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Abstract

Motivation: Apparent time delays in partly observed, biochemical reaction networks can be modelled by lumping a
more complex reaction into a series of linear reactions often referred to as the linear chain trick. Since most delays
in biochemical reactions are no true, hard delays but a consequence of complex unobserved processes, this ap-
proach often more closely represents the true system compared with delay differential equations. In this paper, we
address the question of how to select the optimal number of additional equations, i.e. the chain length (CL).

Results: We derive a criterion based on parameter identifiability to infer CLs and compare this method to choosing
the model with a CL that leads to the best fit in a maximum likelihood sense, which corresponds to optimizing the
Bayesian information criterion. We evaluate performance with simulated data as well as with measured biological
data for a model of JAK2/STAT5 signalling and access the influence of different model structures and data character-
istics. Our analysis revealed that the proposed method features a superior performance when applied to biological
models and data compared with choosing the model that maximizes the likelihood.

Availability and implementation: Models and data used for simulations are available at https://github.com/
Data2Dynamics/d2d and http://jeti.uni-freiburg.de/PNAS_Swameye_Data.

Contact: adrian.hauber@fdm.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Data-based quantitative dynamical modelling is playing an import-
ant role in gaining mechanistic insights into biological systems
(Kitano, 2005). Parameter values, such as reaction rate constants or
initial values, can be estimated from experimental data by optimiza-
tion techniques, e.g. maximum likelihood methods.

Because of the sheer complexity of biological systems, the inclu-
sion of all known mechanisms and species is often not feasible.
Rather, effective descriptions and coarse-grained models are used to
capture the relevant processes while neglecting unnecessary details
and therefore allow an efficient study of a given system. Conversely,
if an effective model is able to describe the data adequately, it is
understood that the assumptions made for coarse-graining hold true
(Peifer et al., 2014).

However, time delays can arise from the use of effective models. An
example for such delays in dynamical systems is that of Mackey and
Glass (1977), where the introduction of a time delay into a physiologic-
al control system results in chaotic oscillations. Time delays are also
used in infection models (Culshaw and Ruan, 2000; Nelson and
Perelson, 2002), population models (Gurney and Nisbet, 1980; May,
2001), gene regulation (Bratsun et al., 2005; Jensen et al., 2003) and
signalling pathways (Srividhya et al., 2007; Swameye et al., 2003).

The linear chain trick (MacDonald, 1978) is considered a valu-
able alternative to the modelling approach of utilizing delay differ-
ential equations and provides a model closer to the underlying
processes which cause the delay (Bachmann et al., 2011; Müller
et al., 2013a, b; Raue et al., 2009; Sobotta et al., 2017). By introduc-
ing additional states as a linear chain, a time delay between input
and output signal is generated.

Previous work has not addressed the question of how many
intermediate states have to be used in the linear chain trick. Here we
compare two methods for estimating the number of states in the lin-
ear chain from experimental data: the approach of using the model
with the chain length (CL) corresponding to maximal likelihood val-
ues and a criterion to access CL information based on the techniques
of profile likelihood (Raue et al., 2009) and model reduction
(Maiwald et al., 2016).

We first show that both strategies are suitable to reproduce the
correct CL from simulated data and provide a consistent estimator.
After that, we estimate CLs from biological data for the model of
Epo-induced JAK/STAT signalling by Bachmann et al. (2011),
which yields reasonable results. However, many biological models
in the literature were established and calibrated with data mostly
not suitable to infer CLs in terms of large noise, sparse time reso-
lution or few observed species, which we show through several
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simulation studies. Experimental design makes it possible to identify
the most informative data points that are needed to infer CLs. We
apply both methods to a number of biological models and infer CLs.

2 Materials and methods

In this section, we first introduce methods used for dynamical mod-
elling and parameter estimation, as well as criteria on identifiability
and likelihood for recovering the CL from data.

2.1 Dynamical modelling and parameter estimation
Biochemical reaction networks can be condensed into mathematical
rate equations comprising the molecular species x, external stimuli u
and the parameters h:

x ¼ f x;u; h
� �

(1)

The initial conditions xðt ¼ 0Þ can be treated as additional
parameters if they cannot be specified beforehand. Because of
measurement-related scaling and offsets as well as measurement
error, the states x are in general not directly accessible to experi-
ments. Furthermore, systems are often only partially observed, i.e.
only certain species or combinations of them can be measured. The
observation function links the states to the measurements:

y ¼ g x; h
� �

þ � (2)

The measurement errors � are usually assumed to represent addi-
tive Gaussian noise, i.e. �i � N 0; r2

i

� �
; �i 2 �. Multiplicative noise

can be accounted for by considering the model and data in log-space
(Kreutz et al., 2007).

Calibration of the model is usually performed using the max-

imum likelihood method. For nd data points fyD
i g, the optimal par-

ameter values are acquired by minimizing the negative log-
likelihood function

L h
� �
¼ �2log‘ h

� �
¼
Xnd

i¼1

y
D
i � y h

� �� �2

r2
i

þ log2pr2
i

2
4

3
5 (3)

One technique for accessing the confidence interval of an esti-
mated parameter hi in non-linear models is calculating the profile
likelihood (Raue et al., 2009):

PL hið Þ ¼ argminj 6¼iL h
� �

(4)

Confidence intervals are defined by the inequality (Kreutz et al.,
2012)

PL hið Þ � L h
� �
� Q v2

1; 1� a
� �

; (5)

where Qðv2
1; 1� aÞ is the ð1 � aÞ-quantile of the v2

1-distribution.
Throughout this work, we will use a ¼ 0:05. Non-finite confidence
intervals indicate a non-identifiable parameter. In general, a param-
eter with a flat profile likelihood is considered to be structurally
non-identifiable (Raue et al., 2009). If the profile likelihood is not
entirely flat but neither crosses the significance threshold in at least
one direction of the parameter axis, the parameter is called practic-
ally non-identifiable.

2.2 Linear chain trick
Consider a reaction network comprising a time delay between the
states x0 and xn. When utilizing the linear chain trick, this delay is
replaced by a linear chain of states x1;x2; . . . ; xn�1, which can be
translated into an ODE model:

_xi ¼ kdelayxi�1 � kdelayxi; i ¼ 1; 2; . . . ;n (6)

This approach is justified because the linear chain leads to the
same expression for xn as a continuous delay,

_x tð Þ ¼ f x tð Þ;
Ð t
�1 ds K t � sð Þ x sð Þ

� �
(7)

with a gamma-type delay kernel K (Smith, 2011). To further analyse
Equation (6), it is convenient to apply the Laplace transform Lð�Þ,
which yields (Supplementary Section S1):

L xnð Þ ¼ kdelay

sþkdelay

� �n
L x0ð Þ (8)

Different delays can be accounted for by tuning the length of the
chain n and the reaction rate constant kdelay.

2.3 Estimating CLs
2.3.1 Optimizing the Bayesian information criterion

In order to find the CL associated with the delay in experimental
data, one approach is to compare likelihood values of fits of model
with different CLs. The CL that leads to maximum likelihood can
be interpreted as optimally describing the true delay. Since increas-
ing the CL does not alter the number of parameters in the model and
we perform the comparison on the same dataset, this corresponds to
optimize the Bayesian information criterion (BIC). Note that it is
not possible to conduct a likelihood ratio test because the models for
different CLs are not nested, i.e. they do not emerge from each other
by introducing parameter constraints.

2.3.2 The identifiability criterion

Consider data comprising a time delay, i.e. data for xn generated
from the model in Equation (6). To recover the true CL, it is neces-
sary to use an auxiliary model that describes a linear chain with
states y1; y2; . . . ; ym, where one state transition is assigned a distinct
reaction rate kskip. Equation (8) changes accordingly:

L ymð Þ ¼
kskip

sþ kskip

kdelay

sþ kdelay

 !m�1

L x0ð Þ (9)

Since it comprises an additional parameter, this model has more
freedom when fitting data than the model in Equation (6):

• When trying to fit the model for m ¼ n, it is possible to exactly

recover the model in Equation (6) by setting kskip ¼ kdelay. This

should provide the best possible fit and therefore any changes in

parameters should induce a significant worsening, which trans-

lates into kdelay being identifiable.
• By construction of the auxiliary model, it is also possible to

exactly recover the true model if m ¼ nþ 1.When kskip !1,

Equation (9) becomes

L ynþ1ð Þ ! kdelay

sþkdelay

� �n
L x0ð Þ ¼ L xnð Þ; (10)

which can be interpreted as a shortening of the chain by one

step. Fit quality increases when increasing kskip which makes the

parameter practically non-identifiable.

For m < n, a further shortening does typically not improve the
fit –kskip is identifiable. For m > nþ 1, a shortening of the chain by
one step would not be sufficient to recover the true model. Instead,
the second timescale provided by kskip when the chain is not short-
ened can be employed to achieve the best possible fit. No statement
on identifiability can be made in this case.

These considerations allow us to derive a criterion for recovering
the CL from data: The true CL is the smallest CL for which the aux-
iliary model yields a non-identifiability of kskip. The particular case
of short true CLs n ¼ 1; 2 has to be considered separately. If the
data originate from a model with n ¼ 1, the true CL can be
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recovered by shortening the chain of all but one step. This is
achieved by setting kdelay !1 and kskip ¼ kdelay:

L ymð Þ !
kskip

sþ kskip
L x0ð Þ ¼

kdelay

sþ kdelay
L x0ð Þ (11)

In this case, the non-identifiability occurs in kdelay. For m ¼ 2,
kskip can become non-identifiable too as those two parameters are
equivalent and can be interchanged in this setting.

2.4 Experimental design for recovering CLs
Certain features of experimental data can impede recovering the
true CL, e.g. a poor choice of sampling time points or high noise lev-
els that mask the dynamics of a system. Those data characteristics
can induce a practical non-identifiability on kdelay or the auxiliary
parameter kskip of the auxiliary model discussed in Section 2.3.2,
which renders the inference of CLs infeasible.

To test whether the data are suitable for CL inference, one can
perform a simulation study using realistic parameter values acquired
from fitting the data with the same sampling time points as in the ex-
perimental data. By utilizing the likelihood or the identifiability cri-
terion, one can infer CLs from simulated data. Comparing the CL of
the model used for simulating data with the CL recovered from that
data allow to access whether the properties of the data are suitable.

If the data are not suitable, the techniques of experimental design
can be employed. For example, one can add sampling time points
carrying information on kskip by identifying the regions in which the
model predictions along the parameter profiles show the largest
spread (Steiert et al., 2012). Ideally, the CLs inferred from applying
the criterion on simulated data and the CL of the model used for
simulation should be identical.

3 Results

In this section, we evaluate the performance of the two methods to re-
cover the CL from simulated data of a model with given CL. After

that, we apply both methods to different biological models of the JAK-
STAT signalling pathway (Bachmann et al., 2011; Merkle et al., 2016;
Swameye et al., 2003), as well as to the model of IL-6-induced
JAK1-STAT3 signalling of Sobotta et al. (2017) with their respective
measured biological data. For that we use the open-source MATLAB
toolbox Data2Dynamics (Raue et al., 2015; Steiert et al., 2019).

3.1 Simulation study: linear chain trick
We start by analysing a simple model in which species x0 (Input) acti-
vates the delayed production of species xn (Output), which is degraded
afterwards. The delay is accounted for by a linear chain, whose first
state is activated by x0 and whose last state is converted to xn (Fig. 1A).
The system of ODEs describing this model is equal to Equation (6).

The initial conditions are represented by the steady state, which is

x t ¼ 0ð Þ ¼ 0. We simulated 25 datasets for the observables x0 and xn

for a CL of n ¼ 3. We chose an exponentially decaying function for
the input function x0. A typical data realization is depicted in
Figure 1B. We fitted models with different CLs to estimate the true
delay via optimizing the BIC and the identifiability criterion.

The profile likelihood (Fig. 1C) shows that kskip is identifiable
for m � n ¼ 3. The multiple optima are a consequence of the add-
itional auxiliary parameter. For m ¼ nþ 1 ¼ 4, kskip is mostly
non-identifiable, i.e. the chain is shortened. The identifiability criter-
ion therefore is able to recover the true CL in 20 out of the 25 data
realizations. For m ¼ nþ 2 ¼ 5, kskip is identifiable in the vast ma-
jority of realizations. An insufficient shortening of only one step is
not realized. Instead, the second timescale introduced with kskip is
utilized to achieve the best possible fits (Fig. 1D).

The BIC was able to recover the true CL in only 16 out of the 25
cases (Fig. 1E). In a substantial portion of data realizations, the CL
is slightly overestimated which leads to the overall estimate being
biased in this setting.

3.1.1 Varying noise levels

In order to determine how sensitive the two methods are to noise in
the data, we looked at four different situations in the range from
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Fig. 1. (A) Reaction scheme of the (auxiliary) linear chain model. (B) A typical realization of data simulated with the linear chain model for the observables x0 and xn. Shaded

areas represent one standard deviation of the error model around the model trajectory the data were simulated with. (C) Profile likelihood of the auxiliary parameter kskip for

fits of the auxiliary model for different chain lengths m. All profiles were shifted to the same baseline. The dashed line indicates the threshold for the 95% confidence interval

which is given by the quantile function of the v2 distribution in Equation (5). (D) The top row shows densely sampled data (black) and fits (dashed-dotted) with respective error

models (grey) with kskip ¼ 103 1=min for m > n, i.e. a shortening is enforced for models with overly long chains. The bottom row depicts fits without such restrictions. (E)

Comparison of chain length results for the linear chain model using the BIC and the identifiability criterion. *Cases in which the auxiliary parameter did not become non-iden-

tifiable for any chain length and therefore no statement on the chain length is possible
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moderate relative noise of 10�0:7 � 0:2 to very large relative noise of
10�0:1 � 0:8 and simulated 50 datasets each for a CL of n ¼ 4.
We then applied both criteria to recover the CL from the data.

For small noise levels, both methods perform equally well.
The identifiability criterion produces a result which has a slightly
smaller variance but comes with the trade-off of being biased
(Fig. 2A). While the bias is only marginal in this setting, it becomes
substantial when going to larger noise levels. Additionally, in certain
data realizations, the identifiability criterion is not able to infer any
CL at all because the auxiliary parameter remains identifiable for all
tested CL. The CLs associated with maximum likelihood provide an
unbiased estimator which at the same time has a larger variance.

The mean squared error, defined by MSE CLð Þ ¼ h ĈL �CLð Þ2i,
where ĈL is an estimate of the CL, is lower for the identifiability cri-
terion. The reduced variance outweighs the bias. However, both
methods result in the correct value for the CL length for small noise
levels.

3.1.2 Varying the amount of data

We evaluated the influence of the number of data points on the per-
formance of both methods. CLs were estimated from N 2
f5; 9; 17; 33g data points with the same error model in 20 simu-
lated datasets for each N.

The analysis shows that for the given noise, N ¼ 17 data points
are sufficient to obtain the best possible CL estimate with both meth-
ods (Fig. 2B). When data sparsity increases, the identifiability criter-
ion again shows a bias towards small CLs and has a reduced variance
when compared with the BIC. The latter features a lower mean
squared error except for the scenarios with extreme data sparsity.
Trajectories of fits of models with different CLs differ mostly in the
region of their maximum. Because for N ¼ 5, there are no data points
in this specific region, the data as a whole does not carry enough in-
formation to infer any CL. Therefore, while longer chains apparently
lead to slightly better fits, these changes are regarded as not significant
by the identifiability criterion. With a larger number of data points
both criteria lead to the correct CL. This asymptotic correctness when
decreasing noise and data sparsity implies statistical consistency for
both methods. We also analysed the behaviour when using very large
CLs in Supplementary Section S2.

3.2 Simulation study: translation model
Consider the following simple model of protein translation
(Fig. 3A): an input function mRNA0 activates the production of
mRNA, which in turn activates the production of a protein in a
delayed reaction. Both mRNA and protein become degraded after-
wards. The delay is modelled by introducing a linear chain of
mRNA states:

_mRNA1 ¼ kinmRNA0 � kdelaymRNA1

_mRNAi ¼ kdelaymRNAi�1 � kdelaymRNAi for 2 � i � n� 1

_mRNAn ¼ kdelaymRNAn�1 � koutmRNAn

_Protein ¼ kprodmRNAn � kdegProtein

(12)

Typically, data are available for the protein itself and the input
mRNA0, which can represent the output of any upstream reaction
network, but not for mRNA. Since mRNA is not actually converted
from input or to protein, the scales of their concentration levels are
independent. mRNA concentrations can be arbitrarily high or low
for a given protein concentration if the protein production rate kprod

is tuned accordingly (Fig. 3B). Due to this fact, it is not possible to
infer mRNA concentrations levels with only input and protein con-
centrations measured. These levels are governed by the non-
identifiable parameters kin and kprod (Fig. 3C), which can be seen
from the Laplace transform of the protein state:

L Proteinð Þ ¼
kprod

sþ kdeg

kin

sþ kout

kdelay

sþ kdelay

 !n�1

(13)

Because the Laplace back-transform is linear, kin and kprod ap-
pear as multiplicative factors in the untransformed concentration
function and therefore do not alter the dynamics but only the con-
centration scale. A change of kin in one direction, which leads to dif-
ferent mRNA levels, can always be compensated for by a change in
rate kprod in the other direction so that the experimentally measured
outcomes of input and protein are not altered, which makes both
parameters non-identifiable.

We simulated 20 densely sampled datasets with small noise for

the initial conditions x t ¼ 0ð Þ ¼ 0 and applied the BIC as well as the
identifiability criterion to access CL information. The identifiability
criterion slightly underestimates the CL (Fig. 3D). Optimizing the
BIC yields estimates which are closer to the true CL on average but
have a much larger variance. The mean squares error is much lower
for the identifiability criterion.

3.3 Application study: model of JAK2/STAT5 signalling

by Bachmann et al.
To evaluate the performance of the two methods on biological mod-
els, we applied them to the mathematical model of JAK2/STAT5 sig-
nalling (Bachmann et al., 2011). STAT5 phosphorylation, which is
activated by Erythropoietin, is inhibited by the two proteins CIS and
SOCS3 (Fig. 4A). Production of both proteins is activated by nuclear
phosphorylated STAT5 (npSTAT5) in a delayed mechanism.
Bachmann et al. used the linear chain trick with five intermediate
states to model both delays (Fig. 4B).
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Fig. 2. Evaluation of the performance of the two methods in different data settings. The top row shows a typical data realization together with the respective fits for models

with different chain lengths. Histograms of estimated chain lengths are shown below with the black bar representing the chain used for simulations. The mean and standard de-

viation of estimated chain lengths are denoted by a red bar and a shaded red area, respectively. (A) Variation the level of relative noise. (B) Variation of the number of data
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The equations governing the delay are similar to those of the lin-
ear chain model discussed in Section 3.1, but with distinct in- and
outgoing reaction rates, as described in Supplementary Section S3.
npSTAT5 acts as the input function x0, while the last state of the lin-
ear chain xn activates the production of the respective protein, CIS
or SOCS3, which is degraded afterwards. Auxiliary models that are
needed to recover the CL via the identifiability criterion comprise
the additional parameters CISRNASkip and SOCS3RNASkip.

3.3.1 Experimental data

Bachmann et al. collected data for multiple observables using quan-
titative immunoblotting, mass spectrometry and dose–response
experiments. Fitting of the auxiliary models described above for dif-
ferent CLs and performing an identifiability analysis allows inferring
the CL from experimental data using the identifiability criterion. We
also conducted a CL analysis with the BIC.

The two delay chains were analysed separately, i.e. a length of
five was assumed for the respective other chain. With the identifi-
ability criterion, we found that the CLs for the delayed production
of proteins can be reduced from five to two for CIS (Fig. 4C) and
zero for SOCS3 (see Supplementary Section S4). Using the BIC, CLs
are estimated to four for CIS and at least six for SOCS3. Only a
lower bound for the CL of SOCS3 can be provided because likeli-
hood values decreased with increasing CL and we did not analyse
chains with lengths larger than six. We repeated the analysis for

both delay chains incorporating these results for the respective other
chain, which resulted in the same CLs. We therefore conclude that
our assumption is justified.

3.3.2 Artificial data

The analysis in the previous section showed that the experimental
data does not give rise to a delay chain in production of SOCS3.
In order to test whether the true CL can be inferred in the given data
setting, we performed a simulation study. We simulated data from a
model with the CL n ¼ 3, which mimics the characteristics of the
experimentally collected data: simulations were conducted for the
same observables and measurement timepoints. Standard deviations
of simulated data were obtained by the error parameters of the best
fit. This procedure can also be interpreted as a bootstrap approach
to quantify the uncertainty of the CL estimate.

The results show that the identifiability criterion does not cor-
rectly identify the true CL but underestimates it in all of 25 data
realizations (Fig. 4D, Realistic Data). This fact implies that inferring
CLs is not possible in the given experimental setting. However, bio-
logical a priori knowledge suggests the existence of such a chain that
represents mRNA in the process of translation. Therefore, we pro-
ceeded with an experimental design approach: time points were
added to the observables that are most sensitive to changes in
CISRNASkip and CISRNADelay. This approach led to a CL of two
in most cases. Accessing the CL via optimizing the BIC yields far less
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informative results (Fig. 4D, Additional Data). While the bias is
smaller, the variance is considerably larger which results in a much
larger mean squared error. This renders the CL estimate much less
useful when dealing with a single dataset. The rate parameter govern-
ing mRNA production and degradation, CISRNATurn, was estimated
to its upper bound at 103 1=min, which corresponds to a shortened
delay chain (Supplementary Section S3). Therefore, the artificial data
were effectively simulated for n ¼ 2, which renders the result of esti-
mated CLs reasonable. Using a smaller value of CISRNATurn ¼
10�1 1=min for simulations results in CLs that closely resemble n ¼
3 (Fig. 4D, Additional Data and Reduced Rate Constant).

3.4 Additional biological models
Apart from the model of JAK2/STAT5 signalling (Bachmann et al.,
2011), we analysed the linear chains in a number of models (Merkle
et al., 2016; Sobotta et al., 2017; Swameye et al., 2003) included in
the benchmark collection (Hass et al., 2019), which all contain at
least one linear chain used to model a time delay in protein produc-
tion (Supplementary Section S5). We applied both criteria to infer
CLs. The lengths of the linear chains were assumed to be independ-
ent. The inclusion of the auxiliary parameter is analogous to what is
described in detail in Supplementary Section S3. Results suggest that
CLs used in published models mostly are overly large (Table 1).

4 Conclusion

Apparent time delays in partly observed biochemical reaction net-
works can be modelled by lumping a more complex reaction into a
series of linear reactions often referred to as the linear chain trick.
However, the number of additional states, i.e. the length of the lin-
ear chain, remains unclear. Accessing the CL by taking a model that
is associated with the maximal likelihood value leads to a CL that
optimally describes the true delay present in the data (optimizing the
BIC). Additionally, we derived a criterion for recovering the CL
from data utilizing a profile-likelihood-based identifiability analysis
inspired by model reduction techniques with an auxiliary model
including an additional auxiliary parameter (identifiability criter-
ion). The proposed method provides the shortest CL which cannot
be rejected by a likelihood ratio test compared with a larger model
and therefore leads to the simplest model possible.

We evaluated the performance of both criteria with different toy
models. Both methods were able to correctly recover the true CL
from simulated data. We continued by analysing the effects of data
properties such as noise levels and the number of sampling time
points. The performance of both methods for large amounts of simu-
lated data and low noise levels in providing a narrow distribution of
CLs centred around the true CL used for simulations implies statistic-
al consistency. While the identifiability criterion provides more accur-
ate results with a smaller variance for well-behaved data, it suffers
from bias when noise levels go up or the sample size goes down.
However, the majority of simulation studies we conducted showed
that it yields results with a lower mean squared error than the BIC.

We considered the model of JAK2-STAT5 signalling (Bachmann
et al., 2011) as a candidate for a typical biological model. When

applied to biological data, both methods provide reasonable results.
The linear chain governing the production of CIS can be shortened
to two steps. No delay in the production of SOCS3 can be inferred
from the data. While biological knowledge implies the existence of
such a chain as a consequence of various mRNA states occurring in
the process of protein translation, this is not portrayed by the data.
We analysed whether it is possible to recover the true CL from real-
istically simulated data which turned out not to be the case. Using
the principles of experimental design, we added informative time
points to the relevant observables which rendered CL estimation
feasible. Again, the mean squared error was lower for the identifi-
ability criterion. Additionally, we examined several more biological
models from the benchmark collection (Hass et al., 2019).

Both methods, optimizing the BIC as well as the identifiability
criterion, were able to recover the correct CLs from simulated data.
In realistic settings this becomes more demanding because of less
observed species, sparsely sampled data and larger noise levels.
While the simulation studies show a bias towards shorter chains for
the identifiability criterion, the estimated CL is derived from a
likelihood-ratio test, i.e. it represents the smallest one that cannot be
rejected when compared with a larger model. Therefore, this method
leads to the smallest and simplest model possible, which makes the
model more easy and understandable and facilitates comprehending
the internal mechanics and characteristic features of the system.
Especially in the case of realistic data with a biological model, the
identifiability criterion showed to be more suitable to recover the
correct CL.

When interpreting the CLs acquired by either method, one has to
keep in mind that the linear chain trick assumes the delay to be
caused by a series of reaction with equal rate constants, which is not
a natural assumption. Whether or not this fact has substantial effects
on the number of states inferred is subject to further research.
However, in order to find the smallest model possible, these meth-
ods may be applied without biologically interpreting the results.

The simulation study has shown that both methods are suitable
for recovering CL information from data and provide a consistent es-
timator. The drawbacks of the identifiability criterion are a potential-
ly biased estimation for inappropriate data with high noise levels and
few informative data points. The BIC on the other hand produces re-
sult with a much larger variance. Overall, the identifiability criterion
features a superior performance as it leads to results with a lower
mean squared error. An application to the model of JAK2-STAT5 sig-
nalling of Bachmann et al. showed that typical experimental data
quality is not sufficient to reliably estimate CLs. However, with new
measurement techniques such as mass spectrometry or imaging meth-
ods allowing the collection of high-quality data in terms of error or
time resolution, this criterion provides a promising technique for
inferring CL information on various systems. As the field of systems
biology increasingly turns to large-scale models, reducing unnecessary
complexity becomes more and more important. The identifiability cri-
terion presented in this work might be an appropriate tool to accom-
plish this goal if the data quality is sufficient.
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