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Abstract

Epilepsy is characterized by the spontaneous and unforeseeable occurrence of seizures, during which the perception or
behavior of patients is disturbed. The predictability of these seizures would render novel therapeutic approaches possible.
Several prediction methods have claimed to be able to predict seizures based on EEG recordings minutes in advance. However,
the term seizure prediction is not unequivocally defined, different criteria to assess prediction methods exist, and only little
attention has been paid to issues of sensitivity and false prediction rate. We introduce an assessment criterion called theseizure
prediction characteristic that incorporates the assessment of sensitivity and false prediction rate. Within this framework, three
nonlinear seizure prediction methods were evaluated on a large EEG data pool of 21 patients. Altogether, 582 h intracranial
EEG data and 88 seizures were examined. With a rate of 1–3.6 false predictions per day, the “dynamical similarity index”
achieves a sensitivity between 21 and 42%, which was the best result of the three methods. Sensitivity was between 18 and
31% for the extended, prospective version of the “accumulated energy” and between 13 and 30% for the “effective correlation
dimension”. These results still are not sufficient for clinical applications.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

“It’s the variability that really makes it so stress-
ful. You never know when it is going to be chaos
again and you’ll have one. Just because this morn-
ing is terrific doesn’t mean tonight is going to be
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terrific, either behavior-wise, medication-wise, or any
other-wise. So it is the unpredictability of it that is
really nerve-racking to live with.”[1]

Like the parent of a child suffering from the
Lennox-Gastaut syndrome, many epilepsy patients
have to cope with the incessant uncertainty of sud-
den seizures. Hence, in 1996, the primary research
priorities of the American Epilepsy Society read
“seizure prediction, early recognition, and blockage
of seizures”[2].
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Table 1
Achievements of seizure prediction methods developed to date

Year Authors #Patient #Seizure Interictal
(h)

MPT
(min)

Sensitivity
(%)

FP/h Method

1998 Osorio et al.[24] 13 125 34 0.25 92 0 Based on frequency analysis
1998 Martinerie et al.[18] 11 19 0 2.64 89 – Correlation density
1998 Lehnertz and Elger

[10]
16 16 5.2–34.7 11.5 94 0 Effective correlation dimension

1999 Le Van Quyen et al.
[13]

13 23 0 5.75 83 – Similarity index

2000 Le Van Quyen et al.
[14]

9 17 0 4.45 94 – Similarity index

2001 Iasemidis et al.[7] 5 58 0 49.1 91 – Lyapunov exponent
2001 Le Van Quyen et al.

[16]
23 26 0 7 96 – Similarity index (surface EEG)

2001 Lehnertz et al.[11] 59 95 ≥115 19 47 0 Effective correlation dimension
2001 Jerger et al.[8] 4 12 0 1–3 – – Seven different prediction methods
2002 De Clercq et al.[5] 12 12 0 – 0 – Sim. ind., corr. dim. (surface EEG)
2002 Schindler et al.[26] 7 15 <144 4–330 100 >0.014 LIFU (surface EEG)
2002 Navarro et al.[23] 11 41 12–60 7.54 83 0.3 Similarity index
2003 Mormann et al.[20] 10 14 15 86/102 86 0 Phase coherence, lin. cross corr.
2003 Mormann et al.[21] 18 32 49 4–221 81 0 Synchronization decrease

Listed are the number of patients and seizures investigated, the total duration of interictal EEG data for calculation of the false prediction
rate, the mean prediction time (MPT), sensitivity, and the rate of false predictions per hour. All but three studies were done with intracranial
EEG data. False prediction rates of 0 FP/h mean that no false prediction occurred for the investigated EEG data.

Up to now, several investigations based on nonlin-
ear time series analysis have been carried out on in-
tracranial and surface EEG data with promising results
[3–20,22–26]. Table 1summarizes the achievements
of seizure prediction methods developed to date. For
a review, see[27,28].

The clinical utility of a seizure prediction method
would be to predict the occurrence of an upcoming
seizure and trigger an external intervention system to
control the seizure. An intervention system could be in
the form of an electrical stimulation of the vagus nerve
or the administration of a potent anticonvulsive agent
directly into the epileptic focus[17,29,30]. Besides, a
simple warning could help the patient avoid dangerous
situations, like swimming or climbing a staircase.

Fig. 1provides an example of how a seizure predic-
tion method works. A mathematical algorithm extracts
a “feature” from the EEG recording. Once this feature
crosses a specific threshold level, an alarm is triggered.
A comparison of interictal periods far away from any
seizure and pre-ictal periods resulting in seizure onset
leads to the choice of a suitable threshold value. In this

case, lower threshold values correspond to higher sen-
sitivity, since more seizures can be predicted correctly.
Consequently, more false predictions occur during the
interictal epochs. The tight dependency between sen-
sitivity and the false prediction rate holds for every
prediction method.

In this paper, we address three shortcomings that
need to be resolved for further development of seizure
prediction methods:

(1) Different assessment criteria of seizure prediction
methods exist, and the term “seizure prediction”
is not unequivocally defined.

(2) Generally, little attention has been paid to the de-
pendency between the sensitivity and the false pre-
diction rate. For example, the performance of half
of the prediction methods summarized inTable 1
is characterized only by the sensitivity, without
calculation of the false prediction rate.

(3) All prediction methods have been developed and
tested on different EEG data pools, making it dif-
ficult to compare their performance.
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Fig. 1. Dependency between sensitivity and false prediction rate. The upper and middle panels display an example for EEG data (a) and
an extracted feature (b) used by the seizure prediction method “increments of the accumulated energy”. Below, 1-h interictal (c) and 2-h
pre-ictal epochs are shown ((d) and (e)). Vertical lines mark seizure onsets. Upward crossing of a threshold (dashed line) triggers an alarm.
Three different thresholds illustrate the dependency between sensitivity and false prediction rate. ForT1, no alarm occurs either during
pre-ictal or interictal epochs, meaning zero sensitivity and zero false predictions. ThresholdT2 leads to the correct prediction of the second
seizure in (e) in a time interval 20 min before the seizure onset, at the expense of one false prediction during the interictal epoch in (c).
Decreasing the threshold toT3 to predict the first seizure in (d) produces another false alarm. Evaluation of a prediction method should
require the simultaneous assessment of both sensitivity and false prediction rate.

Osorio et al. suggested in 1998 that prediction meth-
ods should be evaluated by both sensitivityand false
prediction rate[24]. We have extended this approach
and have developed an assessment criterion that we
call theseizure prediction characteristic [31]. It takes
into account statistical and clinical considerations and
enables one to assess and compare different seizure
prediction methods.

To evaluate seizure prediction methods on the same
EEG data, Jerger et al. in 2001 employed seven pre-
diction methods on intracranial EEG data from four
children[8]. Though no clear performance order could
be established, prediction times between 1 and 3 min
were reproduced. However, only pre-ictal phases
of 5 min duration and no interictal EEG data were
examined.

In this study, we assess and compare three nonlinear
prediction methods by means of the seizure predic-
tion characteristic: theeffective correlation dimension
[9–11], thedynamical similarity index’ [13,14,16], and
an extended, prospective version of theaccumulated
energy, which achieved promising results in a retro-
spective setting[17]. Altogether, 88 seizures from 21
patients and 582 h of intracranial EEG data were ex-
amined. This data pool is still growing and will be
publicly available in the near future to serve as an
open source for the development and comparison of
prediction methods.

The paper is structured as follows: part 2 fo-
cuses on the terminology and assessment criterion,
part 3 on the EEG data pool, and part 4 on the
applied prediction methods. Their performance is
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presented in part 5, which is followed by the conclu-
sion.

2. The seizure prediction characteristic

2.1. Terminology

A seizure prediction method has to forecast an im-
pending epileptic seizure by raising an alarm in ad-
vance of the seizure onset. A perfect prediction method
indicates the exact point in time when a seizure oc-
curs. This ideal behavior is not expected for current
prediction methods that analyze EEG data. The uncer-
tainty can be considered by use of theseizure occur-
rence period, SOP, which is defined as a time period
during which the seizure is to be expected (Fig. 2). In
addition, to permit a therapeutic intervention, a min-
imum window of time between the alarm raised by
the prediction method and the beginning of SOP is
essential. This window of time is called theseizure
prediction horizon, SPH. Taking into account the two
time periods SPH and SOP, a correct prediction is de-
fined as follows: after the alarm signal, during SPH,
no seizure has occurred yet. During SOP, a seizure oc-
curs. The exact time of seizure onset may vary within
SOP, thereby reflecting the uncertainty of the predic-
tion. Seizures outside of any SOP are not predicted by
the system and therefore are classified as false nega-
tives. Alarm signals without a seizure during SOP are
false predictions.

Two measures describe a prediction method perfor-
mance for given SPH and SOP:

Fig. 2. Definition of a correct prediction. The seizure does not occur before the end of the seizure prediction horizon (SPH). This time
interval is followed by the seizure occurrence period, during which the seizure occurs, but the exact point of time is unknown. Seizures
outside of any SOP are not predicted and therefore are considered false negatives. Alarm signals without a seizure in the following seizure
occurrence period are false predictions.

• sensitivity, defined as the fraction of correctly pre-
dicted seizures within the total seizures;

• false prediction rate, the number of false predictions
per time interval.

As discussed above, these measures are not indepen-
dent.

2.2. Clinical considerations

Single false predictions are unavoidable in a real-
istic setting. Measurements in large complex systems
like the human brain are subject to fluctuations that are
likely to produce false alarms if the investigated time
interval is long enough. Should false alarms occur,
the patient prepares for a seizure in vain. In the case
of electrical stimulations or administration of drugs,
unnecessary side effects may occur. If the number of
false predictions per time interval is too large, then pa-
tients will disregard future alarms or will suffer from
psychological stresses; the side effects of repeated in-
terventions will accumulate and may lead to a neuro-
physiological impairment. Depending on the patient
and the chosen intervention system, a maximum false
prediction rate, FPRmax, must be defined that is ac-
ceptable from a clinical point of view.

The average seizure incidence may be a basis
through which reasonable values for FPRmax can be
chosen. Bauer and Burr[32] evaluated the seizure
diaries of 63 patients who were resistant to anti-
convulsant treatment. Based on nearly 9 years of
documentation and about 313 seizures per patient
on average, the mean seizure rate was 3 per month.
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Reduction of anti-epileptic drugs, e.g., during presur-
gical monitoring, leads to increased seizure frequen-
cies. Haut et al.[33] investigated seizure clustering
for 91 patients with medically intractable epilepsy
who underwent monitoring for presurgical evaluation.
The average maximal number of seizures in a 24 h
period during monitoring increased to 3.6 seizures
per day compared to the low number under normal
conditions. Higher values of FPRmax are questionable
with respect to possible clinical applications. Even if
all seizures can be predicted correctly, at least 50%
of all alarms would be false alarms for patients dur-
ing monitoring. This percentage increases to 97% for
epileptic patients under normal conditions.

Similar constraints exist for SPH and SOP, depend-
ing on the patient and the intervention system. Anti-
convulsive drugs, for instance, do not take effect im-
mediately, as they must pass through the blood-brain
barrier before reaching the target neurons. Here, a min-
imum seizure prediction horizon, SPHmin, is required.
Electrical stimulation is supposed to be fast-acting and
may require only a few seconds. If the patient is only
warned, SPHmin increases to tens of seconds—enough
time for the patient to leave a dangerous situation.

Because the exact point of time for seizure onset is
unknown, the effect of any intervention should last for
the whole seizure occurrence period. If the SOP lasts
too long, then additional administration of anticonvul-
sive drugs or longer electrical stimulation may be re-
quired. In the case of a warning system, the patients’
psychological stress increases with longer SOP, be-
cause a seizure is expected at any moment during this
time interval. Thus, an SOP that is too long would
increase the patient’s anxiety. The physiological and
psychological stress determines an upper bound for
SOP, the maximum seizure occurrence period SOPmax.

2.3. Statistical considerations

To be regarded as a prediction method, the perfor-
mance of a seizure prediction method has to be su-
perior to a prediction in a random, periodic, or other
nonspecific manner, independent of any prior infor-
mation.Fig. 3 displays how seizures can be predicted
correctly by chance. In general, the parameters of a

Fig. 3. Unspecific prediction methods. Upper panel: A periodical
prediction method raises alarms after a certain period of time.
For example, with SOP= 30 min and FPRmax = 1 FP/h, the
sensitivity is 50%. Lower panel: A random prediction method raises
alarms by chance. Since seizure occurrence periods can overlap,
the sensitivity is a bit worse than for the periodical prediction
method. Nonetheless, both methods converge to a sensitivity of
100% for false prediction rates that are too high or for seizure
occurrence periods that are too long.

seizure prediction method will be adjusted to increase
sensitivity until the false prediction rate equals the
upper bound FPRmax. Then, during a small interictal
time intervalI, the probability for an alarm isp =
FPRmaxI. Observing a longer time interval,W , the
probability for at least one alarm can be calculated as
follows:

p(no alarm inI) = 1 − FPRmaxI,

p(no alarm inW) = (1 − FPRmaxI)
W/I,

p(at least one alarm inW) = 1 − (1 − FPRmaxI)
W/I,

p(at least one alarm inW � I) ≈ 1 − e−FPRmaxW.

With W = SOP, this is exactly the sensitivityS of a
random prediction method, because it is the probabil-
ity of at least one alarm during the seizure occurrence
period.

A periodical prediction method raises alarms regu-
larly after a certain period of time. If, during interictal
phases, the false prediction rate equals FPRmax, then
the probability and, therefore, the sensitivityS for an
alarm during the seizure occurrence period SOP is

S = min{FPRmaxSOP, 100%}.
For large values of SOP or FPRmax, both the ran-
dom and the periodical prediction method achieve high
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sensitivities that approach 100%. This happens in-
dependently of the value for the seizure prediction
horizon. For a maximum false prediction rate of 1.0
false predictions per hour (FP/h) and a seizure occur-
rence period of 50 min, the random prediction method
achieves a sensitivity of 57% and the periodical pre-
diction method a sensitivity of 83%. Hence, for max-
imum false prediction rates that are too high or for
seizure occurrence periods that are too long, the per-
formance of any specific seizure prediction method
cannot be distinguished from the results of these un-
specific prediction methods.

2.4. Assessment criterion: the seizure prediction
characteristic

The values for FPRmax, SPHmin, and SOPmax de-
pend on a particular clinical application, i.e., a pa-
tient and an intervention system. This is generally
unknown during the development of a seizure pre-
diction method. Therefore, the method’s sensitivity
S should not be calculated for a fixed setting but
instead for a reasonable range of values for FPRmax,
SPH, and SOP, leading to the seizure prediction
characteristic

S = S(FPRmax, SPH, SOP).

This approach enables the assessment and compari-
son of seizure prediction methods independently of
any particular clinical application. As a minimum re-
quirement, a prediction method should be superior to
unspecific methods like the random or periodical ones
by achieving a significant higher seizure prediction
characteristic.

The calculation of the seizure prediction character-
istic to evaluate a prediction method comprises five
steps:

(1) Specification of the number of maximum toler-
ated false predictions during the interictal periods
FPRmax, SPH, and SOP.

(2) Adjustment of parameters of the prediction
method, for example, the value of a threshold,
until the false prediction rate equals FPRmax for
every single patient. Interictal data sets of at least

1/FPRmax duration for each patient are required
for this procedure.

(3) Calculation of sensitivityS using the pre-ictal data
sets of each patient.

(4) Averaging the values of sensitivity for all patients.
(5) Repetition of these steps for a reasonable range of

values for FPRmax, SPH, and SOP.

Eventually the seizure prediction characteristic
S(FPRmax,SPH,SOP) can be estimated.

3. EEG data and patient characteristics

In this study, EEG data from 21 patients were inves-
tigated, with a total of 88 seizures, 509 h of interictal,
and 73 h of pre-ictal or ictal EEG data. The interic-
tal periods were at least 1 h distant to any seizure. For
13 patients, 24 h of contiguous interictal recordings
were available. In the remaining cases, no seizure-free
day occurred during monitoring. Here, a small num-
ber of interictal periods covering a whole day was
combined to obtain 24 h of interictal data. Between
two and five seizures (mean 4.2) per patient were ex-
amined, each with a seizure-free pre-ictal phase of
50 min.

All patients suffered from pharmaco-refractory
focal epilepsy and underwent presurgical epilepsy
monitoring with invasive electrodes. Depth electrodes
were implanted stereotactically, and subdural elec-
trodes, via burr holes or open craniotomy. Further
details for data acquisition and patient characteris-
tics are given inTable 2. For each patient, a certi-
fied epileptologist selected three in-focus and three
out-of-focus electrodes, which were referenced to an
electrode displaying a minimal amount of epileptic
activity.

The EEG data were recorded with a Neurofile NT
digital-video EEG system with 128 channels, a sam-
pling rate of 256 or 512 Hz, and a 16-bit A/D converter.
A bandpass filter between 0.5 and 120 Hz (resp. 80 Hz
for the effective correlation dimension) was applied.
Possible line noise was eliminated with a 50-Hz notch
filter.
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Table 2
Patient characteristics

Patient Sex Age Seizure type H/NC Electrodes Outcome #Seizures Interictal (h)

1 f 15 SP, CP NC g,s III 5 24
2 m 38 SP, CP,GTC H d IV 3 24
3 m 14 SP, CP NC g,s I 5 24
4 f 26 SP, CP,GTC H d,g,s No surgery 5 24
5 f 16 SP, CP,GTC NC g,s I 5 24
6 f 31 CP, GTC H d,g,s I 3 24
7 f 42 SP, CP, GTC H d I 3 25
8 f 32 SP, CP NC g,s II 2 24
9 m 44 CP, GTC NC g,s II 5 24

10 m 47 SP, CP, GTC H d IV 5 24
11 f 10 SP, CP, GTC NC g,s II 4 24
12 f 42 SP, CP, GTC H d,g,s IV 4 25
13 f 22 SP, CP, GTC H d,s II 2 24
14 f 41 CP, GTC H and NC d,s I 4 24
15 m 31 SP, CP, GTC H and NC d,s II 4 24
16 f 50 SP, CP, GTC H d,s I 5 24
17 m 28 SP, CP, GTC NC s I 5 24
18 f 25 SP, CP NC s No surgery 5 25
19 f 28 SP, CP, GTC NC s I 4 24
20 m 33 SP, CP, GTC NC d,s I 5 26
21 m 13 SP, CP NC s I 5 24

Seizure types and location: simple partial (SP), complex partial (CP), generalized tonic-clonic (GTC), hippocampal (H), neocortical (NC).
Electrodes: grid (g), strip (s), depth (d). Outcome according to Engel classification: (I) free of seizures, (II) 90% seizure reduction, (III)
75% seizure reduction, and (IV) less seizure reduction to a worsening of the patient’s condition[34]. Between two and five seizures (mean
4.2) and at least 24 h of interictal EEG data for every patient were analyzed.

4. Seizure prediction methods

4.1. Dynamical similarity index

We implemented the dynamical similarity algorithm
according to[13,14]. The basic idea is to compare the
dynamic of a sliding windowSt to a fixed reference
window Sref of a seizure-free period. The main steps
of the calculation may be summarized as follows.

New time seriesIn, n ∈ N, are constructed
by computing time intervals between two positive
zero-crossings of the EEG signal. Delay embedding
with dimensionm = 16 and delayτ = 1 leads to
An = (In, In−τ, . . . , In−((m−1)τ)). A singular value
decomposition for the trajectory matrixA(Sref) of the
reference window is applied. The reference lasts 300 s
and is far away from any seizure. The projection of
A(St) for the sliding window andA(Sref) onto the
principal axis of the reference window yieldsX(St)

and X(Sref), respectively. A random selection (see
[13]) Y(Sref) of X(Sref) in the phase space is com-

pared withX(St) via the cross-correlation integral:

C(Sref, St)

= 1

NrefNt

Nref∑

i=1

Nt∑

j=1

Θ(r − ‖Yi(Sref) − Xj(St)‖),

with the Heaviside step functionΘ, the euclidian norm
‖ · ‖, and the number of points in the phase space
of the referenceNref and of the sliding window,Nt .
The distancer is defined as the 30th percentile of the
cumulative neighborhood distribution of the reference
window. Finally, the dynamical similarity indexγ(St)

is given by

γ(St) = C(Sref, St)√
C(Sref, Sref)C(St, St)

.

A threshold crossing with the constraint of a minimum
crossing time of 150 s was used as alarm signal. The
threshold was varied.
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4.2. Effective correlation dimension

Based on the correlation dimensionD2 [35,36],
which is an estimator for the fractal dimension of the
attractor of a deterministic dynamical system, Lehn-
ertz and Elger introduced theeffective correlation di-
mension, Deff

2 , as a means to predict epileptic seizures
[9]. Dimension drops are evaluated[11], characterized
by the time interval and maximal deviation by which
Deff

2 drops under a threshold.
For the effective correlation dimension, the EEG

time series are embedded for different dimensions
up to m = 25, leading to�xm(t). The correlation
sum

Cm(r) = 1

N(N − 1)

∑

i�=j

Θ(r − ‖�xm(i) − �xm(j)‖)

is calculated for a range of the radiusr with the Heav-
iside step functionΘ and the maximum norm‖ · ‖.
The correlation dimension is defined as

D2 = lim
r→0

d logCm(r)

d log(r)
.

The limit requires a proper scaling region, which is
not necessarily given for measured data. Lehnertz
and Elger use an operational method, leading to the
so-calledeffective correlation dimension, Deff

2 . This
measure is applied to EEG data using a sliding window
technique.

The average ofDeff
2 during interictal periods serves

as the threshold. For every drop below this thresh-
old, the timetdrop until the next threshold crossing
and the maximum deviationddrop from the thresh-
old value are measured. Originally,tdrop andddrop of
pre-ictal periods had to extend the maximum drop-
ping parameters in interictal periods and precede the
seizure onset directly to be counted as predictive
drops. This approach leads to no false alarms, but
only one of the 88 investigated seizures was preceded
by a predictive drop[37]. This could be due to the
long interictal data sets used in this study. There-
fore, we took the dropping parameters as variables
that are varied to determine the seizure prediction
characteristic.

4.3. Increments of accumulated energy

Litt et al. investigated the ability of theaccumulated
energy algorithm to distinguish pre-ictal from interic-
tal periods of 50 min duration[17]. About 90% of the
pre-ictal and 88% of the interictal periods were clas-
sified correctly. Unfortunately, this method requires
knowledge of the seizure onset, which is not given
in a prospective analysis. Since the results were very
promising, we investigated the performance of an ex-
tended, prospective version, theincrements of the ac-
cumulated energy.

The accumulated energy AE(k) is based on the “av-
erage energy”:

Ek = 1

N

N∑

i=1

x2
i(k) for time windowk ∈ N

calculated for a time window of 1.25 s in length. Two
consecutive time windows are shifted by 0.45 s, and
xi(k) is the electrode potential of samplei in window
k. Finally, the accumulated energy and the increments
of the accumulated energy are defined as

AEm = 1

10

10m∑

k=10m−9

Ek + AEm−1,

m = 1, 2, . . . , AE0 = 0,

iAEm = 1

10

10m∑

k=10m−9

Ek = AEm − AEm−1.

A higher slope of AE corresponds to higher increments
iAE. Using a median filter over 90 s ensures that only
permanent changes in these increments lead to differ-
ent values of the iAE. The threshold crossing of iAE
was used as the alarm signal and the threshold value
was varied.

5. Results

Since the seizure prediction characteristic depends
on three different parameters, it is necessary to fix at
least one of them to present the result in two dimen-
sions. The assessment and comparison of the three
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Fig. 4. Seizure prediction characteristicS(FPRmax, SPH, SOP) of three specific and two unspecific prediction methods. (a) Dependence
of the sensitivityS on the maximum false prediction rate (FPRmax) for a fixed seizure prediction horizon of 5 s and seizure occurrence
period of 30 min. (b) Dependence on SOP for FPRmax = 0.15 FP/h and SPH= 5 s. (c) Dependence on SPH for FPRmax = 0.15 FP/h and
SOP= 30 min. (d) Dependence on SOP and FPRmax for SPH= 5 s for the dynamical similarity index. See text for details.

prediction methods is presented by the seizure predic-
tion characteristic depending on (1) FPRmax; (2) SOP;
and (3) SPH. The prediction methods are compared to
each other and to the unspecific methods (the period-
ical and random alarm systems). Finally, the depen-
dence of the sensitivityS on two measures, FPRmax

and SOP, is shown for the dynamical similarity index.

5.1. Sensitivity depending on FPRmax

The dependence of the sensitivityS on FPRmax is
shown in Fig. 4(a) for the dynamical similarity in-
dex (diamonds), the increments of accumulated en-

ergy (crosses), and the effective correlation dimension
algorithm (circles).

The seizure prediction horizon was fixed to 5 s, cor-
responding to a fast intervention, and the seizure oc-
currence period to 30 min. The vertical lines mark the
mean seizure frequency under normal conditions (left)
and the averaged maximum seizure frequency during
presurgical monitoring (right).

The logarithmically scaled maximum false predic-
tion rate FPRmax covers three regions. Values around
FPRmax = 0.004 FP/h correspond to the mean seizure
frequency of pharmacoresistant focal epilepsy patients
under normal conditions with a mean of three seizures
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per month. For this range, contiguous EEG data of
several days up to weeks are required to evaluate the
seizure prediction characteristic. Our data pool, com-
prising 24 h of EEG data for every patient, enables
the evaluation of at least one false alarm per day, i.e.,
0.042 FP/h.

The middle region ranges from one false alarm per
day up to the averaged maximum seizure frequency
of 3.6 per day during monitoring (0.15 FP/h). Here,
the false prediction rate is 35 times higher than the
seizure frequency under normal conditions. The sen-
sitivity ranges from 21.2 to 41.5% for the dynamical
similarity index, 12.8 to 29.3% for the effective cor-
relation dimension, and 17.9 to 30.5% for the incre-
ments of the accumulated energy.

For higher maximum false prediction rates up to
FPRmax = 1 FP/h, the sensitivity rapidly increases and
reaches values close to 100% for the similarity index.
Consequently, the percentage of false predictions of
the alarm signals increases as well: at least 50% of the
predictions are false predictions on a day of monitoring
with a maximal number of seizures. Compared to the
mean seizure frequency under normal conditions, this
fraction amounts to at least 98%. Hence, values of
FPRmax that are higher than the averaged maximum
seizure frequency during monitoring are questionable.

All three prediction methods achieve better results
than the unspecific methods.

5.2. Sensitivity depending on SOP

In Fig. 4(b), the sensitivityS is plotted as a function
of SOP for fixed values of FPRmax = 0.15 FP/h and
SPH= 5 s.

The dynamical similarity index again achieves the
best result for the whole parameter range. The sensitiv-
ity of the increments of accumulated energy is greater
than for the effective correlation dimension for SOP
smaller than 37 min. For larger values of SOP,Deff

2
achieves a better performance than iAE.

For SOP values greater than 36 min, the sensitiv-
ity of the dynamical similarity index increases more
slowly than the unspecific prediction methods. This
increase can be interpreted simply as a statistical prop-
erty: larger seizure occurrence periods allow more un-

specific and therefore false alarms to be evaluated as
correct predictions. The same effect is observable for
the increments of the accumulated energy for SOP
larger than 20 min. In contrast, the strong increase in
sensitivity for the effective correlation dimension in-
dicates the processing of more specific information.

5.3. Sensitivity depending on SPH

Only a small dependence of sensitivity on SPH
could be observed (Fig. 4(c)). For FPRmax of again
0.15 FP/h and SOP of 30 min, all prediction methods
have a constant sensitivity for SPH shorter than 2 min.
Hence, most intervention systems should have enough
time to take effect.

5.4. Sensitivity depending on FPRmax and SOP

Fixing only one parameter, in this case SPH, to 5 s,
a three-dimensional plot displays the behavior of the
seizure prediction characteristic depending on FPRmax

and SOP for the similarity index (Fig. 4(d)). For cer-
tain combinations of FPRmax and SOP, high sensitiv-
ity values up to 100% can be achieved. The clinician
has to decide with the individual patient whether the
corresponding FPRmax, SOP, and SPH are acceptable.

6. Conclusions

We suggest the application of the seizure prediction
characteristic as a function of sensitivity and the max-
imum false prediction rate FPRmax, the seizure pre-
diction horizon SPH, and seizure occurrence period
SOP, to determine the performance of a seizure pre-
diction method. In this way, it is possible to assess and
compare prediction methods and to choose a suitable
method for a particular patient and type of interven-
tion.

For a range of FPRmax between 1 and 3.6 per day,
SPH shorter than 2 min and SOP up to 30 min, the
dynamical similarity index achieves a sensitivity be-
tween 21 and 42%, which was the best result of the
three evaluated prediction methods. The sensitivity of
the increments of the accumulated energy lie between
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18 and 31%, and for the dimension drops of the effec-
tive correlation dimension, between 13 and 30%.

Higher values of FPRmax are questionable with re-
spect to clinical applications. Even with a sensitivity
of 100%, at least 50% of all alarms would be false
alarms for patients during monitoring. Epileptic pa-
tients under normal conditions with three seizures per
month would have to endure 97% false alarms.

The results of the investigated nonlinear prediction
methods are significantly better than the performance
of unspecific methods, like the random or periodi-
cal prediction. This indicates the existence of specific
“predictive” information in pre-ictal epochs and that
the investigated methods are sensitive to this informa-
tion. However, the resulting seizure prediction char-
acteristics are so far not sufficient for clinical applica-
tions.
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