
Abstract. In many cases the distribution of saccadic
reaction times (SRT) deviates considerably from a
unimodal distribution and may often exhibit several
peaks. We present a statistical approach to determining
the number and form of the individual peaks. The
overall density of the reaction times fi�t�, i � 1 . . . M
obtained in M di�erent experiments with the same
subject is described as the sum of K basis functions
xk�t�; k � 1 . . . K with di�erent weights and an error
term. A change in the experimental conditions is
assumed to cause a change in the weights, not in the
basis functions. We minimize the square of the di�erence
(measured data minus approximation), divided by the
error of the data. Incrementing K step by step we
determine the necessary number of basis functions. This
method is applied to data of six subjects tested in
di�erent saccade tasks. We detect ®ve di�erent modes:
two in the range 80±140 ms (express modes), two in the
range 145±190 ms (fast-regular mode) and one at about
230 ms (slow-regular mode). These modes are located at
about the same positions for di�erent subjects. The
method presented here not only proves statistically the
existence of several modes in SRT distributions but also
allows the distributions to be described by a few
characteristic numbers that go beyond the mean values
and standard deviations.

1 Introduction

One approach to studying the temporal and spatial
control of saccades has relied on the gap/overlap
paradigm (Saslow 1967). Subjects are required to look
at a ®xation point in the middle of the screen and to
make a saccade to the stimulus when it appears at an
eccentric location. While the ®xation point remains

visible when the target appears in the overlap paradigm,
it is switched o� before target onset in the gap paradigm.
The time between ®xation point o�set and target onset is
the gap duration. The usual method is to measure
saccadic reaction times (SRT) in the overlap and gap
conditions and to test whether the di�erences in the
mean values are signi®cant at a given level.

Saslow (1967) computed the mean values of SRT for
16 values of asynchrony, at 50-ms intervals, from an
extreme overlap of 350 ms to an extreme gap of 400 ms.
The result was a decrement in the mean SRT from
250 ms in the overlap to 130 ms in the gap 300 ms
condition (gap e�ect). When the gap duration was
incremented to 400 ms the mean of the SRT increased to
150 ms.

When Fischer and Ramsperger (1984) repeated the
experiment they found that the distribution of SRTs
from gap trials was bimodal or even trimodal. Saccades
contributing to the ®rst peak are called express saccades;
the others are called regular saccades. Fischer and
Ramsperger also considered mean values but considered
the implications of multimodal SRT distributions for
processes preceding voluntary visually guided rapid eye
movements.

The absence of a statistical method for detecting the
number and position of the modes has led to di�erent
opinions concerning multimodality. Reuter-Lorenz
(1995) didn't analyse the contributions of di�erent
peaks because of the di�culties in identifying the peaks
in data, and proclaim to use reliable and robust statis-
tical methods based on mean values and standard
deviations.

Many authors have reported whether or not they
could detect multimodal SRT distributions by simple
inspection. Examples of multimodal SRT distributions
have been published for both monkeys and human
subjects (Fischer and Boch 1983; Fischer and Rams-
perger 1984; JuÈ ttner and Wolf 1992; Munoz and Wurtz
1992; Sommer and Schiller 1992; Nothdurft and Parlitz
1993; Currie et al. 1993; Priori et al. 1993; Rohrer and
Sparks 1993; Matsue et al. 1994; Schiller and Lee 1994;
Tam and Ono 1994). Nozawa et al. (1994) reported
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that 23% of their subjects produced clearly separate
modes and `many others did not have clearly de®ned
modes but could still have come from a mixture of
two distributions'. Other authors found multimodal
distributions in some subjects but not others (Reuter-
Lorenz 1991). Still others reported problems in ®nding
bimodal distributions (Wenban-Smith and Findlay
1991; Sereno and Holzman 1993; Kingstone and Klein
1993).

Reuter-Lorenz et al. (1991) attributed the gap e�ect
to a facilitation of premotor programming in the supe-
rior colliculus. A general shortcoming of the facilitation
concept, proposed also by Reulen (1984a), is that it
cannot explain the occurrence of more than one mode in
the latency distribution; neither can it account for the
increase in SRT when increasing the gap duration from
200 ms to 400 ms.

Fischer and Ramsperger (1984) were the ®rst to re-
port multimodal SRT distributions. Some authors
adopted the idea of multimodality. Rogal and Fischer
(1986) proposed a model for SRT that can exhibit dif-
ferent peaks, based on the idea that the SRT includes the
time required for the a�erent and e�erent processes (for
example delays in pathway) and central processes such
as computation of the movement metrics. In this model
it is assumed that the preparation of saccades is com-
posed of sequential processes.

The three-loop model proposed by Fischer (1987) is
based on the idea that di�erences between the peak
positions refer to the time required for a brain process
that is included only in the reaction times of the later
peak. Fischer proposed that saccades are generated by
three main pathways (loops) connecting the retina of the
eye with the e�erent eye movement generating system.
Each loop is associated with a certain brain process that
must be accomplished during saccade preparation, thus
contributing to the reaction time. Saccades generated
through the shortest loop are express saccades
�SRT � 100±135 ms�, forming the ®rst peak. If two or
three processes have to be completed after target onset,
fast-regular saccades (140±180 ms) or slow-regular sac-
cades (above 200 ms) are obtained, again forming sep-
arate peaks. Fischer et al. (1995) presented a computer
simulation of the three-loop model. This reproduces the
gap e�ect in a very similar way to the experimental data,
by means of a simple neural network. The three-loop
model has been con®rmed by experiments in naive
adults, teenagers, children, and trained adults (Fischer
et al. 1993).

Cavegn (1996) asked his subjects to make a saccade
to a target appearing randomly to the left or the right
and used location cues to direct visual attention and
start saccade programming. When the cue indicated the
target location, the generation of express saccades was
facilitated; otherwise express saccades were abolished
and mainly fast-regular saccades observed. The results
are explained by the ®xation-gating model, according
to which the state of a separate ®xation system and not
attention disengagement decides which type of saccade
(express or regular) is generated.

Carpenter and Williams (1995) observed the express
mode in the overlap paradigm that was ®rst detected by
Fischer et al. (1993). The strength of the express mode is
modulated by the probability of the direction of the
stimulus.

A quantitative model that predicts temporary and
spatial aspects of saccades was proposed by Kopecz
(1995). It is based on concepts of saccadic preparation
conducted by ®xation point o�set, ®xation point onset
and general warning events (Ross and Ross 1980, 1981;
Reulen 1984a,b; Reuter-Lorenz et al. 1991). This model
could not produce multimodal distributions and express
saccades.

All the models considered above rely on neurobio-
logical ®ndings and assumptions. Another approach is
to model data. To our knowledge, this approach has
never been reported for saccadic eye movements in lit-
erature. Yantis et al. (1991) developed a maximum-
likelihood test of multimodality that results in the
number of basis functions, their distributions and their
weights. Unfortunately, it can only be used if separate
samples from each of the underlying basis distributions
are available, an assumption not ful®lled in saccadic eye
movement experiments.

The di�erent studies on SRTs have been interpreted
in di�erent ways depending on whether multimodality
was found or not. It is therefore of great interest to use
an objective method to test the possibility of di�erent
modes forming the SRT distributions. In this study we
present a statistical method for detecting the number of
modes in SRT distributions and their shape (basis
functions, BFs). Each BF is described by its contribu-
tions to all bins. We assume that each subject has indi-
vidual BFs and each reaction time obtained in di�erent
experiments is a random number of one of these BFs.
Then the empirical distributions are superpositions of
these BFs. In our experiments we varied only the time of
®xation o�set, all other experimental parameters being
constant. We assume that the distribution of each BF
remained unchanged in the di�erent experiments. Each
subject has two individual sets of BFs: one for saccades
to the left and one for saccades to the right.

While the BFs remain unchanged, the weights of the
BFs change from one experimental condition to another.
We propose a model for the number of saccades in the
bins that is linear in BFs and linear in weights of the
BFs. The superposition of the BFs ®ts the data better if
the number of BFs is increased. How can one decide
about the true number of BFs? We accept the lowest
number of BFs that allows a satisfactory description of
the data. The number of BFs, the shape of all BFs and
the contribution of each BF to all empirical samples
(their weights) are a result of the analysis.

We analysed data of di�erent gap and overlap para-
digms of six trained subjects and found three or four
BFs in all subjects. The peaks are classi®ed into two
classes of express peaks (range 80±140 ms) and two
classes of fast-regular modes (range 145±190 ms). The
slow-regular mode `S' with SRT above 200 ms appears
in one subject.
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2 Experimental methods

2.1 Subjects and data base

Six normal subjects (age range 28±53 years) contributed to the data
base of this study. They had previously performed the gap task
(gap duration 200 ms) until stable distributions were obtained.
They are considered trained subjects in the sense of Fischer et al.
(1984).

2.2 Data collection

All reaction time data were collected using the same methods de-
scribed in detail in Weber and Fischer (1995). The Iris Scalar sys-
tem was used for recording the position of the left eye. Reaction
times were determined o� line using a velocity criterion for de-
tecting saccades. The latency was de®ned by the time the velocity
reached 15% of its maximum in each detected saccade. Latency
values below 80 ms were considered anticipatory by means of the
occurrence of direction errors (Wenban-Smith and Findlay 1991)
and were excluded from this analysis.

2.3 Visual display

All visual stimuli were generated on a RGB monitor using a high-
resolution graphic interface (micrograph 510). Target onset time
was synchronized to the screen (frame rate 83 Hz) and the position
of the target at the screen. All saccades were made to targets pre-
sented 4� to the left or right in random order. The size of the white
target was 0:2� � 0:2�; the red ®xation point was 0:1� � 0:1� in size.
Both had a luminance of 50 cd/m2, while the green background
was 20� � 15� in size with a luminance of 10 cd/m2.

2.4 Saccade tasks

The subjects performed the gap task with eight di�erent gap du-
rations between 0 ms (step paradigm) and 700 ms and two overlap
task: the overlap task with attentive ®xation and the `normal'
overlap task with no instruction with respect to ®xation. The ®x-
ation period prior to target presentation was 1.2 s. The targets
remained visible for 800 ms. The intertrial interval was 1 s. Subjects
were instructed to ®xate the ®xation point and to look at the target
when it appeared. They were not encouraged to respond `as fast as
possible'. During one experimental session 200 saccades were
measured in both directions (left/right). Most measurements were
repeated once, resulting in 400 saccades for each task.

3 Experimental results

Here we describe very brie¯y the experimental distribu-
tions that are to be analysed. We point out the di�erent
modes whenever they can be seen clearly.

The SRT distributions of saccades to the left are
presented on the left side of each ®gure; the SRT dis-
tributions of saccades to the right are presented corre-
spondingly on the right side of each ®gure. Figures 1±6
show the data obtained from the six subjects. Many
subjects are asymmetric, which means that they produce
di�erent results when the stimulus appears on the left
side compared with the results on the right side (Weber
and Fischer 1995). Therefore the saccades on the left
were analysed separately from the saccades on the right.

The SRT distributions are estimated using a gaussian
kernel with a bandwidth of 3 ms. From bottom to top
the time of ®xation o�set decreases relative to the onset
of the stimulus.

For subject B.F. (Fig. 1) the SRT distribution for the
overlap with attentive ®xation is presented in the ®rst
line; in the next line the SRT distributions for the `nor-
mal' overlap task are presented. Visual inspection of the
resulting SRT distributions for the two overlap tasks
reveals a large mode at about 150 ms in all distributions
and a mode at about 200 ms, which is decreased in the
`normal' overlap. In all gap tasks there are no saccades
in the range of the mode at about 200 ms, but the mode
about 150 ms is present in all distributions, its contri-
bution to the whole distributions varying between 10%
(gap 100 ms and 200 ms for saccades to the right) and
100% (gap 0 ms for saccades to the left). A mode about
100 ms appears in the gap 100 ms task and dominates
the distributions of all gap durations between 200 ms

Fig. 1. Gap data of B.F. Saccadic reaction time (SRT) distributions
of B.F. in the overlap task with attentive ®xation (®rst row), the
`normal' overlap and ®ve di�erent gap durations from 0 ms (third
row) to 400 ms are presented. SRT distributions of saccades to the left
and to the right are analysed separately and presented in the
corresponding columns
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and 400 ms. For saccades to the left this ®rst mode may
consist of two twin peaks at 95 ms and 105 ms, because
this mode has two maxima at these positions in the
distribution for gap 200 ms, 300 ms and 400 ms. For
gap 200 ms the ®rst maximum is larger than the second;
for gap 300 ms and 400 ms the second is larger than
the ®rst. The occurrence of these peaks depends on the
bandwidth of the gaussian smoothing function; the peaks
disappear when the gaussian is enlarged. But the oc-
currence of both modes at the same position in several
distributions supports the hypothesis that there are dif-
ferent basis functions.

Subject H.W. (Fig. 2) produces shorter reaction times
when looking to the right compared with saccades to the
left. In the overlap tasks with attentive ®xation and the
`normal' overlap there are two clearly separate modes at
150 ms and 200 ms to the left, while the distributions to
the right are unclear. When a gap is introduced, a mode
at about 100 ms appears at the right and increases
with increasing gap duration. When increasing the gap

duration from 200 ms to 400 ms the ®rst mode becomes
smaller again in advance of the second mode. Saccades
to the left exhibit a small mode at 100 ms only for gap
durations of 200 ms and 300 ms.

Subject C.A. (Fig. 3) shows three peaks to the left
which turn into one for gap durations of 100 ms and
above. Only in the overlap with attentive ®xation do
reaction times over 200 ms occur.

Subject M.B. (Fig. 4) produces a distinct mode at
about 200 ms to the left. The mode at about 150 ms
appears in all tasks except for gap 200 ms. The ®rst
mode at about 100 ms is present for gap durations be-
tween 100 ms and 400 ms.

Subject D.C. (Fig. 5) shows large di�erences in SRT
distributions to the right and left direction. At the left
the mode about 100 ms is present in all tasks, even in the
overlap (left saccades). Similar to subject B.F. (Fig. 1)
visual inspection allows the assumption that the ®rst
peak is a twin peak. The mode at about 150 ms is rather
small for the gap tasks 100 ms, 200 ms and 300 ms to

Fig. 2. Gap data of H.W. Same format as Fig. 1. In both overlap
tasks there are two clearly separate modes at about 150 ms and
200 ms. In the gap task an express peak at about 100 ms occurs in
both directions

Fig. 3. Gap data of C.A. Same format as Fig. 1. This subject
produced a mode at about 100 ms in both overlap tasks and in the
gap 0 ms task. This mode grew when a gap was introduced
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the left. The third mode at about 200 ms appears in the
overlap to the right and is rather small in the overlap to
the left.

Subject O.K. (Fig. 6) produces multimodality in al-
most all conditions. While the ®rst mode at about
100 ms appears even in the overlap, the mode at about
200 ms remains present for gap durations 100 ms,
200 ms and 300 ms at the right.

In this section we have considered the data of six
di�erent subjects. Visual inspection of the data supports
the idea that all SRT distributions of the same subject
when looking in the same direction consist of a small
number of identical modes. The basic idea is that only
the contribution of the modes changes from one exper-
iment to another, and that the shape of each mode re-
mains unchanged. Of course, this question cannot be
decided by visual inspection since the visual impression
depends, for example, on the width of the smooth-
ing kernel. Thus, we introduce a statistical test to judge

whether the SRT distribution can be modelled in this
way, the number K of modes in all SRT distributions
and the shape of these modes.

4 Statistical methods

We assume that a subject is tested in M di�erent
experimental conditions and the SRTs in the same
direction are collected in N bins yij; i � 1 . . . M ;
j � 1 . . . N . The ®rst index i is the number of the
experiment, the second index j is the number of the bin,
and yij is the number of saccades collected in that bin.

Each data point yij is considered as the superposition
of a unknown number K of modes. The distribution of
each mode is called the basis function (BF). We use a
non-parametric form for the BFs. Therefore K BF
consist of the same number of bins N as the data yij,
resulting in one parameter for each bin of each of the K

Fig. 4. Gap data of M.B. Same format as Fig. 1. This subject
produced clearly separated modes at 100 ms (all gap tasks), at 150 ms
(both overlap and all gap tasks, with the exception of gap 200 ms) and
at 200 ms (both overlap tasks)

Fig. 5. Gap data of D.C. Same format as Fig. 1. This subject showed
large di�erences in SRT distributions to the left and right direction. At
the left the mode about 100 ms is present in all tasks, even in the
overlap
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BF. The contribution of the bin j to the kth BF is called
xkj; k � 1 . . . K; j � 1 . . . N . The weight of the kth BF in
the ith SRT distribution is named aik, i � 1 . . . M ,
k � 1 . . . K. The number of saccades in a bin yij is ex-
pressed by the sum of the contributions of each BF and
an individual error �ij:

yij �
XK

k�1
aikxkj � �ij �1�

The same model equation is treated by factor analysis.
[For a detailed description of factor analysis see Harman
(1967); a shorter description andmore examples are given
inMalinowski (1991).] Here and in factor analysis neither
the weights aik nor the BFs xkj are known, whereas in a
standard regression framework xkj is known. The classi-
cal factor analysis model is designed to reproduce
maximally the observed correlations. Here a minimiza-
tion is performed, implying that all parameters aik and xkj
are ®tted in order to minimize the error E:

E �
XM
i�1

XN

j�1

� yij ÿ
PK

k�1 aikxkj�2
r2ij

�2�

where the standard deviation of the number of saccades
in each bin yij is rij. The distributions of all BFs and
their weights in the samples are obtained by the
minimization of E. By minimizing E we get the least-
squares estimator for all parameters. We select the
conjugated gradient method (Press et al. 1986) in order
to minimize E. This algorithm does not guarantee that
the global minimum is reached. We investigated the
existence of local minima in the present optimization
problem by simulation studies. Therefore, we started the
iterative minimization algorithm from di�erent initial
values. Apart from a trivial permutation of the BFs and
the corresponding coe�cients, the results were unique.
This con®rms the common experience that local minima
are rare in high-dimensional optimization problems.

Before ®tting the parameters it is necessary to set the
number K of BFs. An obvious procedure is to set the
number of BFs to K � 1, ®t all parameters and test the
model. If the model is rejected by the test, K is increased
by 1, all parameters are ®tted again and the model is
tested again. We repeat this procedure until the model
can not be rejected. Using this method the smallest
number of BFs and parameters is found to give a sat-
isfactory result.

In order to build the distribution of the test statistic E
it is necessary to investigate the distribution of yij. The
number of saccades in a bin yij is multinomially dis-
tributed. In order to compute its standard deviation rij,
we de®ne the estimator of the number of saccades Ûi in
the ith SRT distribution:

Ûi �
XN

j�1

XK

k�1
aikxkj �3�

The probability p̂ij that one reaction time of the ith data
set falls into bin number j can estimated by

p̂ij �
PK

k�1 aikxkj

Ûi
�4�

Then the standard deviation rij of the number of
saccades yij is given by

rij �
���������������������������
Ûip̂ij�1ÿ p̂ij�

q
�5�

If the number of saccades yij exceeds 5, the multinom-
ially distributed number of saccades yij can be approx-
imated well by a gaussian distribution. For a gaussian
distribution of the data the maximum likelihood pa-
rameter estimation reduces to a conventional least-
squares estimation. Furthermore, model testing can be
performed in the frame of well-known statistics. To
achieve ®ve saccades in all bins of all data sets,
neighbouring bins of the same data set were put together
until the number of saccades in a bin exceeded ®ve.
Furthermore, bins were considered by this method only

Fig. 6. Gap data of O.K. Same format as Fig. 1. This subject
produced multimodality in almost all conditions
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if they included more than ®ve saccades in at least two
data sets. We need a su�cient number of saccades in two
data sets and not in only one data set because otherwise
the corresponding BF may be identical in that distribu-
tion in a range resulting in an optimal ®t.

5 Test of the number of basis functions

If the model is true, the error E is v2-distributed with a
number of degrees of freedom according to the di�er-
ence in the number of data points and the number of
e�ective parameters. The solution may be rotated in a k-
dimensional space, the e�ective number of parameters
being the di�erence between the total number of
parameters and k�k ÿ 1�=2. The number of data points
is the sum of the number of bins of all samples and the
total number of parameters is �N �M�K, because there
are N parameters for each of the K BFs and K
parameters for the weights of the BF for each of the
M samples. After ®tting the parameters aik and xkj the
values of the parameters must ful®l the following
conditions:

aik � 0 8 i � 1 . . . M ; k � 1 . . . K �6�
xkj � 0 8 k � 1 . . . K; j � 1 . . . N �7�XN

j�1
xkj � 1 8 k � 1 . . . K �8�

These three equations have the following meaning: All
weights (6) and the contribution of all bins to all BFs (7)
are positive numbers. All BFs are standardized to 1.0
(8). Each solution not satisfying these conditions is
discarded. This raises a problem concerning the appli-
cation of the v2-test, because some parameters may lie
on a boundary. A second problem is that the model is
not linear, because of the product term of the parameters
aik and xkj.

We performed a simulation study to check whether
the distribution of the test statistic E corresponds to the
theoretical v2-distribution. As BF we choose three
gaussian f1; f2; f3 functions with standard deviation
10 ms and means 120 ms, 150 ms and 180 ms. For each
of the i � 1 . . . M simulated samples we de®ne the
weights ai;1; ai;2 and ai;3 of the three BFs as realizations
of a uniformly distributed random variable and stan-
dardize the weights

P3
k�1 aik � 1. Then we draw random

numbers ri;1 . . . ri;A of the superposition fs�t� �P3
k�1 fk�t�. We minimize the test statistic E as described

above (2) and consider the value of the test statistic E.
All steps have been repeated 100 times and the empirical
cumulative distribution of the test statistic E is com-
pared with the v2 distribution with the correct number of
degrees of freedom as described above. In Fig. 7 the
results of both functions are presented. The number of
simulated samples has been varied between M � 10 and
M � 20 and the number of random numbers has been
varied between A � 100, 200, 500, 1000.

In Fig. 7 the empirical distributions are represented
by the thick lines and the theoretical distributions by the

thin lines. In all eight cases the empirical distribution of
the test statistic E yields larger values than the theoret-
ical distributions for the reasons listed above. This dif-
ference between the empirical and the theoretical
functions may cause errors when deciding whether a
number of BFs must be rejected: It may happen that a
model will be rejected by mistake.

Because of these problems the v2 test cannot be used
to test the model. Fortunately modern computers pro-
vide another possibility for testing a model: we simulate
the distribution of E. In order to simulate the distribu-
tion of the test statistic E the number of saccades yij (1)
has been computed. Now we know the distributions yi of
all tested conditions (each distribution yi is given by N
bins: yij, j � 1 . . . N ). From all distributions yi random
samples are drawn. Each sample consists of the same
number of random numbers as has been measured in the
experiment. The simulated data have been binned in the
same way as the empirical data; they were called ysimij .
Then the error

Esim �
XM
i�1

XN

j�1

� yij ÿ ysimij �2
r2ij

�9�

was computed. We repeated the resampling and com-
puting of Esim 99 times. The distribution of the test
statistic E is estimated by the 99 values of Esim. The
model is rejected at the signi®cance level of 1% if the
empirical error Eemp is larger than the 99 values of the
simulated values Esim (Hope 1968).

Next we want to know whether the BFs are repro-
duced correctly by this method. In the ®rst line of Fig. 8

Fig. 7. Cumulative distribution of the error E. Ten (left) or 20 (right)
data sets containing 100 (top), 200, 500 or 1000 (bottom) random
numbers are generated. The thick line represents the simultated
cumulative distribution of the error E and the thin line represents the
corresponding cumulative v2 distribution. In all cases the simulated
distribution is on the right of the v2 distribution.
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the distributions of the three BFs have been plotted. As
described above we use gaussian distributions with
means 120 ms, 150 ms and 180 ms and a standard de-
viation of 10 ms. Below this the ®tted BFs are plotted
for M � 10, 20 and A � 100, 200, 500, 5000. The BFs are
reproduced adequately if we use M � 20, even if the
number of reaction times was A � 100. We conclude that
this method is suitable for our data.

A simulation study not presented here was performed
to check what happens, if the samples are not a super-
position of a small number of BFs. We simulate M � 20
samples of a superposition of three gaussian distribu-
tions but change the mean of each gaussian distribution
for each data set. As the mean position we choose re-
alizations of uniformly distributed random numbers in
the interval T � �100 ms . . . 250 ms�. The result is that
the number of BFs K � 1; 2 . . . 6 are rejected. When in-
crementing the number of BFs to K � 7 the overall
number of parameters reaches the number of data points

and can ®t all samples exactly. Such a model does not
impose any restrictions on the data and is therefore
useless.

6 Application to SRT distributions

The statistical method proposed in the previous section
decomposes a SRT distribution of the same subject
containing saccades to the same direction into di�erent
modes. Therefore it is necessary that all SRT distribu-
tions consist of the same modes and that only the
weights of these modes vary between di�erent experi-
ments. If this assumption is not ful®lled, the simulation
study concerning data sets with di�erent given BFs
reveals that the minimal number of BFs, K, is incre-
mented until the number of parameters is greater than
the number of bins. If a small number K of BFs give a
satisfactory ®t to the empirical data, it seems very likely
that the assumption is ful®lled. Otherwise one may
assume that the position and shape of the BFs change
from one tested condition to another.

The next point concerns the support of the BFs. The
empirical distributions are decomposed into several
modes by the statistical method described above. Be-
cause this method modelled only the bins that included
more than ®ve saccades in at least two data sets, only
those basis functions were detected that occur in at least
two data sets with a su�cient weight.

It is necessary to spend some time selecting the bin-
width. The binwidth must be much smaller than the
di�erence between all neighbouring BFs, because oth-
erwise the saccades of two modes will be put into the
same bin and the method can not detect both BFs. Be-
cause neighbouring bins of the same data set are put
together until the number of saccades in that bin exceeds
®ve, there exists a lower boundary for the binwidth. We
choose the binwidth 5 ms.

7 Results

We tested di�erent experimental conditions twice,
resulting in M � 20 SRT distributions. The statistical
method described above was applied to data of six
di�erent subjects. For ®ve subjects the saccades are
analysed separately in the left and right directions; only
for subject O.K. were the distributions of saccades
pooled in both directions because in the SRT distribu-
tions the peaks were at exactly the same position. In
Fig. 9 the decrease in the error E with incrementing
number of parameters is shown. In some cases the
number of BFs was determined to K � 3; in the other
four cases K was 4. In the upper part of Fig. 9 all cases
with K � 3 are plotted; in the lower part the case with
K � 4. Note the small decrease in the error E if a new BF
�K � 1� is introduced.

All BFs of all subjects and both directions of saccades
are plotted in Fig. 10. The plots are sorted from top to
bottom by the position of the maximum of the ®rst peak.
The three BFs of subject M.B. for saccades to the left are

Fig. 8. Ten or 20 data sets containing between 100 and 1000 reaction
times are generated. Each data set is a mixture of the distribution
shown at the top. All basis functions reproduced by the ®tting
procedure presented in this article are shown. The third basis function
is not reproduced correctly when using 10 data sets each containing
100 reaction times (second row) and when using 10 data sets each
containing 200 reaction times (third row). Using more data sets (fourth
row or ®fth row) leads to better results. A good ®t results when using
20 data sets each containing 100 reaction times (sixth row).
Incrementing the number of reaction times naturally leads to better
results in all data sets
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shown in the ®rst line. There is a ®rst mode between
80 ms and 105 ms, a second mode between 130 ms and
170 ms, and a third broad mode between 160 ms and
220 ms. Note that a BF may be bimodal; an example is
subject B.F. left, whose second mode between 100 and
130 ms has a small maximum at 110 ms and a large one
at 130 ms. But most BFs are unimodal.

The SRT distributions of subject C.A. left exhibit
three peaks: the ®rst between 85 and 120 ms, a second
between 95 and 130 ms, and a third between 120 and
150 ms. Note that the ®rst and the third modes of C.A.
left are located at almost the same positions as the ®rst
and the second mode of M.B. left, whose SRT distri-
butions do not exhibit a mode corresponding to the
second mode of C.A. left.

Therefore, and because the ®rst and the second modes
of C.A. left overlap, the question arises whether the ®rst
and the second modes of C.A. left are twin peaks, i.e are
descended from the same class of peaks. Considering all
subjects we ®nd seven who have both peaks (C.A. left
and right, D.C. left, B.F. right and left, H.W. left and
right). The other four have only one mode between 80
and 140 ms (M.B. left and right, O.K., D.C. right). For
example, we investigate the data of B.F. left (Fig. 1) by
visual inspection. This data set supports the view of twin
peaks: in the gap 200 ms task there are two maxima at

95 and 110 ms, the ®rst higher than the second. In the
gap 300 ms and 400 ms task there are maxima at the
same positions, but the contribution to the two modes
has changed, the maximum at 110 ms being higher than
the maximum at 95 ms. In the distributions of C.A. the
superposition of the ®rst and second peaks is unimodal;
therefore the distributions do not have two maxima in
the range between 90 and 120 ms, and only the shape of
the ®rst peak varies. The distribution of C.A. left has
larger values at 95 ms compared with 110 ms in the gap
100 ms task and lower values in the gap 500 ms and gap
700 ms tasks.

To classify all modes we consider the position of the
maximum of all 37 modes found in 11 analyses. Their
distribution is shown in Fig. 11. The maximum posi-
tions form ®ve regions (E1, E2, F1, F2 and S), sepa-
rated by regions without a maximum. We name the ®rst
two peaks `E1' and `E2' because they occur in the same
subjects forming twin peaks. If all peaks of both classes
`E1' and `E2' were put into one class `E', many subjects
would have two peaks of the same class! To avoid this
we subdivide the `E' and `F' classes. Only in subject
B.F. right are there two modes classi®ed `F1', and the
later one may be classi®ed as `F2' if the classi®cation is

Fig. 9. Error E for a number of basis functions between one and ®ve.
This ®gure shows for all subjects/saccade directions the development
of the error Ewhen ®tting di�erent numbers of basis functions.Above:
all subjects/saccade directions that allow a satisfactory ®t with three
basis functions; below: four basis functions. Note the `elbow' at three
basis functions (above) or four basis functions (below). Further
incrementing the number of basis functions leads to only a small
improvement in the error E Fig. 10. All basis functions of all subjects and both saccade directions.

The plots are sorted from top to bottom by the position of the
maximum of the ®rst peak. See text and Fig. 11 for peak designation
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based on the mean instead of the maximum of the
modes.

The modes are named `E1' and `E2' because both
modes are express modes ranging from 80 ms to 140 ms.
The `F1' and `F2' modes are fast-regular modes ranging
from 145 ms to 190 ms. The slow-regular mode `S' ap-
pears very seldom in gap and overlap experiments with
trained subjects. Naive subjects (i.e. subjects without
training) very often produce slow-regular saccades in
overlap experiments and sometimes in gap experiments
(Fischer et al. 1993; Gezeck et al. 1997).

To build the distribution of the number of modes we
assign each SRT distribution the number of modes with
weight larger than 10% as number of modes. The result
was that 25% of all distributions are unimodal, 58% are
bimodal and 17% exhibit three or more modes.

Using this classi®cation the SRT distributions are
described by the weights of all peaks. In the next section

this method is applied to give a new description of the
gap e�ect.

8 Gap e�ect

The mean of the weights of the modes is shown in
Fig. 12. The mean is computed among all subjects and
both stimulus directions for each gap duration. In the
overlap with attentive attention and the `normal'
overlap most saccades contribute to the F1 and F2
mode (both about 40), and only a small number of E1
or E2 saccades occur. The contribution of the F1 and F2
mode varies between subjects from 0 to 100% and the
contribution of the E1 and E2 mode is below 20% in all
cases.

The mean of the contribution of the F1 mode in-
creases to 70% in the gap 0 ms task. When a gap is
introduced, all subjects show an increase in the E1 peak.
The mean of its contribution is 35% in the gap 100 ms
task and 55% in the gap 200 ms task. When the gap
duration is increased to 400 ms all subjects show a de-
crease in the contribution of the E1 peak, and the mean
decreases to 35%. The contribution of the F1 mode,
which dominates the gap 0 ms distributions, is decreased
when the gap duration is increased to 200 ms in all
subjects. A further increase in gap duration to 400 ms
leads to an increment of the contribution of the F1 peak
in all subjects (mean 10% in gap 200 ms condition and
mean 25% in the gap 400 ms condition).

Contrary to the E1 and F1 modes the E2 and F2
modes develop di�erently for di�erent subjects. The
subjects with a small number of E1 saccades in the gap
200 ms task have a high number of E2 saccades; this
number is greater than in the gap 100 ms task and in the
gap 300 ms task. In contrast the subjects with a high
number of E1 saccades in the gap 200 ms task have only
a few E2 saccades in the gap 200 ms task and more in
the other gap durations. For all gap durations there is at
least one subject whose contribution of the E2 peak is
below 10% and at least one subject whose contribution

Fig. 11. The position of the maximum of all 37 modes found in 11
analyses. The maximum positions form ®ve regions designated E1,
E2, F1, F2 and S. These are separated by regions without a maximum.
We call the ®rst two peaks `E1' and `E2' because they both occur in
the same subjects forming twin peaks

Fig. 12. The mean of the weights of the
modes. The mean is computed among
all subjects and stimulus directions for
each gap duration. In the overlap with
attentive ®xation and the `normal'
overlap most saccades contributed to
the F1 and F2 modes (both about
40%), and in gap tasks the E1 and E2
modes dominated the distributions
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of the E2 peak is above 60%. The mean of the contri-
bution of the E2 mode is about 30% for all gap dura-
tions. Similar to the E2 mode the F2 mode develops
non-uniformly for di�erent subjects. The mean of its
contribution is below 10% for all gap durations.

9 Discussion

The present study has shown that SRT distributions
consist of di�erent modes. At least three modes are
necessary to describe in a satisfactory way the data of at
least six di�erent test conditions. These modes are
grouped into ®ve classes. Two of these are classes of
express peaks that have their maximum between 85 ms
and 105 ms and between 110 ms and 135 ms, respective-
ly. Two classes are classes of fast-regular peaks that have
their maximum between 140 ms and 165 ms and between
170 ms and 190 ms, respectively. One subject contributes
a mode named slow-regular mode at about 230 ms.

The main conclusion is that distributions can be de-
scribed as being composed of basis functions with ®xed
maximum position. We clearly identi®ed di�erent peaks
in the SRT distributions. These can be classi®ed by their
maximum position into express, fast-regular and slow-
regular peaks. All subjects have two peaks in the same
range. In some cases these are independent peaks that
are incrementing and decrementing at the same position
(twin peaks; examples in Figs. 1 and 5). Another hy-
pothesis is that one mode is shifting its mean to lower
values when incrementing gap duration (Saslow 1967).
Indeed we recognize a small shift of some peaks, for
example in Fig. 1 in the ®rst three panels. But the shift
changes the SRT distribution rather little compared with
the change due to an increasing peak: All SRT distri-
butions presented in this article (including the distribu-
tions of Fig. 1) can be described as being composed of a
small number of basis functions with ®xed maximum
position. Small shifts e�ect a small increment in the er-
ror function, E, that does not lead to a large increase in
the required number of basis functions.

One may believe that twin peaks occurs this way: A
mode that is shifting in a small range can be described by
two basis functions centred at the edges of this range.
The weights of both basis functions control the position
of the shifting mode. But we observe many distributions
that have two maxima in di�erent experimental condi-
tions at the same position (Fig. 1, left, gap 200±400 ms
and Fig. 5, left, overlap-gap 100 ms). These maxima
stay at the same position when the weights of the peaks
change! This fact is not compatible with the idea of one
shifting mode. There are some modes that exhibit only
one local maximum and that change the position of the
maximum between di�erent gap conditions (for example
Fig. 1, left, panel 1±3). These distributions can be de-
scribed by twin peaks and by one shifting mode. We
support the hypothesis of twin peaks, because all ex-
perimental distributions are compatible with this idea,
contrary to the idea of one shifting mode.

The results support the three-loop model (Fischer
1987; Fischer et al. 1995). Twin peaks can be introduced

into the three-loop model by adding a small loop in one
module that contributes to express and fast- and slow-
regular saccades ± a condition only ful®lled by the at-
tention module ATT. A small amount of time is added
to the SRT of all trials that use the small extra loop
added in module ATT. This small enlargement can
produce two kinds of express saccades, two kinds of
fast-regular saccades and two kinds of slow-regular
saccades. In summary it explains all the new results.
There is no need for a ®ve-loop model because the peaks
can be classi®ed into the three ranges express, fast- and
slow-regular saccades. Other saccadic models by Kopecz
(1995) and Reulen (1984a) need an expansion to explain
multimodal distributions and twin peaks.

The statistical method presented here makes it pos-
sible to analyse 10 or more SRT distributions of the
same subject/saccade direction. The question arises how
to analyse single multimodal distributions of a subject.
Fischer et al. (1993) suggested ®tting a superposition of
three gaussians to the data. Another approach is to split
the data into regions: for example, Fischer et al. (1997)
considered all saccades in the range 80±134 ms as ex-
press saccades. Biscaldi et al. (1997) used the same range
as the express range and called saccades with latencies
between 135 ms and 179 ms fast-regular saccades, sac-
cades with latencies between 180 and 399 ms slow-reg-
ular saccades and saccades with latencies between 400
and 699 ms late saccades (Biscaldi et al. 1997). The latter
method has the advantage of avoiding problems when
®tting three gaussians to small data sets (below 200
saccades per direction). Furthermore no assumptions
about the shape of the modes are necessary.

Another approach is used byGezeck et al. (1997). They
use the excess-mass test (MuÈ ller & Sawitzki 1991) to de-
tect peaks in 963 data sets. The idea of the excess-mass test
is that a mode is present where an excess of probability
mass is concentrated. The result is that the peak positions
can be classi®ed into express (90±120 ms), fast-regular
(135±170 ms) and slow-regular (200±220 ms). Because
twin peaks very often overlap and exhibit only one local
maximum they are rarely detected by the excess-mass
method. Using the results of Gezeck et al. (1997) it seems
very likely that all saccades with latencies in the range of
80±134 ms should be considered express saccades, and
those in the range 135±179 ms as fast-regular saccades
(Biscaldi et al. 1997). Saccades with longer latencies are
considered as slow-regular saccades (180±349 ms) and as
late saccades (350±699 ms).

Only if all modes are clearly separated in at least one
task can the test of Yantis et al. (1991) be applied to
analyse several SRT distributions. But our analysis re-
veals that few subjects ful®l this criterion (for an ex-
ample see subject M.B., Fig. 4); in most subjects SRT
distributions consist of overlapping modes.

Multimodal SRT distributions support the hypothesis
that the saccade system consist of di�erent systems
working serially. The time consumption for each process
is added to the reaction time. Then each mode can add
20±50 ms, an order of magnitude that can be accounted
for with the help of neural summation time. If a process
is completed before target onset only in some trials, the
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time consumption of this process is added to the SRT of
the other trials and the SRT distribution becomes bi-
modal. Therefore the analysis suggests that the saccade
system works serially. It may not be concluded whether
some processes are working in parallel.

The facilitation model of Reulen (1984a) can explain
the gap e�ect as far as the decrease in the mean value of
the reaction time is concerned, but it cannot produce
multimodal distributions. Carpenter and Williams
(1995) make assumptions about the shape of a mode of a
SRT distribution. The analysis of their data, all obtained
from overlap trials, shows that the model predictions are
not ful®lled: instead of a single straight line the data
form two sections with an `elbow' at about 140 ms. They
conclude that at least two modes can be identi®ed in the
data and that the second mode begins at about 140 ms.
This is in fair agreement with the present analysis
because the transition between the express and the fast-
regular mode occurs between 130 and 140 ms. Accord-
ing to Ruhnau and Haase synchronized oscillations in
the visual cortex produce multimodal distributions
(Ruhnau and Haase 1993; Kirschfeld et al. 1996).

The early version of the three-loop model assumes
serial processing of three central stages but needs the
additional assumption of a probabilistic variable that
determines the chances of the optomotor system being in
one or the other state at the time of target presentation
(Rogal and Fischer 1986). More recently, a two-stage
serial model has been presented that produces bimodal
distributions and also takes into account the sensory
factors such as stimulus intensity and visual-auditory
integration in saccade generation (Nozawa et al. 1994).
The ®xation-gating model of Cavegn (1996) can produce
multimodal SRT distributions. According to the ®xa-
tion-gating model the state of a separate ®xation system
and not attention disengagement decides what type of
saccade (express or regular) is generated. When the
processes were implemented as assemblies of interacting
neurons the probabilistic aspects of the them being in
one or the other stage are provided ``automatically'' in
the form of the stochastic nature of impulse trains in the
sensory channels representing the e�ect of stimulus on-
set and ®xation point o�set (Fischer et al. 1995).

Acknowledgements. The help of Dipl. Phys Klaus Hartnegg and
Dr. Franz Aiple in providing computer programs for stimulus
presentation, data collection and data evaluation is gratefully
acknowledged. This work was supported by the Deutsche
Forschungs- gemeinschaft (Fi 227/10-1;DFG).

References

Biscaldi M, Gezeck S, Stuhr V (1998) Poor saccadic control cor-
relates with dyslexia. J Neurophysiol, in press

Carpenter R, Williams M (1995) Neural computation of log like-
lihood in control of saccadic eye movements. Nature 377:59±62

Cavegn D (1996) Bilateral interactions in saccade programming.
Exp Brain Res 109: 312±332

Currie J, Joyce S, Maru� P, Ramsden B, McArthur-Jackson C,
Malone V (1993) Selective impairment of express saccade
generation in patients with schizophrenia. Exp Brain Res
97:343±348

Fischer B (1987) The preparation of visually guided saccades. Rev
Physiol Biochem Pharmacol 106:1±35

Fischer B, Boch R (1983) Saccadic eye movements after extremely
short reaction times in the monkey. Brain Res 260:21±26

Fischer B, Ramsperger E (1984) Human express saccades: ex-
tremely short reaction times of goal directed eye movements.
Exp Brain Res 57:191±195

Fischer B, Boch R, Ramsperger E (1984) Express-saccades of the
monkey: e�ect of daily practice on probability of occurrence
and reaction time. Exp Brain Res 55:232±242

Fischer B, Weber H, Biscaldi M, Aiple F, Otto P, Stuhr V (1993)
Separate populations of visually guided saccades in humans:
reaction times and amplitudes. Exp Brain Res 92:528±541

Fischer B, Gezeck S, Huber W (1995) The three-loop model: a
neural network for the generation of saccadic reaction times.
Biol Cybern 72:185±196

Fischer B, Biscaldi M, Gezeck S (1997) On the development of
voluntary and re¯exive components in saccade generation.
Brain Res 754:285±297

Gezeck S, Fischer B, Timmer J (1997) Saccadic reaction times:
statistical analysis of multimodal distributions. Vision Res
37:2119±2131

Harman H (1967) Modern factor analysis. University of Chicago
Press, Chicago

Hope A (1968) A simpli®ed Monte Carlo signi®cance test proce-
dure. J R Stat Soc B 30:582±598

JuÈ ttner M, Wolf M (1992) Occurrence of human express saccades
depends on stimulus uncertainty and stimulus sequence. Exp
Brain Res 89:678±681

Kingstone A, Klein R (1993) What are human express saccades?
Percept Psychophys 54:260±273

Kirschfeld F, Feiler R, Wolf-Oberhollenzer F (1996) Cortical os-
cillations and the origin of express saccades. Proc R Soc Lond
263:459±468

Kopecz K (1995) Saccadic reaction times in gap/overlap para-
digms: a model based on integration of international and visual
information on neural, dynamic ®elds. Vision Res 35:2911±
2925

Malinowski E (1991) Factor analysis in chemistry. Wiley, NewYork
Matsue Y, Osakabe K, Saito H, Goto Y, Ueno T, Matsuoka H

(1994) Smooth pursuit eye movements and express saccades in
schizophrenic patients. Schizophrenia Res 12:121±130

MuÈ ller D, Sawitzki G (1991) Excess mass estimates and tests for
multimodality. J Am Stat Assoc 86:738±746

Munoz D, Wurtz R (1992) Role of the rostral superior colliculus in
active visual ®xation and execution of express saccades.
J Neurophysiol 67:1000±1002

Nothdurft H, Parlitz D (1993) Absence of express saccades to
texture or motion de®ned targets. Vision Res 33:1367±1383

Nozawa G, Reuter-Lorenz P, Hughes H (1994) Parallel and serial
processes in the human oculomotor system: bimodal integra-
tion and express saccades. Biol Cybern 72:19±34

Press W, Flannery B, Teukolsky S, Vetterling W (1986) Numerical
recipes. Cambridge University Press, Cambridge

Priori A, Dertolasi L, Rothwell J, Day B, Marsden C (1993) Some
saccadic eyemovements can be delayed by transcranial magnetic
stimulation of the cerebral cortex in man. Brain 116:355±367

Reulen J (1984a) Latency of visually evoked saccadic eye-move-
ments. 1. Saccadic latency and the facilitation model. Biol
Cybern 50:251±262

Reulen J (1984b) Latency of visually evoked saccadic eye-move-
ments. 2. Temporal properties of the facilitation mechanism.
Biol Cybern 50: 263±271

Reuter-Lorenz P, Hughes H, Fendrich R (1991) The reduction of
saccadic latency by prior o�set of the ®xation point: an analysis
of the gap e�ect. Percept Psychophys 49:167±175

Reuter-Lorenz P, Oonk H, Barnes L, Hughes H (1995) E�ects of
warning signals and ®xation point o�sets on the latencies of
pro- versus anti-saccades: implications for an interpretation of
the gap e�ect. Exp Brain Res 103:287±293

304



Rogal L, Fischer B (1986) Eye-hand coordination: a model for
computing reaction times in a visual reach task. Biol Cybern
55:263±273

Rohrer W, Sparks D (1993) Express saccades: the e�ects of spatial
and temporal uncertainty. Vision Res 33:2447±2460

Ross L, Ross S (1980) Saccade latency and warning signals: stim-
ulus onset, o�set and change as warning events. Percept Psy-
chophys 27:251±257

Ross S, Ross L (1981) Saccade latency and warning signals: e�ects
of auditory and visual stimulus onset and o�set. Percept Psy-
chophys 29:429±437

Ruhnau E, Haase V (1993) Parallel distributed processing and in-
tegration by oscillations. Behav Brain Sci 16:587±588

Saslow M (1967) E�ects of components of displacement-step
stimuli upon latency for saccadic eye movement. J Opt Soc Am
57:1022±1029

Schiller P, Lee K (1994) The e�ects of lateral geniculate nucleus,
area V4, and middle temporal (MT) lesions on visually guided
eye movements. Vision Neurosci 11:229±241

Sereno A, Holzman P (1993) Express saccades and smooth pursuit
eye movement function in schizophrenic, a�ective disorder, and
normal subjects. J Cogn Neurosci 5:303±316

Sommer M, Schiller P (1992) Express saccades elicited during
natural ®xations of visual search. Soc Neurosci Abstr 18: 1398

Tam W, Ono H (1994) Fixation disengagement and eye-movement
latency. Percept Psychophys 56:251±260

Weber H, Fischer B (1995) Gap duration and location of attention
focus modulate the occurrence of left/right asymmetries in the
saccadic reaction times of human subjects. Vision Res 35:987±
998

Wenban-Smith M, Findlay J (1991) Express saccades: is there a
separate population in humans: Exp Brain Res 87:218±222

Yantis S, Meyer D, Smith J (1991) Analyses of multinomial mix-
ture distributions: new tests for stochastic models of cognition
and action. Psychol Bull 110:350±374

305


