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lateral correlation length and
particle radius determines the density profile of
spherical molecules near a fluctuating membrane

Fidel Córdoba-Valdés,abc Ramón Castañeda-Priego,*b Jens Timmeref

and Christian Fleck*cd

Interactions between membranes and molecules are important for many biological processes, e.g.,

transport of molecules across cell membranes. However, the detailed physical description of the

membrane–biomolecule system remains a challenge and simplified schemes allow capturing its main

intrinsic features. In this work, by means of Monte Carlo computer simulations, we systematically study

the distribution of uncharged spherical molecules in contact with a flexible surface. Our results show

that the distribution for finite size particles has the same simple functional form as the one obtained for

point-like particles and depends only on the ratio of the lateral correlation length of the membrane and

the radius of the molecules.
1 Introduction

The diversity of life has been made possible by the invention of
the plasma membrane which separates the interior of a cell
from the environment. This outer conning envelope of cells
enables cells to build up a constant inner milieu and allows
selective material exchange between the cell and its environ-
ment.1 A simple bacterium has only the plasma membrane, but
the interior of eukaryotic cells is also structured by membranes,
which enclose different intracellular compartments.2 The
separation into inner and outer space by membranes opened
the possibility of energy storage in the form of electrochemical
potential gradients, which is essential to many biological
processes, e.g., the active uptake of nutrients in animal cells and
signaling in neurons.3 Membranes take part in enzyme activity,
e.g., the bio-synthesis of phospholipids or oxidative phosphor-
ylation and control the ow of information between cells either
by recognizing signal molecules received from others cells, or by
sending chemical or electrical signals to other cells.4 Therefore,
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membranes play an active part in the life of the cell. Bio-
membranes typically consist of a double layer of lipids into
which different proteins are embedded.5 These bilayers are
generally just a few nanometers thick, with a surface area that
extends over several square centimeters. In many practical
situations, a sufficient description of the membrane is used to
model it as a simple sheet characterized only by its elastic
properties, i.e., bending rigidity and surface tension.6

Many biological processes are controlled by the interactions
of molecules with cell membranes. Besides highly specic
interactions of steric, electrostatic and chemical nature,7,8

entropic force elds are omnipresent and depend only on
geometrical features. These so-called depletion forces arise
because both the membrane and the molecules generate
excluded volumes for the small particles forming the solvent.
Although these forces have been discussed for biological
systems for many years,9 the simultaneous presence of many
other forces severely impedes the precise analysis of depletion
forces in such systems.

In recent years, there has been signicant progress in
understanding the depletion forces between two big spheres
and between a single big sphere and a at wall based on
experiments, simulations and theoretical results.10–12 In many
cases, membranes are, however, not at, but rather have
surfaces of varying curvature. This leads to a modication of the
depletion forces as they are no longer directed only normal to
the surface, like at a at wall or at a wall with constant curva-
ture; there exists a lateral component of the force which
promotes transport along the membrane. Recently, it has been
shown experimentally that these forces are responsible, for
instance, for adhesion of red blood cells to cells or surfaces.13

However, to our best knowledge, there are no systematic
Soft Matter, 2014, 10, 8475–8481 | 8475
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theoretical and simulation studies available which accurately
predict the important curvature dependence of the membranes
on both the depletion forces and the local microstructure of
molecules in contact with the uctuating membrane. A few
theoretical cases reported by Bickel and coworkers14 illustrate
the importance of such effects. Nonetheless, a full description
requires advanced techniques which must be adapted to study
depletion potentials close to arbitrarily shaped substrates.

Molecular dynamics methods are powerful tools which could
be used for studying biological membranes taking into account
explicitly its molecular composition, e.g., see ref. 15 and refer-
ences therein. However, as these are computationally very costly
for systems involving different length and time scales, i.e., a
suspension made up of particles with different sizes in contact
with a uctuating membrane, continuum models provide the
only feasible simulation schemes.15 By coarse-graining over the
lipid degrees of freedom, uid membranes have been success-
fully described by innitely thin, continuous sheets with
curvature elastic energy. The solvent contribution is implicitly
present in the elastic properties that specify the model.16 In
particular, the Helfrich model has been most widely applied to
the study of bilayers with small thermal height uctuations
away from a at reference conguration.16 Using this approach,
we have developed a simple lattice simulation model that
incorporates both the elastic degrees of freedom of the
membrane and those of a suspension of biomolecules inter-
acting with a hard-sphere potential; the explicit details of the
model can be found in ref. 17 and are briey described below.

It is important to point out that membranes are somaterials
that in contrast to traditional nanostructures exhibit high
susceptibility to the thermal uctuations of the environment.
Hence, as we mentioned above, this property gives rise to
intriguing forces of pure entropic origin between the membrane
and nanomaterials, such as polymers and colloids. A recent review
on the forces that rule the interactions between membranes and
molecules has been introduced by Bickel and Marques.18

Furthermore, it is known that when somemolecules are bounded
to the membrane they deform its shape leading to important
membrane-mediated interactions between molecules.19–21

Thus, the aim of this work is to understand the role of the
particle–membrane interaction on the static microstructure of
colloidal particles near a uctuating membrane. We focus on
the simplest model system consisting of a monodisperse
suspension of hard spherical particles of nite size. We
consider highly dilute suspensions to avoid the inclusion of
particle–particle correlations. In particular, the particle density
prole perpendicular to the membrane surface is measured for
different values of the parameter space, namely, the mean
roughness, lateral correlation length and particle size, in order
to identify the mechanisms that determine the distribution of
biomolecules in contact with the membrane; the striking
nding is that the ratio between the lateral correlation and the
particle size is the only relevant parameter.

Aer the present Introduction, Section 2 describes both the
Helfrich model and our lattice simulation scheme. We also
discuss the case in which the molecules behave as an ideal gas.
We refer to this case as the point-like limit. In Section 3, we
8476 | Soft Matter, 2014, 10, 8475–8481
present and discuss our results with particles of nite size. We
mainly emphasise the entropy-driven mechanisms that lead to
the shiing and tilting of the density prole. Finally, the
manuscript ends with a section of concluding remarks.

2 Helfrich model, lattice simulation
model and density profile in the point-
like limit

Biological membranes are complex objects consisting of a lipid
bilayer with enclosed trans-membrane proteins and attached
extracellularly to the glycocalyx and intracellularly to the cyto-
skeleton. However, in order to understand certain aspects of the
behavior of cell membranes, it is advantageous to study simpler
objects composed solely of lipids. Two systems composed of a
pure phospholipid bilayer are vesicles and planar bilayers.
Vesicles are bags up to 100 mm in diameter consisting of a
phospholipid bilayer that encloses a central aqueous compart-
ment.22,23 They are formed by mechanically dispersing phos-
pholipids in water. Planar bilayers are formed across a hole in a
partition that separates two aqueous solutions.22,23 Below, we
shall conne ourselves to the discussion of the properties of
membranes composed of lipids and neglect the further
complexity of cell membranes.

Lipid bilayers combine exceptional elastic properties which
would be difficult to obtain with synthetic materials. The
bending modulus is smaller than that of a 5 nm thick shell
made of polyethylene, by a factor of 1000, and the shear
modulus by a factor of 10 000, but the area compression
modulus is almost as large as those of the polyethylene shell,
which makes the bilayer virtually incompressible.22 The
bending rigidity of lipid bilayers is between 5 and 100 kBT, with
kB being the Boltzmann constant and T being the absolute
temperature. Due to the low bending rigidity, membranes
undergo thermal shape uctuations, which can be visualized by
interference contrast microscopy.24

Keeping in mind the properties mentioned above, Helfrich
proposed a Hamiltonian that describes a uctuating
membrane;16 this model is discussed below.

2.1 Helfrich model

The Helfrich model contains only two parameters that can
experimentally be measured, i.e., the bending rigidity and
surface tension.16 This simple model considers the membrane,
basically, as an elastic sheet and has been used and veried in
numerous studies. For example, in experiments analyzing the
uctuation spectrum of red blood cells,25 in the theoretical
investigations of the steric repulsive interactions between
proximal membranes,26 and in studies on stacks of lipid bila-
yers.27 Helfrich-like models with additional harmonic interac-
tions can also be handled analytically. Equilibrium properties
can be calculated for various forms of harmonic potentials,
including localized pinning and uniform connement.28–30

Within the Helfrich approximation, effects due to nite
thicknesses are completely neglected. Mathematically, such a
model can be described (in the limit of small uctuations) as
This journal is © The Royal Society of Chemistry 2014
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follows. By using the position vector S¼ S(~r,h(~r)), where~r˛A is
the vector on the xy-plane and h is the eld in the z-direction
representing the membrane thermal uctuations, the elastic
membrane energy reads as6

Hm½h� ¼ 1

2

ðh
k
�
V2h
�2 þ gðVhÞ2 þ mh2

i
dxdy; (1)

where k, g and m are the mean bending rigidity, the surface
tension and the strength of a harmonic potential,
respectively.

The height–height correlation function G(~r � ~r0) ¼ hh(~r)
h(~r0)i0 � hh(~r)i0hh(~r0)i0 permits us to evaluate the main length
scales of the membrane associated with its inherent elastic
properties, where the ensemble averages are calculated

according to h/i0 ¼
ð
Dh/e�bHm ½h�

�ð
Dhe�bHm½h�. For a

membrane with vanishing surface tension, i.e., g ¼ 0, the
correlation function takes the following simple analytic form

Gð~rÞ ¼ � 4
p
ðxt0Þ2kei

 ffiffiffi
2

p r

xk
0

!
, where kei(x)¼ Im[K0(xe

ip/4)] is a

Kelvin function, xt
0 h G(0)1/2 ¼ 2�3/2(km)�1/4 is the mean

roughness of the membrane and xk
0¼ 21/2(k/m)1/4 is the in-plane

correlation length, which is associated with the exponential
decay of G(r) at long distances.31 To understand both length
scales of the membrane, we can study their limiting cases: when
k / 0 (where thermal uctuations easily modify the shape of
the membrane) at xed m also xk

0 / 0, but if k / N (at wall)
then xk

0 / N, and xt
0 behaves inversely at both limits. In

contrast, at xed k the behavior is very similar in both correla-
tion lengths, i.e., they decay �m�1/4 for m / N.

Additionally, eqn (1) allows us to compute the height distri-
bution of the membrane. It takes the following analytical form:

f ðzÞ ¼ �d�z� hð~rÞ��
0
¼ 1ffiffiffiffiffiffi

2p
p

xt
0
exp

 
� z2

2xt
02

!
; (2)

which means that the height distribution of the membrane is
Gaussian, as a consequence of the fact that eqn (1) is an
approximation up to the second order on the h-eld.
Fig. 1 Membrane height distribution. The solid line denotes the
continuum limit with xt

0 ¼ 12.80. The dashed line denotes the
distribution obtained by simulating an 80 � 80 lattice with lattice
constant a ¼ 0.5. Then, xt

s ¼ 13.083 was obtained by using eqn (2).
2.2 Lattice simulation model

The membrane is represented as a two-dimensional NL � NL

square lattice with lattice constant a. The projected area of the
membrane is A¼ a2NL

2. In order to calculate the internal energy
of the membrane, we use the discrete version of eqn (1). Monte
Carlo simulations have been implemented according to the
algorithm described in ref. 17. This algorithm has also been
applied to study the aggregation behavior of two separate
conned polymer chains induced by membranes.32

We have tested our simulations by calculating, for different
elastic parameters, the distribution of the membrane and
compared with eqn (2). The denition of xt

0 and xk
0 is assumed

to be true in the continuum limit (a / 0 and NL / N) of an
innite membrane. In our simulations, however, we use a
discrete representation. Therefore, we recall the discrete
membrane roughness.33
This journal is © The Royal Society of Chemistry 2014
xt
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

NLa

	2X
n;m

Knm

vuut ; (3)

where Knm is the discrete propagator of the form

Knm ¼ 1

kfnm
2 þ gfnm þ m

: (4)

We have dened the matrix fnm as

fnm ¼ 2

a2



cos

�
2p

n

NL

	
þ cos

�
2p

m

NL

	
� 2

�
: (5)

The results obtained from simulations have to be compared
with these discrete quantities in order to estimate the statistical
uncertainties. As long as the number of Monte Carlo steps
increases, the simulated roughness, xt

s, has to converge to xt
d

instead of xt
0. In the limit NL / N and a / 0, xt

d converges
exactly to xt

0. In Fig. 1, the membrane height distribution is
shown and compared with the continuum limit (2). By tting
function (2), the simulated roughness xt

s can be estimated. The
relative difference respect to xt

0 is around 2%, which is the
same difference as between xt

0 and xt
d. By increasing the

number of lattices and making a smaller this difference
decreases below the 2%, as expected. In order to produce results
in a reasonable time, we have performed simulations with the
number of lattices ranging from 80 � 80 to 200 � 200. In
all simulations, the length of the membrane, L ¼ aNL, was
xed at 40.

2.3 Point-like limit

We consider N colloidal spherical particles of radius ac in
contact with the membrane. Their positions are characterized
by the vectors~ri, i ¼ 1, ., N. Particles interact with each other
through the hard-core potential mathematically described by
the relationship,

bucc
�
rij
� ¼ �N rij\2ac

0 rij $ 2ac;
(6)
Soft Matter, 2014, 10, 8475–8481 | 8477



Fig. 2 Density profile of point-like particles for different reduced bulk
densities, r*N h rN(xt

0)3. Solid lines show eqn (9) and symbols denote
the simulation data. The inset shows the same density profiles shifted
by z0 ¼ rN/m.
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where rij denotes the distance between colloids. A particle
located at~ri ¼ (~ri,zi) interacts with a membrane site located at
~R ¼ (~r,h(~r)), i.e.,

bumcðRiÞ ¼
�
N Ri\0
0 Ri $ 0;

(7)

where Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~r�~riÞ2 þ ðhð~rÞ � ziÞ2

q
� ac is the shortest

distance from the surface of particle i to the membrane site. The
partition function of the full membrane–colloid system can be
written as

Z ¼ 1

N!

ð
PN

i

d~ri

l3

ð
Dhe

�bHmðhÞ�b
PN
j. i

uccðrijÞ
; (8)

l is the thermal wavelength, which results from the integration
over the particle momenta.

In general, the analytical integration of the partition func-
tion is a hard task which has been simplied in a few cases. In
particular, in the case of point-like particles (ac ¼ 0), the parti-
tion function (8) has been calculated analytically by Bickel.34

The density prole of the particles can be straightforwardly
evaluated,

rðzÞ ¼ 1

2
rN

"
1þ erf

 
zþ z0ffiffiffi
2

p
xt

0

!#
; (9)

where rN is the density at the bulk and z0 ¼ rNm�1 is a char-
acteristic shi. The physical meaning of this shi can be
explained as follows. When in contact with the colloidal solu-
tion, the membrane experiences the osmotic pressure of the
particles and the membrane moves to a new equilibrium posi-
tion given by z0. Therefore, eqn (9) provides an excellent
benchmark to test more elaborated theoretical frameworks and,
of course, simulation models.

To test our lattice simulation model described above, we
have carried out simulations with a 80 � 80 membrane with a
lattice constant a ¼ 0.5 and 400 point-like particles. For each
Monte Carlo (MC) step, a trial move for all membrane patches,
i.e., lattice sites, and particles is accomplished. 106 Monte Carlo
steps were performed to equilibrate the system, aerwards 107

MC steps were considered to calculate averages; this simulation
protocol allowed us to reduce the associated uncertainties in
such a way that they are smaller than the symbol size used in the
plots. We compare the simulated density prole with eqn (9). In
Fig. 2, density proles for different reduced bulk densities
(r*N h rN(xt

0)3) are shown. A good agreement between simu-
lation and theory is clearly observed. The inset shows proles
shied by z0; all lying on a master curve. Shied proles are
symmetric around the mean location of the membrane,
meaning that particles are homogeneously distributed, on
average, in the holes and valleys of the membrane.
3 Spherical finite size particles

We have seen that in the limit of vanishing particle size (ac / 0),
the particle prole becomes symmetric and can analytically be
represented by eqn (9). Nonetheless, this limit does not take
fully into account the contribution of the particle–membrane
8478 | Soft Matter, 2014, 10, 8475–8481
interaction, bumc(R), i.e., particle nite size effects. However,
when bucm(R) is taken into account explicitly one expects a
completely different structural scenario that, to our best
knowledge, has not been explored previously. For example, one
immediately can think that the particle distribution near the
membrane should change dramatically due to the interplay
between different length scales, leading to new features in the
particle ordering. Also, in a naive picture, one may expect
morphology changes in the membrane. Then, to characterize
the ordering of molecules close to uctuating membranes, we
here extend the previous results for particles with nite size. We
have focused on two main contributions, namely, the
membrane contribution and the particle–membrane contribu-
tion, neglecting completely correlations between particles, i.e.,
bucc(r) z 0. This limit is reached by considering systems with
very low densities (r*N � 10�5 or, equivalently, with a volume
fraction 4 � 10�4).

The system is now determined by three parameters
that dene a parameter space given by a point of the form:
(xt

0,xk
0,ac). In order to explore the parameter space, we have

redened a reduced space characterised by only two dimen-
sionless variables:

a h 2ac/xt
0, (10)

b h 2ac/xk
0. (11)

Additionally, to avoid discretisation effects in all simula-
tions, the condition xk [ a is required (xk/a $ 4 holds for all
our simulations).

Fig. 3 shows a schematic representation of the parameter
space and gives some insight into different typical congura-
tions. In the limiting cases: b / N, an innity number of
patches of the membrane touch the particle surface and when
b / 0, the contact area between the surface and the particle is
reduced to one single point. A noteworthy feature of this space
is that b is the only important parameter, since a can be
removed by rescaling all lengths with the roughness of the
membrane as it will be shown further below.
This journal is © The Royal Society of Chemistry 2014



Fig. 3 Schematic representation of different configurations on the a�
b space. By fixing b and moving on a, the number of points of the
membrane touching the particle remains constant. On the other hand,
by increasing b, the number of points in contact with the particle
becomes larger. In this cartoon, the properties of the membrane are
varied, but it is also possible to achieve similar configurations by
changing the molecule size.

Paper Soft Matter
We have simulated different systems in the a � b space,
either by varying the membrane properties or particle sizes.
Fig. 4 shows four density proles by xing a and varying b. We
immediately observe that the proles are still symmetric and
are also shied in a similar manner as in the point-like case.
However, as can be seen in eqn (9), the mean surface location is
shied by z0, which is a monotonic function of the bulk density.
Unfortunately, from the simulation point of view, it is difficult
to have a xed density when one deals with particles of nite
size because the mean surface location is not a monotonic
function of the density anymore. Nonetheless, in our simula-
tions we have calculated the new z0 by measuring the average
location of all membrane patches. In order to sort out the
difficulties of changes in the particle density, we have translated
all proles to the right, by subtracting the particle radius, ac,
and z0. Unlike the point-like case, particle proles are shied to
the right of z ¼ 0, and tilted as long as b increases. If the size of
the particles becomes larger it is more unlikely that particles
Fig. 4 Density profiles for different values of b. By increasing b, profiles
show the same trend: shifting respect to z ¼ 0 and tilting. z-Axis is
rescaled according to z* ¼ (z � ac � z0)/ac and density profiles are
rescaled by r*¼ r(z)/rN. On the top left, a schematic representation of
the parameter space is drawn.

This journal is © The Royal Society of Chemistry 2014
can access, on average, into the valleys of the membrane. This
excluded volume is reected as a shi on the distribution of
particles close to the uctuating surface.

An interesting question is whether the elastic properties of a
uctuating membrane change when it interacts with the
molecules. This topic has been addressed by several authors.
For example, one of us estimated a variation of the mean
roughness when electrostatic interactions between point-like
particles and a uctuating membrane are explicitly consid-
ered.33 Additionally, in ref. 14 and 35 changes of the membrane
properties are calculated when it interacts with particles of
nite size. In our case, to estimate (possible) changes on the
membrane elastic properties, we have extracted the simulated
roughness xt

s by tting the membrane height distribution
obtained by means of computer simulations to the analytical
height distribution function (2). Aerwards, simulations without
particles and the same initial conditions for the membrane
have been carried out. By comparing both roughnesses, relative
differences less than 3.2% in all our simulations were found.
This means that for low particle concentrations changes of the
membrane properties are absent. However, one can expect
appreciable changes in systems with either higher densities or
intrinsic polydispersities.
3.1 Shiing and tilting

In order to estimate the shiing and tilting already discussed in
Fig. 4, we have tted the density proles using the functional
form of eqn (9),

rðzÞ ¼ 1

2
rN

"
1þ erf

 
z� p1ffiffiffi
2

p
p2

!#
; (12)

where we have introduced two tting parameters p1 and p2. The
meaning of these parameters is similar to the point-like case: p1
is the membrane shi due to the balance between the harmonic
potential and the suspension pressure and p2 is an effective
roughness, which can be understood as follows. For b > 1 the
particles cannot penetrate into the small cavities of the
membrane. Only the uctuation modes with a wavelength
larger than the particle diameter are relevant for the effective
roughness of the membrane, while the small wavelength modes
lead to an additional shi of the particle prole.

In Fig. 5, the same curves as in Fig. 4 are shown; every prole
is now shied by p1. One can observe the changes of the tilting
when b is increased. Clearly, this effect is a consequence of the
effective roughness. Insets show the effective membrane–
particle potential. From this, it is clear that as long as b becomes
larger, the effective interaction tends to be more repulsive since
the particles cannot access into the smaller cavities of the rough
surface.

In Fig. 6 we show proles for b ¼ 1.0 and different values of
a. With increasing a the proles become steeper. One can gain a
better understanding on the role of a by rescaling the z-axis with
xt

d. Interestingly, the inset shows that the proles collapse
onto a master curve. This means that the distribution of the
molecules is governed by only one dimensionless parameter, b,
by which the parameter space is reduced to one-dimension.
Soft Matter, 2014, 10, 8475–8481 | 8479



Fig. 5 Density profile from Fig. 4. A translational transformation is
being applied by z** ¼ (z � z0 � ac � p1)/ac and the same rescaling for
the density profiles as shown in Fig. 4 is assumed. As long as b

increases a tilt on the profiles becomes more noticeable because
particles cannot penetrate into those areas where the fast modes of
the membrane take place.

Fig. 6 Density profiles for different values of a with b constant. The
same rescaling as shown in Fig. 4 is assumed. The inset shows that by
rescaling the z-axis defined as z* ¼ (z � z0 � ac)/ac by z*/(xt

d/ac) all
profiles lie onto the same curve. On the top left, a schematic repre-
sentation of the parameter space is drawn.

Fig. 7 Parameter p1, as described in eqn (12), as a function of b for a ¼
0.2 and a ¼ 0.4. The inset shows that by rescaling with xt

d the shift
depends only on the lateral correlation of the membrane.

Fig. 8 Parameter p2, as described in eqn (12), as a function of b for a¼
0.2 and a ¼ 0.4. The inset shows the rescaled effective roughness.

Fig. 9 Schematic representation of the membrane–biomolecule
system. On the left, the solid line represents a particular configuration
of the membrane. Particles with finite size cannot be located into the
regions below the dashed line because there is no enough space. The
dashed line represents an effectivemembranewhich is less rough than
the original one. On the right, the original system can be replaced by a
less rough membrane in front of point-like particles.

Soft Matter Paper
We performed further simulations for different values of b in
order to explore the functional dependence of the shiing, p1
and tilting, p2, as a function of b. In Fig. 7, p1 as a function of b is
shown for two different values of a ¼ 0.2 and 0.4. The inset
shows evidence that the shi depends only on the lateral
correlation length of the membrane; the shiing is a mono-
tonically increasing function of b. From the simulation point of
view, it becomes more difficult to increase the value of b due to
the required conditions for the simulation of the system, i.e.,
d [ xt

d, with d being the separation between the membrane
and a rigid wall, and xk

d/a [ 1. Thus, simulations up to b ¼ 4
were performed in order to obtain results in a reasonably
computing time. We should point out that larger values of b
imply a higher number of particles in order to keep the same
value of the bulk density.

In Fig. 8, the effective roughness, p2, is shown for two
different values of a ¼ 0.2 and 0.4 as a function of b. The inset
shows that when p2 is rescaled with xt

d, it only depends on b. As
long as b increases, the effective roughness becomes smaller
compared with xt

d. For b ¼ 4.0 this relative difference is about
8480 | Soft Matter, 2014, 10, 8475–8481
40%, which is much larger than the change of the membrane
roughness due to the presence of the particle that is roughly
3.2%, see Fig. 1.

Why does for low bulk densities the particle distribution at a
uctuating membrane only depend on one relevant parameter?
The physical implications of our ndings can be best explained
by using a schematic representation. In Fig. 9, a particular
conguration of the system is shown (on the le). The
membrane is represented by the solid line; particles cannot
penetrate into those regions below the dashed line, which can
This journal is © The Royal Society of Chemistry 2014
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be thought as an effective membrane. Therefore, the original
system can be replaced by a less rough surface in front of point-
like particles (on the right). This effective membrane has a
roughness given by the parameter p2 which only depends on b

as it is explicitly shown in Fig. 8.

4 Conclusions

In this work we have studied a uctuating membrane in contact
with spherical molecules. Particularly, we have focused our
attention on the effect of the characteristic length scales of the
system on the distribution of particles near to the membrane.
We implemented Monte Carlo simulations to numerically
evaluate the density prole in the vicinity of the membrane. We
found that our simulation data agreed very well with analytical
results in the limiting case of point-like particles in front of a
uctuating membrane.

To avoid particle–particle effects and to focus on the effects
caused by the particle–membrane interaction, we considered
the case of low densities. The parameter space was reduced to
two dimensionless parameters: the ratio of the particle size with
the two characteristic length scales of the membrane, namely,
the lateral correlation length and the membrane roughness.
Aer rescaling the length scales with the membrane roughness
xt

d, the particle density proles depend only on b. If the lateral
correlation of the membrane is smaller than the particle
diameter (b is large), particles cannot penetrate into the
resulting small cavities of the membrane, which increases the
excluded volume of the particles. It follows that the membrane–
particle systems can be replaced by a membrane with reduced
roughness in front of point-like particles together with an
additional shi of the prole due to the enhanced excluded
volume. Hence, the density prole can be described by the same
function as in the point-like case. Clearly, this behavior will not
be valid anymore when the particle–particle interaction (high
densities) has to be taken into account explicitly. The work
along this line is currently under investigation.
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