisions for differentiation, proliferation and
survival. Although most of the components that are
involved in EpoR signalling have been identified, sig-
nal processing strategies and the underlying regula-
tory mechanisms that lead to quantitative and con-
trolled cellular decisions in erythroid progenitor cells
are not entirely understood. Therefore, the bottom-
upsystemsbiologyapproach is ideal for studying this
system.

Example 1: strategies for processing ligand-encoded information

In physiological situations, the concentration of Epo
in the blood can vary up to 1000-fold [40]. Becker
et al. [41] showed by mathematical modelling of
quantitativedataandbyexperimental validationhow
the Epo–EpoR system on the membrane can process
such a broad range of Epo concentrations to a linear
signal response.Withconventionalbiochemical tech-
niques, however, this issue was difficult to address

becausereceptorendocytosis, recyclingandturnover
are highly interlinked processes that are difficult to
discern experimentally. To separate these nonlinear
processes, a mathematical model of ligand–receptor
interaction and trafficking kinetics was developed.
This model was first calibrated with quantitative
experimental data based on radiolabelled Epo and
identifiability analysis was performed using the pro-
file likelihood. After confirming structural andpracti-
cal identifiability of the parameter estimates, the
model could be applied to accurately predict key dy-
namic properties of theEpoRsystem. In thisway, the
turnover rateofEpoRwas foundtobemost important
for a linear signal transmission, which enables the
cell to detect the broad range of physiological ligand
concentrations (Fig.4).

Example 2: linking the integral signal response of transcription factor
activity with survival decisions

Extracellular Epo concentrations are linearly trans-
mitted tothe insideof thecell,buthowis this informa-
tion quantitatively forwarded to the nucleus to elicit
cellular responses? Binding of Epo to its cognate
receptor leads to rapidactivationofJAK2phosphory-
lation followed by phosphorylation of the latent tran-
scription factor STAT5. Although STAT5 is known to
beacrucial regulatorof survival inerythroidprogenitor
cells [42–44], the quantitative link between survival
and STAT5 responses has been difficult to address.
This is the case, in particular, because phenotypic
assays that determine survival responses areusually

(a) (b) (c)

Fig. 4 Information processing through the erythropoietin receptor (EpoR). (a) Graphical representation of a dynamicmathemati-
calmodel for theEpoRsystemencompassingboth ligand–receptor interactionsand traffickingprocesses. (b) Time-coursedata for
EpoR and JAK2 phosphorylation were acquired for different Epo concentrations by quantitative immunoblotting in BaF3-EpoR
cells. A linear functionwas fitted to the data for the amount of activated EpoR and JAK2 integrated over time (integral activation,
triangles). (c)Basedon the calibratedand fully identifiablemodel, simulations for theamount of cell surfaceEpo–EpoR complexes
(integral EpoRoccupancy)were performed for parameter values lower than the estimated rate for EpoR turnover kt. Adapted from
[41].
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performed at Epo concentrations below the concen-
tration threshold of biochemical experiments used
to measure the activity of signalling proteins. To
investigate the link between the integral STAT5
responses and survival, a dynamic pathwaymodel of
JAK2 ⁄STAT5 signalling was developed and cali-
brated with extensive quantitative and time-resolved
data [45] (Fig. 5a,b). After assessing the identifiability
of the parameters, the model was used to predict
STAT5responsesover theentire rangeofEpoconcen-
trations, including doses that are not accessible by
experimental techniques. Toevaluate the accuracy of
themodelpredictions, theuncertainty of theparame-

ter estimates were transferred to the model predic-
tions by computing confidence bands of the model
trajectories. It is interesting that the early signalling
phase of STAT5 (1 h post stimulation) was most
predictive of survival decisions (Fig. 5c). In line with
this, it was demonstrated that early signalling events
up to 90 min after receptor activation correlated best
with apoptosis–survival decisions in HT-29 cells
treated with tumour necrosis factor-alpha in combi-
nation with epidermal growth factor or insulin [46].
The next question to answer was: how is the STAT5
signal attenuated by the transcriptional feedback
regulators CIS andSOCS3? Facilitated by themodel,

(a) (c)

(b) (d)

Fig. 5 Information processing through theEpo-inducedJAK2 ⁄STAT5pathway. (a)Graphical representation of adynamicmath-
ematicalmodel for thedualnegative feedbackof JAK2 ⁄STAT5signalling. (b) Time-coursedataofJAK2 ⁄STAT5signallingwereac-
quired by quantitative immunoblotting in primary CFU-E cells. The model was fitted to the data and identifiability analysis was
performed.Representative examples of thedynamics of phosphorylatedEpoRandSTAT5are shownaswell asparameter identi-
fiability using theprofile likelihoodapproach. (c) Based on the calibratedand identifiable parameters, simulations for the integral
signal strength of phosphorylated STAT5 in the nucleuswere performed including 95% confidence bands (shadedareas). Extent
of survival for wild-type CFU-E cells, CIS- and SOCS3-overexpressing cells were experimentally determined at different Epo
concentrations (circles). The overlay shows that the simulated integral of STAT5 (t = 60 min) correlates well with the survival
rates. (d) The increase in steady-state pSTAT5 levels in the nucleus relative to wild-type cells (black line) was simulated in the
presence of only one transcriptional negative regulator, CIS or SOCS3,and in theabsence of both.For (I) Epo = 10)9 Uper cell, the
absenceofCIS impactsSTAT5phosphorylation levelswhereas theabsenceofSOCS3has themajor influence for (II) Epo = 10)6 U
per cell.Dashed lines indicateupperand lower95%confidencebandsfor theprediction.Adaptedfrom[45].
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the individual inhibitory effects of these two tran-
scriptional feedback regulators were analysed. The
simulations revealed a division of labour by the two
feedback proteins as the key property to control
STAT5 responses. Model simulations of the STAT5
phosphorylation level in the nucleus demonstrated
that the absence of CIS resulted in an increase in the
amplitude and the steady-state level of STAT5
phosphorylationat lowEpoconcentrations (Fig.5d, I)
whereas the absence of SOCS3 caused an increase in
the steady-state level at high Epo concentrations
(Fig. 5d, II). The observation that dual feedback
facilitates the tight regulation of transcription factor
activity over a broad range of ligand concentrations
suggests a new strategy of feedback control. In the
future, studies that investigate STAT5 responses in
singlecells couldclarifyhow theall-or-noneresponse
of survival–apoptosis is controlled by downstream
effectors of STAT5.Here, a combinationof theoretical
approaches and single-cell observation techniques
canprovidenew insights.

Perspective: from molecules to patients

Future goals in the combined approach of data-dri-
ven mathematical modelling are the integration of
multiple cooperating and counteracting signalling
pathways in large network models that have been
comprehensively calibrated with quantitative dy-
namic data. Only then can predictive models with
identifiable parameters be established that will be
able to simulate cellular behaviour of experimentally
unobservableconditions, to reveal regulatorymecha-
nisms and to predict cellular responses to drugs.
To achieve these aims, advances in mathematical
methods, computational tools and experimental tech-
nologies are required. Quantitative experimental
techniques have to be adapted tohigh-throughput as
well as high-content measurement, requiring robot-
ics and automated quantification methods. It will be
essential to connectpopulation-basedandsingle-cell
studies and therefore adapt methods such as mass
spectrometric analysis and antibody-based tech-
niques and combine them with single-cell analysis
such as flow cytometry and imaging to quantitatively
measure the dynamics of activated signalling
proteins. Computationally, more efficient and faster
methods for parameter estimations must be devel-
oped, as large models lead to parameter spaces with
high dimensionality that require more elaborate
methods to ensure that the global optimum is found.
Ultimately, multiscalemodels need to be established
that can describe cellular behaviour from individual
cells to the multicellular level and to the organ and

organism levels. This will lead to a deeper under-
standing of complex disease states, such as cancer,
and facilitate a more target-oriented development of
drugs with higher success rates and fewer adverse
effects fromthepreclinical to theclinicalphases.

Identification of the potential risk to patients with
lung cancer who are treated with recombinant eryth-
ropoietin is a complex medical problem. The leading
causeofcancer-relateddeathsworldwide is lungcan-
cer, themost frequent formofwhich isnon-small-cell
lung cancer. Patients who are diagnosed at an ad-
vanced stage of disease are treated with surgery in
combination with chemotherapy or angiogenesis
inhibitors.Asacommonsideeffect, patientsoftende-
velopcancer-relatedorchemotherapy-inducedanae-
mia, which is frequently corrected with recombinant
human Epo (rHuEPO). However, several clinical tri-
alshaveshownthat theoutcomeofpatientswithcan-
cer receiving rHuEpo is impaired, despite successful
correction of anaemia. In addition, the EpoR was re-
cently identified on tumour cells [47, 48]. Conse-
quently, the safety of Epo treatment in patients with
cancer is now considered to be controversial (Fig. 6).
To some extent, the higher mortality in patients with
tumour treated with Epo may be attributed to an in-
crease in thromboembolic events. However, potential
tumour-promoting effects of Epo that affect angio-

Fig. 6 Potential risk of Epo treatment for patients with lung
cancer.
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genesis [49] or counteract the efficacy of chemother-
apy [50]havebeenreported.

As conventional experimental studies to investigate
Epo-induced tumour-promoting effects resulted in
contradictory results, multidisciplinary approaches
that comprehensively elucidate the effects of Epo on
emerging properties of intra- and intercellular com-
munication in lung cancer (e.g. the GermanMinistry
for Education and Research-funded MedSys Project
LungSys) have been initiated. By employing compar-
ative mathematical modelling of the dynamics of
Epo-mediated receptor activation and intracellular
signalling in tumour cells and endothelial cells, the
Epo-specificeffectsonthetumourmicroenvironment
are addressed. Furthermore, spheroid cultures and
xenograft models are used to establish a cell-based
multiscale model of the spatiotemporal organization
of tumour growth and angiogenesis. Together with
patient-derived data, this combined approach ad-
dresses the issue of whether the presence of EpoR is
related to tumour-promoting functions. The estab-
lished data-based mathematical models of Epo–
EpoR dynamics and signalling pathways enable the
prediction of new Epo treatment strategies. In sum-
mary, this multidisciplinary approach of addressing
the complex pharmacological problem of Epo treat-
mentwillhelptostratify therisk forpatientswith lung
cancer and thereby contribute to improve their qual-
ity of life. Asdata-basedmathematicalmodels enable
rapid testingofhypotheses, targeteddesignof experi-
ments and the prediction of steps most suitable for
intervention, this approach will contribute to a more
rapiddevelopmentofeffectiveanticancer therapies.
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