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This supplement is intended to illustrate technical detafl the
approach presented in the main text.

In the first part, a description of an algorithm to compute the

likelihood is steep. Therefor;.,, should fullfil the condition

X2(9last + estep) - X2 (glast) ~q- Acx (2)

profile likelihood x% ., (6;) is given. Subsequently, an analysis of where 6,,.; are the parameter values of the previous iteration

the computational complexity of the approach for a test caseel
is presented. Then, an implementation of the algorithmt, wees
used for the analysis in the main text, is explained. Thigljre
available implementation is embedded in the PottersWhegldfi
toolbox (Maiwald and Timmer, 2008), which is freely avalklfor
academic usage as well. Finally, all steps that were peddrto
produce the results shown in the main text are given.

1 ALGORITHM
In the following, a brief description how to compute the piofi
likelihood

xin(6:) = min [x*(9)]

@)

is provided.

Assume a numerical optimization gf () yielding a calibrated
set of parameterd. Beginning froméd;, sample along the profile
likelihood in increasing/decreasing directiontafby:

1. Take an incremental stefisic, In iNncreasing/decreasing
direction of6;.

2. Re-optimize alb;;.

Repeat until the desired threshalsl, is exceeded or a maximal
amount of steps is reached.

Ostep Should be chosen in an adaptive manner, taking large steps

if the likelihood is flat and small steps if the increasing bét

*to whom correspondence should be addressed

andg € [0,1]. For an identifiable parameter at ledsty steps
are required until the threshold,, is reached. Good results are
achieved using small values gf which facilitates re-optimization
in the presence of nearby local optima. Since the likelihooght
be flat in presence of non-identifiability, a maximum stepesiz
is necessaryfs., can be calculated using one of the following
possibilities:

e Direct step: ’
estep = {0 e 0;,562, e O}
whered’,., is aligned to fulfill Eq. 2.

(©)

e Progressive step: Given the supplied optimization routine
returns reliable first and second derivative of the objectiv
function with respect to the parametefs — VX610
and H = V7'Vx?,.,, the objective function can be
approximated in the neighbourhood@f s: by

X(0)=v+53-0+6" H-¢ @)

With @' = 0 — O145c aNdy = X2 (O1as:). A directiongs;e, with
least increase in likelihood can be approximated by solving

N !
Xaa(/ ) |9£:const =0 (5)

whered’ in the direction of interestis fixed to a small constant
value. Advancing in this direction by

(6)

wherec is aligned to fulfill Eq. 2, enables to take larger steps,
hence reduces the computational effort.

estep =cC- ¢step
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Fig. 1. Dependency of the number of calls to the optimization pracedn
the number of free parameters. Both cases scale linearly thét number
of free parameters. Error bars reflect variability withire thet of free
parameters.
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Fig. 2. Dependency of the total runtime on the number of free pararset
plotted double logarithmically. The exponent of the naredrity isx 1.56
for setup 1 (left panel) ang 1.78 for setup 2 (right panel). Error bars reflect
variability within the set of free parameters.

2 COMPUTATIONAL COMPLEXITY

The computational complexity of the approach depends on the

efficiency of the supplied numerical optimization procedand the
shape of the likelihood. The latter depends on the specifitetremd

the amount and quality of the experimental data that is alksl
Therefore it is not possible to give a general statement tathisi
issue. Here, the dependency of the computational complefit
the approach on the number of estimated parameters is adalys
for a specific test case model. It consist of twenty-one ggeci
x1, ..., w21 connected in a chain of Mass-action type reactions
with dynamic parameterg, ..., p2o. We assume thatz1(0) =

10 nM andz;+1(0) = 0 nM; every species can be observgd= z;

(setup 1) or only every species with odd index can be observed

Y1 = x1, Y2 = T3, ..., Y10 = x21 (Setup 2); for each observable
26 measurements at time-poirits= [0, 2, ..., 50] minutes with
measurement noise” = 0.1 + 0.1 - y© are available. Data is
simulated using parameteys = 0.5 per minute and nM.

This test case setup allows to determine the computational

complexity of the approach for differing number of paramete
considered in the model. Therefore, the approach is apfdi¢ide
model where onlyp; and p, are estimated while the remaining

parameters are fixed to their true values. The number of calls

to the optimization procedure and the runtime is measured fo
each parameter. This procedure is repeated with more and mo
parameters being freed consecutively, until all twentyapsaters
included in the model are considered. The algorithm intcedu

in the previous section is used, utilizing the direct stefiaopto
calculateds;.,. Fig. 1 shows the number of calls to the optimization
procedure depending on the number of free parameters, mgowi
linearly for both setups. Fig. 2 shows the total runtime of th
approach depending on the number of free parameters, glotte
double logarithmically. The total runtime is the sum of thatimes
needed for the calculation of the profile likelihood for edoke
parameter. Due to the increasing complexity of the optitiona
step, the total runtim&’ grows super-linearly like

T ~ #p"° forsetup 1and like

T #p' ™ for setup 2

where #p is the number of free parameters. This illustrates the
dependency on the specific experimental setup.

3 IMPLEMENTATION FOR POTTERSWHEEL

The package containing all necessary code bears the name
Profile Likelihood Exploit (PLE) and is freely available at
http://web.me.com/andreas.raue/profile/software.htrb install,
download the package, extract the folder to a convenierstime
and include this location in the MATLAB search path. For
instructions, how to set up the PottersWheel fitting toollsee
http://www.potterswheel.de.

In the following, all necessary function calls will be exipled.
They can be accessed from the MATLAB command line, or by
a graphical user interface that is available for MATLAB vers
R2008a and later.

3.1 Command line usage

1. Load the desired model(s) and data-set(s) into Pottees\Wh
and calibrate the parameters to best possible values. To get
an overview about the parameters incorporated in the model,
executepwl nf o at the command line. PLE will consider all
parameters that are not fixed. If necessary use the command
pwFi xPar anet er s to free or fix parameters.

. Initialise PLE for command line usage by the command
pwWPLEI ni t (f al se) . All results computed in the following
will be stored in a subfolder of the current working
folder, bearing a namePLE-yyyymuddTHHMVSS with
corresponding date and time according to ISO 8601.

To run PLE for all parameters execygePLE. For a specific
parameterf; executepwPLE(i) whereasi refers to the

number of the parameter as listed pyl nf 0. A number of

further tuning parameters for the algorithm can be specified
pwPLE(i, a, b, c, d, e),whereis

3.

a. the number of maximal steps in increasing and decreasing

direction. (default: 100)

. the aspired ? increase of each step, measured in percentage
q of A, . (default:g = 0.1)

c. the maximal size of a step. (default2 - 6;)
d. the minimal size of a step. (defaul~°)

. a flag that stops the sampling, if a paraméter; hits its
parameter bounds as listed pwi nf o. (default: true)

r
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Adjusting these values may improve results if the algorithmto pwi nf o and allows to specify tuning values of the algorithm, as

exceptionally fails to sample along the profile likelihood.

described in step 3 of the previous section. The lower or@alis

4. Executepl ePrint to obtain a summary of the results, theresults ofthe analysis analog to step 4 of the previcutiose Al

including an automatically generated flaBf | ag stating the

type of identifiability, which should be inspected visually
Lower PL andUpper PL indicate likelihood based confidence

+,PL

intervals o , Lower Hes and Upper Hes confidence

results will be stored as described in step 2 of the previeasa.

4 APPLICATION

intervals approximated by the inverse of the Hessian matrixThe required models and data-sets to reproduce the resaltsisn

o= Hess andRel . PL andRel . Hess the relative size of the

confidence intervalgs ™ — o) /(2 - 6;).

the main text are available at
http://web.me.com/andreas.raue/profile/software.htBitract the

5. Execute p| ePl ot to generate figures Showing prof”e bundle to a convenient location and Change the MATLAB chjkln
likelihood versus parameter and the corresponding chainges directory to this location.

the other parameters.
6. Executepl ePl ot Rel ati ons(j s) wherej s is a vector of

parameter indices to generate a scatterplot of parameiers {

reveal functional relations. This is most convenient foo tov
three indices. One index generates a histogram and ifs
omitted, a matrix plot is produced.

7. Execute pwPLETr aj ectories(i) to plot trajectories

Load the model calibrated to the original experimental data
executing the scriget up1. mor load the PottersWheel repository
epo_setupl. m(PW 1.6). Execute the scrignal ysi s1. m
o calculate the profile likelihood for all parameters andligplay
the results. Execute the scriphal ysi s1_st r Nonl D. mto plot
the trajectories along the structural non-identifiahillxecute the
script anal ysi s1_praNonl D. mto plot the trajectories along
the practical non-identifiability. Load the model calildtto the

corresponding to parameter values sampled for the profilgytended data by executing the scriget up2. m or load the
likelihood X7 (0:). This depicts model variability due to pgtterswheel repository epo_set up2. m Execute the script

uncertainties in this parameter.

3.2 Graphical User Interface

Follow step 1 as described in the previous section. To lirg&PLE
and raise the graphical user interface exe@wlLEIl ni t at the
command line. All steps described in the previous sectionhm
executed via buttons in the middle of the main window (see B)ig
It consists of two tables, the upper one contains infornmadioalog

anal ysi s2. mto calculate the profile likelihood for all parameters
and to display the results.

Details of the function calls can be learned about insideehe
script file.
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Lol
File ~
Compute Parameter ‘ Yalue Min ‘ Max ‘ Sample Size p ‘ Min Step Size | Max Step Size ‘ Break on Bounds
1 r p1 0.3108 -3 2 0.1000 1.0000e-06 0.0622 v
2 I op2 -1 -3 1 100 0.1000 1.0000e-06 0.2000 v
3 I p-3 -0.4916 -3 1 100 01000 1.0000e-06 0.0400 r
4| T pe 04185 -3 2 100 04000 1.0000e-08 0.0500 r
S I~ xt10 0.3054 -3 3 100 0.1000 1.0000e-06 0.0617 v
6 I 31 -0.2108 -3 3 100 01000 1.0000e-06 0.0421 v
7 sz 03412 -3 3 100 01000  1.0000e-06 0.0882 I
[~ plot STDs
Start Analysis Plat Profile Likelihood Plat Parameter Relations Plot Model Trajectories Clear Results
[~ combined L‘
Plot l Parameter | Non-Identifiability l Lower BoundPL | Upper Bound PL Relative PL Lower Bound Hessian [ Upper Bound Hessian | Relative Hessian |
1 [T pi i 04217 0.4930 605402 01381 04836 555700
E vV p2 str.niD -Inf Inf Inf -33.3871 31.3871 3.2387e+03
3 ‘ vV p3 pra.niD -1.1404 Inf Inf -1.1418 01588 132.2966
4 | T pa i 04501 07793 751686 0.2806 0.5564 32,9553
5 |F x10 str.nip -Inf Inf Inf -31.3640 31.9809 1.0268e+04
6 ‘ vV s str.niD -Inf Inf Inf -31.8869 31.4660 1.5051e+04
A VvV s2 str.niD -Inf Inf Inf -320117 31.3293 9.2825e+03

Fig. 3. The Graphical User Interface. The upper table containgrimftion about the parameters and allows to specify tunihgesafor the algorithm. All
necessary function calls can be accessed via buttons inetiterc The lower table displays the results of the analysiisvalues are given in orders of
magnitude usindog, .




