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Normalization of DNA-Microarray Data by
Nonlinear Correlation Maximization
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ABSTRACT

Signal data from DNA-microarray (“chip”) technology can be noisy; i.e., the signal variation
of one gene on a series of repetitive chips can be substantial. It is becoming more and more
recognized that a suf� cient number of chip replicates has to be made in order to separate
correct from incorrect signals. To reduce the systematic fraction of the noise deriving from
pipetting errors, from different treatment of chips during hybridization, and from chip-
to-chip manufacturing variability, normalization schemes are employed. We present here
an iterative nonparametric nonlinear normalization scheme called simultaneous alternating
conditional expectation (sACE), which is designed to maximize correlation between chip
repeats in all-chip-against-all space. We tested sACE on 28 experiments with 158 Affymetrix
one-color chips. The procedure should be equally applicable to other DNA–microarray
technologies, e.g., two-color chips. We show that the reduction of noise compared to a simple
normalization scheme like the widely used linear global normalization leads to fewer false-
positive calls, i.e., to fewer genes which have to be laboriously con� rmed by independent
methods such as TaqMan or quantitative PCR.
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INTRODUCTION

It is fair to state that the initial DNA-chip hype-and-hope phase from a few years ago, which was
fueled rather by the excitement about the enormous potential the technology was offering, is now going

to be accompanied by a more sound recognition of its traps and pitfalls. Even if the very same RNA sample
is put on a series of repetitive chips, we often have to deal with considerable signal variability for the same
gene on repetitive chips. Part of this variability is of biological nature, i.e., results from, e.g., different
gene expression over cell culture � asks of the same cell type due to subtle different nutrition states, or
from different gene expression in organs of separate individuals due to a different genetic background.
Biological variability cannot be eliminated by normalization, while systematic variability can. Systematic
variability again has different sources, e.g., chip-to-chip manufacturing differences; unsturdy laboratory
sample preparation, hybridization, and washing protocols; imprecise signal measurements coming from
the scanner; and subtle gene-to-gene differences in hybridization ef� ciency leading to intergene variability
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(see Fig. 1, for example). The resulting noise can raise both the number of genes with false-positive calls
(genes wrongly called to be differentially expressed) as well as the number of genes with false-negative
calls (genes wrongly assigned to be not differentially expressed) into the dozens or even hundreds per
experiment. Experimentators in recent publications in high-impact journals therefore use three to four chip
repeats per experimental condition (Kerr and Churchill, 2001; Tusher et al., 2001; Ideker et al., 2001)
rather than one or two as in the early days, in order to be able to reduce the number of false calls by
statistical means.

Considerable effort has been put into method development for the identi� cation of differentially expressed
genes, of pairwise gene expression correlations, and the delineation of gene clusters (see Claverie [1999]
for overview). With respect to normalization, however, a majority of published experiments normalize by
employing linear global normalization procedures which assume that intensities are related by a constant
factor, despite the evidence of spatial or intensity dependent signal biases (Tusher et al., 2001).

A normalization algorithm should be able to at least partially correct systematic errors, i.e., to minimize
standard deviation and to maximize pairwise correlation over replicate experiments, while maintaining the
dynamic signal range. Noise reduction should span the entire dynamic range; i.e., local improvements in
noise reduction in a particular signal range should not be confounded by increased noise in another signal
range. Also, the transformation should not decrease the information content; i.e., it should be possible to
recalculate the original signal using the inverse transformation.

Here we propose a nonparametric nonlinear normalization scheme called simultaneous alternating con-
ditional expectation (sACE), which is a modi� cation of the ACE algorithm by Breiman and Friedman
(1985). The sACE algorithm ful� lls the above mentioned criteria. It has been tested on 158 chips in
28 sets of repetitive chip experiments, where each set contains between four and nine repetitive chips.
Compared to linear global (LG) normalization, sACE decreased noise, as expressed by relative per-gene
standard deviation (rSD, i.e., SD divided by mean), averaged over all genes, in all cases. With respect to

FIG. 1. Signal differences of two chip repeats (chip type HG-U95A) on probe pair level. On Affymetrix chips, the
signal for each gene is composed of 16–20 so-called positive match (PM) oligos and the same number of so-called
mismatch (MM) oligos. A probe pair is comprised of one PM oligo and one MM oligo, which have the same nucleotide
sequence except one central nucleotide. For each XY-location on the chip, the probe pair difference of chip one was
subtracted from probe pair difference of chip two ((PM1 ¡ MM1) ¡ (PM2 ¡ MM2)). The histogram illustrates that
signals from the same chip location can be very different on two repetitive chips.
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false-positive calls, sACE reduced the number of false-positive calls by 57%, as tested on 12 experiments
with 6 or more repeats. If one assumes that each differentially expressed gene is veri� ed by an independent
method (TaqMan, qPCR, Northern) with a time requirement of about one day per gene, one can estimate
how time saving improved normalization of DNA-microarray data can be.

METHODS

Chip usage

Microarray data from 158 Affymetrix chips kindly provided by four different working groups have
been used to assess the noise reduction capability of a nonparametric nonlinear normalization procedure
(sACE). Chips were from 12 different experimental conditions. For four conditions (C1, C2, C3, C4), we
used the entire Hu42K chipset with about 42,000 “genes” (most of them from EST sequences). The Hu42K
chipset consists of � ve chip subtypes (Hu6800, Hu35KsubA, Hu35KsubB, Hu35KsubC, Hu35KsubD). Five
chip types with four conditions result in 20 repeat groups. Biological samples were from cell cultures of
human macrophages, where each chip represented one cell culture � ask. In two conditions (EM, EMI),
only the Hu6800 chip was used. In six other experimental conditions (C, NF, HF, FED, VV7, VV8), the
rat RgU34A chip was used. Biological samples were tissues from individual rats. Altogether, 28 repeat
groups (22 human, 6 rat) were used to assess normalization, with 4–9 repetitive chips per group (see
Table 1).

Chip preparation

Chip hybridization, washing, and staining with a strepta vidin-phycoerythrin conjugate were performed
using Affymetrix instrumentation according to the companies’ recommended protocols.

Chip signal calculation

Per-gene signals were calculated from 40 subsignals of individual oligo probes using the standard algo-
rithm of the Affymetrix GeneChip software called ADI (average difference intensity). ADI may generate
negative signals, because the so-called mismatch oligo probes, which are aimed at representing the cross-
hybridization portion of the signal, sometimes show a higher signal than the so-called positive match oligo
probes. Since negative signals on mRNA expression do not make biological sense, all signals below 10
were adjusted to 10 prior to normalization.

Normalization method

The aim of every normalization algorithm is to minimize the standard deviation and to maximize the
pairwise correlation of the repeats. The simplest normalization procedures are linear and global (LG), such
as mean or average normalization. Here one tries to adapt the mean or median of different repeats by
multiplying each repeat with a constant factor (Alon et al., 1999). (See Zien et al. [2001] for a more
sophisticated version.) More advanced normalization schemes use nonlinear methods (Yang et al., 2000;
Amaratunga and Cabrera, 2000, 2001; Schadt et al., 2001, 1999; Schuchhardt et al., 2000; Dudoit et al.,
2000).

In order to present our extended version of the ACE algorithm, we will � rst give a short review of the
standard ACE algorithm in the bivariate case. Suppose we have a microarray experiment with two repeats,
the values of the expression level of gene g in repetition i denoted by Xig . If there were no experimental
errors, the differences in the measured gene expression could clearly be traced back to the biological
variability of the two samples, and there would be no need to normalize the data. However, real world
experiments introduce both systematic errors and noise. In order to reduce the noise, several replications
are made, but this approach of course does not reduce the systematic errors. Since systematic errors reduce
the correlation, one is looking for transformations which increase the correlation between different repeats.
This is exactly what the ACE algorithm is designed for.
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Table 1. Noise Reduction of sACE Normalization Compared to Linear Global (LG)
Normalization, Expressed as Average Relative Standard Deviation (rSD)a

Exp-Name # Repeats Chip type # Genes # Genes used LG sACE

C1 8 Hu35KsubA 8907 7347 0.68 0.50
C2 4 Hu35KsubA 8907 7199 0.70 0.45
C3 8 Hu35KsubA 8907 7116 0.76 0.52
C4 4 Hu35KsubA 8907 7075 0.66 0.47
C1 8 Hu35KsubB 8924 5919 0.67 0.43
C2 4 Hu35KsubB 8924 6285 0.67 0.51
C3 7 Hu35KsubB 8924 5882 0.67 0.47
C4 4 Hu35KsubB 8924 6035 0.66 0.40
C1 8 Hu35KsubC 8928 6602 0.78 0.55
C2 4 Hu35KsubC 8928 6282 0.73 0.52
C3 8 Hu35KsubC 8928 5753 0.67 0.37
C4 4 Hu35KsubC 8928 5752 0.64 0.43
C1 8 Hu35KsubD 8928 6318 0.62 0.37
C2 4 Hu35KsubD 8928 6810 0.80 0.57
C3 8 Hu35KsubD 8928 6339 0.63 0.37
C4 4 Hu35KsubD 8928 6947 0.78 0.55
C1 8 Hu6800(E) 7129 5240 0.54 0.28
C2 4 Hu6800(E) 7129 5095 0.47 0.33
C3 9 Hu6800(E) 7129 5120 0.49 0.29
C4 4 Hu6800(E) 7129 5043 0.44 0.27
EM 6 Hu6800(E) 7129 5115 0.42 0.24
EMI 6 Hu6800(E) 7129 5122 0.36 0.23
VV7 4 RgU34A 8798 6361 0.37 0.32
VV8 4 RgU34A 8798 6428 0.41 0.32
C 5 RgU43A 8798 6336 0.35 0.27
FED 4 RgU43A 8798 6296 0.36 0.33
HF 5 RgU43A 8798 6311 0.36 0.30
NF 4 RgU43A 8798 6380 0.35 0.26

aSince genes with arbitrary low ADI signals are adjusted to 10 up-front, and since genes with very high signals
may show scanner saturation effects, only genes with a mean raw signal between 20 and 5,000 (mean calculated
over repeats) were used to calculate rSD, representing the bulk of genes with reliable signals. The average rSD
values obtained with the two normalization methods are 0:57§ 0:15 for LG normalization and 0:39§ 0:11 for sACE
normalization. The number of genes used to calculate rSD is given in column “#genes used.”

A straightforward application of ACE constructs two transformations 8i.Xig/; i D 1; 2, which minimize
the fraction of variance e2 not explained by a regression of 81.X1g/ on 82.X2g/,

e2 D

X

g

£
81.X1g/ ¡ 82.X2g/

¤2

X

g

82
1.X1g/

: (1)

These functions, called optimal transformations, also optimize the maximal correlation 9¤ between the
two repeats

9¤.X1g; X2g/ D max
81;82

R.81.X1g/; 82.X2g//; (2)

where R is the correlation coef� cient.
This is achieved by a rather simple iterative algorithm based on alternation between conditional expec-

tations (ACE). The basic idea is that if, e.g., 81.X1g/ is known, then 82.X2g/ can be computed as the
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conditional expectation value of 81.X1g/ with given X2g ,

82.X2g/ D E[81.X1g/ j X2g]; (3)

where E[:j:] denotes the conditional expectation value. By iterating the computation of the conditional
expectation values and introducing normalization factors, the ACE algorithm computes the so-called optimal
transformations.

A generalization of this algorithm to the multivariate case is available (see Breiman and Friedman, 1985;
Härdle, 1990; and Schimek, 2000). In this case, one obtains transformations which minimize
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This common approach needs to be generalized for the present setting. In an experiment with more than
two repeats, the goal is to minimize the pairwise residuals given by

e2 D
X

i<j

X

g

£
8i.Xig/ ¡ 8j .Xjg/

¤2

X

g

82
i .Xig/

: (5)

To be able to apply this algorithm to DNA microarray data, one needs a modi� cation of ACE which will
be presented now.

The main idea is to apply the standard ACE algorithm simultaneously to all pairs of repeats. This leads
to n ¡ 1 different transformations for each repeat. Thus, after every iterative step, the transformations
for one repeat are initialized to their mean computed from the previous iteration step. This results in the
following algorithm, called sACE:

Initialize 8i.Xig/ D Xig=

q
1
G

P
g X2

ig

Repeat
For all pairwise comparisons i; j

8j .Xjg/ D E
£
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¤
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End For
Compute mean of 8ijsame repeat

while e2.8i; 8j / decreases

Here, E[:j:] denotes the estimate of the conditional expectation value, and G is the total number of
genes. Note that the conditional expectation value E

£
8i.Xig/jXjg

¤
is a function depending on the random

variable Xjg and thus is a random variable itself. It is estimated by smoothing the scatterplot 8i.Xig/

versus Xjg using a triangular window over 400 neighboring genes,
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£
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¤
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with
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­­­­
l ¡ g

n

­­­­: (7)
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The parameter n plays the role of a regularization parameter and controls the smoothness of the result-
ing transformation. In each iterative step, one obtains several different transformations for one replication,
8i jsame repeat . After each iterative step, their average value is used to initialize 8i for the next iterative step.

To apply the algorithm, the experimental data is � rst rank ordered (Voss, 2001), before sACE is applied.
Thus, the calculation of the conditional expectation in the above scheme is independent of the original
distribution or a monotonic transformation of the raw data, e.g., logarithmic transformations.

The “optimal” transformed data is again transformed with a joint transformation to have a similar
distribution as the original data. This joint transformation is constructed by mapping the averaged optimal
data to the averaged mean raw data. This transformation is then applied to every “optimal” normalized
dataset. Raw and transformed data are directly comparable, which simpli� es the biological interpretation
but may not be necessary if one is interested in statistical tests of signi� cance only.

It is important to note that any systematic part of experimental noise generates statistical dependency,
and hence DNA microarray experiments may produce data which are statistically not independent. It can
be shown that in two dimensions (as it is the case in sACE) any statistical dependence of different repeats
is detected and corrected for by the ACE algorithm (Rényi, 1959). The proposed normalization algorithm
is designed to � nd smooth functions over the intensity of the measurements which do correct for this type
of error.

DISCUSSION

The human chips used here represent the � rst generation of Affymetrix chips where the 40 oligo probes
belonging to one gene are in close spatial proximity, while the rat chips used here represent the second
generation of Affymetrix chips where the 40 oligo probes belonging to one gene are distributed over the
chip. Distributing oligos makes the per-gene signals less vulnerable to local defects and gradients. Gradients
are not accounted for using standard linear normalization schemes. Hybridization on the human chips was
done about one year before the rat chips, when laboratory protocols were still under improvement. Both
improvements on chip design and wet lab procedures led to a signi� cantly lower noise for the rat chips,
as expressed by the lower average rSD of the nonnormalized signals. Since biological variability is higher
within rat individuals compared to cell cultures (data not shown), the technological improvement is even
larger with the new chips than re� ected by rSD differences.

Both normalization methods (linear global, sACE) generated signals in the same range (between 10
and 40,000) and with a similar distribution of raw signals (see Fig. 2 as an example). While average rSD
calculated over all genes represents a rough estimate of normalization ef� ciency, a more detailed look at
rSD as a function of signal intensity (Fig. 3) shows that sACE is particularly ef� cient with low signals,
without falling behind LG for higher signals. For instance, for the experiment C3-E (Hu6800 chip), sACE
generates a considerably lower rSD for genes in the mean raw signal range 100–800, which represent
about 30% of all genes on the chip, compared to LG (Fig. 3b). A similar behavior on low-signal genes
can be observed for the other experiments (see Figs. 3c–3e for example). Over 22 experiments with � rst
generation chips (chip type Hu*) and comparatively low biological variability (samples from cell culture),
sACE reduced average rSD by 24%–48%; over 6 experiments with second-generation chips (chip type
RgU34A) and presumably higher biological variability (samples from different individuals), sACE reduced
average rSD by 8–26% (Table 1). An edge effect can be observed with sACE in a few cases (2/28) for
high-signal genes with chips of particularly low quality (see experiment C1, Hu6800 chip (E-chip) in
Fig. 3a as an example), where the rSD increases compared to LG normalization for genes with a mean raw
signal above 3,000. However, this adverse behavior af� icts in this case only 83 out of 8,798 genes and can
never af� ict more than 200 genes at each end of the intensity scale, since smoothing within sACE occurs
over 200 neighboring genes in each direction. On the positive side, more than 3,200 genes gain reduced
rSD over repeats (see Fig. 3a: improved rSD is obtained for genes with signals between 100 and about
200, i.e., percentage of genes between 0.4 and 0.8, which amounts to 40% of all genes or about 3,200).
That is, the majority of genes gains reduced rSD with sACE. An example for a typical transformation
obtained by the sACE algorithm is shown in Fig. 4.

In this work, we concentrate on the normalization of DNA microarray data from samples of the same
biological entity. Algorithm sACE is equally applicable to the analysis of arrays from different biological
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FIG. 2. Signal distribution of raw signals (a) after normalization with LG, (b) and normalization with sACE,
(c) exempli� ed by the two chip repeats C4R1E and C4R2E.

samples, e.g., treatment versus control settings. For multiple conditions, one can apply a � rst normalization
run on chip repeats and a second normalization run using, e.g., a linear normalization method over all
chips (see below “False-negative rate” and Table 3). Chip data analysis using a two-step normalization
procedure may be the subject of forthcoming work.

False-positive rate

To determine the false-positive rate, we split experiments with six or more repeats into two groups (a
minimum of three repeats per condition is needed to apply t-test), each group arti� cially representing a
different biological condition. Genes were called false positive if they showed an expression difference
of more than two fold (up or down) between conditions. Chip repeats should not show any differential
expression. Because of experimental artifacts, it is realistic that there may be genes which are falsely
reported to be differentially expressed, though. The number of such genes with such chance differential
expression (Table 2) was similar in magnitude to the numbers found by Golub et al. (1999) (173/6,817
and 136/6,817, resp.) using a different method. Only genes with a mean raw signal between 100 and 5,000
were considered here. In 10 out of 12 such comparisons, sACE reduced the number of false positives,
compared to LG normalization. If false positives were additionally � ltered by t-test (p < 0:05), sACE
produced the same number of false positives in 1/12 comparisons and reduced the number of false positives
in 11/12 comparisons (Table 2), with an overall reduction in number of false positives by 57%.
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(a)

(b)

(c)
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(d)

(e)

FIG. 3. Dependency of signal variability on signal intensity. Gene signals are binned into windows of size 20 (with
mean raw signal used as basis for window binning) and rSD over gene repeats is averaged within each window. Plotted
values are smoothed over 9 consecutive windows. The rSD of signals calculated without normalization, with linear
global normalization, and sACE normalization for 5 experimental groups C1 (Human35KsubA-chip), C3 (Hu6800
chip), EMI (Hu6800 chip), VV8 (rat chip A), and NF (rat chip A). Experiments were prepared by four different
working groups. The cumulated number of genes is shown on the right y-axis (fraction of genes with respect to entire
chip); e.g., in Fig. 3e about 85% of all genes have a signal below 1,000.

False-negative rate

The aim of normalization is reduction in variability over repeats. However, this reduction must not go
too far and generate compression. Compression would result in false-negatives, i.e., genes which are up- or
down-regulated in vivo but not recognized as such in silico. The false-negative rate can only be estimated
by comparison with an independent method of mRNA expression level measurement, such as Northern-
blot, TaqMan, or qPCR. To do this on thousands or even just hundreds of genes is extremely laborious
and outside the scope of this work. From principal considerations, we expect that the noise reduction
capability of sACE is effective on both sides, i.e., that sACE reduces the number of false negatives in
a similar order of magnitude as the number of false-positives, since noise reduction implies signi� cance
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FIG. 4. sACE transformation of experiment C4R2E as example, with signals before (abscissa) and after (ordinate)
transformation.

Table 2. Reduction of False Positive Rate by Normalizationa

# Genes # False Passing # False Passing
Exp-Name # Repeats Chip type used pos. LG t-test pos. sACE t -test

C1 8 Hu35KsubA 4166 70 13 45 5
C3 8 Hu35KsubA 2646 104 6 115 4
C1 8 Hu35KsubB 2043 59 18 24 9
C3 7 Hu35KsubB 1856 31 1 24 0
C1 8 Hu35KsubC 2016 145 6 169 4
C3 8 Hu35KsubC 1372 8 1 5 0
C1 8 Hu35KsubD 2855 53 11 21 7
C3 8 Hu35KsubD 2840 38 8 23 8
C1 8 Hu6800(E) 3531 157 28 26 1
C3 9 Hu6800(E) 3477 103 23 31 10
EM 6 Hu6800(E) 4047 65 7 25 3
EMI 6 Hu6800(E) 4162 55 4 19 3

aFalse positives here are genes with a 2-fold expression difference (up or down) after splitting a set of chip repeats into two different
arti� cial conditions. Only genes with a mean raw signal between 100 and 5,000 were considered for calculation of false-positive rate.
The t-test was applied with an error probability of less than 0.05 to the genes which showed at least a 2-fold expression difference.

improvement, and signi� cance improvement propagates directly into treatment versus control settings. We
have tested this assumption on 10 genes in two different control versus treated settings and � nd no increase
in false negatives with sACE, while signi� cance is improved (t-test is smaller overall for sACE plus LG
normalized data versus LG normalized data; see Table 3).

CONCLUSION

Here we propose sACE a modi� cation of the ACE algorithm of Breiman and Friedman (1985), for
normalization of DNA microarray data. Compared to the widely used linear global normalization, sACE
decreases systematic error, as expressed by per-gene standard deviation on more than two repetitive chips,
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Table 3. Comparison between TaqMan, Linear Global Normalization Alone (LG) and
sACE Plus LG Normalization with Respect to False Negativesa

Time 6 Time 24

LG sACE plus LG TaqMan LG sACE plus LG TaqMan

Gene FC t -test FC t-test FC FC t -test FC t -test FC

31998_at 3.5 0.0001 3.3 0.00001 7.0 3.0 0.0006 2.8 0.00724 4.9
32855_at 1.1 0.81647 1.1 0.72167 1.6 2.0 0.0048 2.0 0.00277 2.1
34776_at 1.5 0.17305 1.4 0.21118 1.8 1.5 0.18498 1.4 0.12129 1.9
36873_at 1.5 0.06182 1.3 0.11863 1.6 4.0 0.00177 3.5 0.00001 6.7
39498_at 1.9 0.35989 1.6 0.19476 1.3 3.1 0.05013 2.0 0.01185 0.9
39950_at 3.0 0.00099 2.8 0.00003 5.2 3.8 0.00045 3.9 0.0002 5.2
41362_at 7.4 0.00178 6.1 0.00014 67.1 9.0 0 8.0 0.00039 31.7
41764_at 1.5 0.00238 1.4 0.00092 1.7 2.9 0.00002 2.7 0.00018 4.4
608_at 1.2 0.06042 1.2 0.05873 1.1 1.7 0.03654 1.5 0.02067 2.2
649_s_at 1.2 0.04974 1.2 0.02752 3.0 2.1 0.00672 2.2 0.01645 3.2

aThe normalization method sACE plus LG corresponds to applying a linear global normalization after the sACE normalization.
For 10 genes in two experimental control vs. treatment settings (Time-6 and Time-24) up- or down-regulation fold-change (FC)
was measured both by a DNA-microarray (Affymetrix Hu95A chip) and by two TaqMan experiments. Using a 5% test niveau, no
false-negative (i.e., a gene which is reported as differentially expressed by LG alone and TaqMan, but not by sACE plus LG) was
found in these 20 cases (data kindly provided by Thomas Grübl and Matthew Wright, Roche Basel).

with a particular positive effect on the majority of small signal genes, which are often the most interesting
ones. This noise reduction leads to a substantial reduction in number of false-positively called genes
(57% less) as tested in 28 experiments including 158 chips. A similar positive effect may be presumed with
respect to false-negatively called genes. Reduction of error in absolute gene expression translates directly
into reduction of error of differentially expressed genes, when two or more experiments are compared,
such that we expect a reduced number of genes wrongly assigned up- or down-regulated (false positives)
and a reduced number of genes differentially expressed but not recognized as such (false negatives). Since
in laboratory practice each interesting differentially expressed gene should be veri� ed by an independent
method such as TaqMan, qPCR, or Northern-blot, any reduction in the number of genes to be veri� ed
should be cordially welcomed by wet-lab biologists.
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