
BIOINFORMATICS Vol. 00 no. 00 2009
Pages 1–3

Supplementary Information
Structural and practical identifiability analysis
of partially observed dynamical models by exploiting the
profile likelihood
A. Raue 1,∗, C. Kreutz 1, T. Maiwald 2, J. Bachmann 3, M. Schilling 3,
U. Klingmüller 3 and J. Timmer 1,4

1Physics Institute, University of Freiburg, 79104 Freiburg, Germany
2Department of Systems Biology, Harvard Medical School, 02115 Boston, MA, USA
3Division of Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer
Research Center, 69120 Heidelberg, Germany
4Freiburg Institute for Advanced Studies, University of Freiburg, 79104 Freiburg, Germany
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

This supplement is intended to illustrate technical details of the
approach presented in the main text.

In the first part, a description of an algorithm to compute the
profile likelihood χ2

PL(θi) is given. Subsequently, an analysis of
the computational complexity of the approach for a test casemodel
is presented. Then, an implementation of the algorithm, that was
used for the analysis in the main text, is explained. This freely
available implementation is embedded in the PottersWheel fitting
toolbox (Maiwald and Timmer, 2008), which is freely available for
academic usage as well. Finally, all steps that were performed to
produce the results shown in the main text are given.

1 ALGORITHM
In the following, a brief description how to compute the profile
likelihood

χ2
PL(θi) = min

θj 6=i

ˆ

χ2(θ)
˜

(1)

is provided.
Assume a numerical optimization ofχ2(θ) yielding a calibrated

set of parameterŝθ. Beginning fromθ̂i, sample along the profile
likelihood in increasing/decreasing direction ofθi by:

1. Take an incremental stepθstep in increasing/decreasing
direction ofθi.

2. Re-optimize allθj 6=i.

Repeat until the desired threshold∆α is exceeded or a maximal
amount of steps is reached.

θstep should be chosen in an adaptive manner, taking large steps
if the likelihood is flat and small steps if the increasing of the

∗to whom correspondence should be addressed

likelihood is steep. Thereforeθstep should fullfil the condition

χ2(θlast + θstep) − χ2(θlast) ≈ q · ∆α (2)

where θlast are the parameter values of the previous iteration
and q ∈ [0, 1]. For an identifiable parameter at least1/q steps
are required until the threshold∆α is reached. Good results are
achieved using small values ofq, which facilitates re-optimization
in the presence of nearby local optima. Since the likelihoodmight
be flat in presence of non-identifiability, a maximum step size
is necessary.θstep can be calculated using one of the following
possibilities:

• Direct step:
θstep = {0 . . . θi

step . . . 0} (3)

whereθi
step is aligned to fulfill Eq. 2.

• Progressive step: Given the supplied optimization routine
returns reliable first and second derivative of the objective
function with respect to the parameters~β = ∇χ2|θlast

and H = ∇T∇χ2|θlast
, the objective function can be

approximated in the neighbourhood ofθlast by

χ2(θ′) = γ + ~β · θ′ + θ′T · H · θ′ (4)

with θ′ = θ− θlast andγ = χ2(θlast). A directionφstep with
least increase in likelihood can be approximated by solving

∂χ2(θ′)

∂θ′
|θ′

i
=const

!
= 0 (5)

whereθ′ in the direction of interesti is fixed to a small constant
value. Advancing in this direction by

θstep = c · φstep (6)

wherec is aligned to fulfill Eq. 2, enables to take larger steps,
hence reduces the computational effort.

c© Oxford University Press 2009. 1



Raue et al

0 5 10 15 20
0

500

1000

1500

nu
m

be
r 

of
 c

al
ls

 to
 o

pt
im

iz
er

number of free parameters
0 5 10 15 20

0

500

1000

1500

number of free parameters

setup 1 setup 2

Fig. 1. Dependency of the number of calls to the optimization procedure on
the number of free parameters. Both cases scale linearly with the number
of free parameters. Error bars reflect variability within the set of free
parameters.

10
0

10
1

10
1

10
2

number of free parameters
10

0
10

1

10
1

10
2

to
ta

l r
un

tim
e 

/ s
ec

number of free parameters

setup 1 setup 2

Fig. 2. Dependency of the total runtime on the number of free parameters,
plotted double logarithmically. The exponent of the non-linearity is≈ 1.56

for setup 1 (left panel) and≈ 1.78 for setup 2 (right panel). Error bars reflect
variability within the set of free parameters.

2 COMPUTATIONAL COMPLEXITY
The computational complexity of the approach depends on the
efficiency of the supplied numerical optimization procedure and the
shape of the likelihood. The latter depends on the specific model and
the amount and quality of the experimental data that is available.
Therefore it is not possible to give a general statement about this
issue. Here, the dependency of the computational complexity of
the approach on the number of estimated parameters is analysed
for a specific test case model. It consist of twenty-one species
x1, . . . , x21 connected in a chain of Mass-action type reactions
with dynamic parametersp1, . . . , p20. We assume that:x1(0) =
10 nM andxi6=1(0) = 0 nM; every species can be observedyi = xi

(setup 1) or only every species with odd index can be observed
y1 = x1, y2 = x3, . . . , y10 = x21 (setup 2); for each observable
26 measurements at time-pointst = [0, 2, . . . , 50] minutes with
measurement noiseσD = 0.1 + 0.1 · yD are available. Data is
simulated using parameterspi = 0.5 per minute and nM.

This test case setup allows to determine the computational
complexity of the approach for differing number of parameters
considered in the model. Therefore, the approach is appliedto the
model where onlyp1 and p2 are estimated while the remaining
parameters are fixed to their true values. The number of calls
to the optimization procedure and the runtime is measured for
each parameter. This procedure is repeated with more and more
parameters being freed consecutively, until all twenty parameters
included in the model are considered. The algorithm introduced

in the previous section is used, utilizing the direct step option to
calculateθstep. Fig. 1 shows the number of calls to the optimization
procedure depending on the number of free parameters, growing
linearly for both setups. Fig. 2 shows the total runtime of the
approach depending on the number of free parameters, plotted
double logarithmically. The total runtime is the sum of the runtimes
needed for the calculation of the profile likelihood for eachfree
parameter. Due to the increasing complexity of the optimization
step, the total runtimeT grows super-linearly like

T ∼ #p1.56 for setup 1 and like

T ∼ #p1.78 for setup 2

where#p is the number of free parameters. This illustrates the
dependency on the specific experimental setup.

3 IMPLEMENTATION FOR POTTERSWHEEL
The package containing all necessary code bears the name
Profile Likelihood Exploit (PLE) and is freely available at
http://web.me.com/andreas.raue/profile/software.html. To install,
download the package, extract the folder to a convenient location
and include this location in the MATLAB search path. For
instructions, how to set up the PottersWheel fitting toolboxsee
http://www.potterswheel.de.

In the following, all necessary function calls will be explained.
They can be accessed from the MATLAB command line, or by
a graphical user interface that is available for MATLAB version
R2008a and later.

3.1 Command line usage
1. Load the desired model(s) and data-set(s) into PottersWheel

and calibrate the parameters to best possible values. To get
an overview about the parameters incorporated in the model,
executepwInfo at the command line. PLE will consider all
parameters that are not fixed. If necessary use the command
pwFixParameters to free or fix parameters.

2. Initialise PLE for command line usage by the command
pwPLEInit(false). All results computed in the following
will be stored in a subfolder of the current working
folder, bearing a namePLE-yyyymmddTHHMMSS with
corresponding date and time according to ISO 8601.

3. To run PLE for all parameters executepwPLE. For a specific
parameterθi executepwPLE(i) whereasi refers to the
number of the parameter as listed bypwInfo. A number of
further tuning parameters for the algorithm can be specifiedby
pwPLE(i, a, b, c, d, e), where is

a. the number of maximal steps in increasing and decreasing
direction. (default: 100)

b. the aspiredχ2 increase of each step, measured in percentage
q of ∆α. (default:q = 0.1)

c. the maximal size of a step. (default:0.2 · θi)

d. the minimal size of a step. (default:10−6)

e. a flag that stops the sampling, if a parameterθj 6=i hits its
parameter bounds as listed bypwInfo. (default: true)

2



Supplementary Information

Adjusting these values may improve results if the algorithm
exceptionally fails to sample along the profile likelihood.

4. ExecuteplePrint to obtain a summary of the results,
including an automatically generated flagIDflag stating the
type of identifiability, which should be inspected visually.
LowerPL andUpperPL indicate likelihood based confidence
intervals σ±,PL, LowerHes and UpperHes confidence
intervals approximated by the inverse of the Hessian matrix
σ±,Hess andRel.PL andRel.Hess the relative size of the
confidence intervals(σ+ − σ−)/(2 · θi).

5. Execute plePlot to generate figures showing profile
likelihood versus parameter and the corresponding changesin
the other parameters.

6. ExecuteplePlotRelations(js)wherejs is a vector of
parameter indices to generate a scatterplot of parameters to
reveal functional relations. This is most convenient for two or
three indices. One index generates a histogram and ifjs is
omitted, a matrix plot is produced.

7. Execute pwPLETrajectories(i) to plot trajectories
corresponding to parameter values sampled for the profile
likelihood χ2

PL(θi). This depicts model variability due to
uncertainties in this parameter.

3.2 Graphical User Interface
Follow step 1 as described in the previous section. To initialize PLE
and raise the graphical user interface executepwPLEInit at the
command line. All steps described in the previous section can be
executed via buttons in the middle of the main window (see Fig. 3).
It consists of two tables, the upper one contains information analog

to pwInfo and allows to specify tuning values of the algorithm, as
described in step 3 of the previous section. The lower one displays
the results of the analysis analog to step 4 of the previous section. All
results will be stored as described in step 2 of the previous section.

4 APPLICATION
The required models and data-sets to reproduce the results shown in
the main text are available at
http://web.me.com/andreas.raue/profile/software.html. Extract the
bundle to a convenient location and change the MATLAB working
directory to this location.

Load the model calibrated to the original experimental databy
executing the scriptsetup1.m or load the PottersWheel repository
repo setup1.m (PW 1.6). Execute the scriptanalysis1.m
to calculate the profile likelihood for all parameters and todisplay
the results. Execute the scriptanalysis1 strNonID.m to plot
the trajectories along the structural non-identifiability. Execute the
script analysis1 praNonID.m to plot the trajectories along
the practical non-identifiability. Load the model calibrated to the
extended data by executing the scriptsetup2.m or load the
PottersWheel repositoryrepo setup2.m. Execute the script
analysis2.m to calculate the profile likelihood for all parameters
and to display the results.

Details of the function calls can be learned about inside these
script file.

REFERENCES
Maiwald, T. and Timmer, J. (2008). Dynamical modeling and multi-experiment fitting

with PottersWheel.Bioinformatics, 24(18), 2037–2043. http://www.potterwheel.de.

3



Raue et al

Fig. 3. The Graphical User Interface. The upper table contains information about the parameters and allows to specify tuning values for the algorithm. All
necessary function calls can be accessed via buttons in the center. The lower table displays the results of the analysis.All values are given in orders of
magnitude usinglog10.

4


