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Abstract
In systems biology, one of the major tasks is to tailor model complexity to information con-

tent of the data. A useful model should describe the data and produce well-determined

parameter estimates and predictions. Too small of a model will not be able to describe the

data whereas a model which is too large tends to overfit measurement errors and does not

provide precise predictions. Typically, the model is modified and tuned to fit the data, which

often results in an oversized model. To restore the balance between model complexity and

available measurements, either new data has to be gathered or the model has to be

reduced. In this manuscript, we present a data-based method for reducing non-linear mod-

els. The profile likelihood is utilised to assess parameter identifiability and designate likely

candidates for reduction. Parameter dependencies are analysed along profiles, providing

context-dependent suggestions for the type of reduction. We discriminate four distinct sce-

narios, each associated with a specific model reduction strategy. Iterating the presented

procedure eventually results in an identifiable model, which is capable of generating precise

and testable predictions. Source code for all toy examples is provided within the freely avail-

able, open-source modelling environment Data2Dynamics based on MATLAB available at

http://www.data2dynamics.org/, as well as the R packages dMod/cOde available at https://

github.com/dkaschek/. Moreover, the concept is generally applicable and can readily be

used with any software capable of calculating the profile likelihood.

Introduction
Mathematical models represent abstractions of reality that aid to understand a phenomenon of
interest. Any model is a simplification, which manifests itself as some features being over-rep-
resented, while others are absent. It is important to balance model complexity with experimen-
tal observation, such that only those aspects of reality on which the observed data has
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meaningful information are included in the model. Independent of whether modelling is per-
formed by shrinking of an oversized model that was taken as starting point, or by adding com-
plexity to a core model until the data is well-described, the result is usually a model that is
larger than it would need to be. In turn, over-parameterisation in light of limited data is
expressed through non-identifiability of parameters. On the one hand, this strongly restricts
the applicability of statistical and numerical approaches to a small subset of computationally
demanding modelling techniques. On the other hand, non-identifiable parameters often lead
to imprecise model predictions. Therefore, including model reduction as an additional step in
the modelling process ameliorates lack of predictability and restricts model complexity to an
appropriate level.

A variety of methods have been published for reducing the complexity of models. In the fol-
lowing, we summarise relevant ideas and concepts available in the literature, as well as the
most related methods to the one proposed here.

In the context of dynamic reaction networks, most methods intend elimination of irrelevant
time scales. TheMethods of Invariant Manifolds (MIM) [1, 2] originate from chaos theory and
are based on the fact that after a transient phase, the dynamics usually reduce to low-dimen-
sional manifolds in the phase space. However, the mechanistic interpretation of the dynamic
states is lost if the state space is redefined in terms of such manifolds. Furthermore, identifica-
tion of such manifolds requires detailed knowledge about the model parameters, which is usu-
ally not available in system biology. Another class of methods is based on the detection of quasi
steady-states (QSS) [3–6] requiring again prior knowledge about parameter values, which is
typically not available or unreliable. These methods reduce complexity by removing states that
are approximately constant and/or reactions that are extremely fast. In [7], another method
has been introduced which simplifies complex rational rate equations. The paper suggests fur-
ther reduction steps by removing reaction rates with negligible fluxes as well as redundant
terms in the ordinary differential equations (ODEs).

The aforementioned approaches are applied without direct use of experimental data. There-
fore, these approaches rely on prior knowledge concerning parameter values, as well as ignor-
ing both parameter uncertainties and the fact that some parameters can compensate the effect
of others on observed model predictions. Alternative approaches have been developed which,
like the method we suggest, reduce the complexity up to a level which is specified by available
experimental data. These methods typically reduce a large model iteratively until a desired level
of complexity is obtained. In statistics, this strategy is known as backward elimination. A well-
established methodology for backward elimination is available in statistical literature for mod-
els where analytical mathematical solutions are available, e.g. for linear regression models as
summarised e.g. in [8], or for machine learning applications as discussed in [9]. Methods for its
application to non-linear models are briefly discussed in the following.

In the non-linear setting, the likelihood can be approximated by the Hessian when a suffi-
ciently large amount of data is incorporated into the estimation process. This requirement
however, is usually strongly violated for ODE models and it has been shown that the Hessian
typically only provides an unreliable indication of parameter identifiability. Therefore, confi-
dence intervals based on such an approach are typically inappropriate [10]. Nevertheless,
methods have been suggested for removing parameters which appear non-identifiable based
on evaluation of the Hessian [11]. An additional aspect emerging for non-linear models,
namely the existence of local minima, was addressed in [11, 12]. In both publications, candi-
dates for a backward elimination procedure were suggested. These were selected based on the
range of parameter estimates over different local minima. However, both approaches require
an arbitrary threshold for defining the local minima of interest and are only able to perform
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single parameter eliminations, thereby missing model reduction steps that involve a combina-
tion of several coupled parameters.

In [13], the optimal reduction is obtained by fitting the dynamics of the reduced system for
a pre-specified magnitude of reduction, e.g. for given number of remaining fluxes, to the
dynamics of the full model. In this way, the local linearisation of the model, which corresponds
to a quadratic approximation of the likelihood, is not required. However, the method again
does not account for parameter uncertainties as well as for the availability of data.

TheManifold Boundary Approximation Method (MBAM) has been presented in [14] and
exploits the fact that eigenvalues of the Hessian matrix range over several orders of magnitude.
Starting from the direction with the smallest eigenvalue, a geodesic path is calculated until the
Hessian becomes singular which corresponds to a boundary in the model prediction space.
However, the initial step of this method approximates the likelihood by a quadratic function.
The boundaries in the model prediction space obtained via geodesic paths typically involve
arbitrary parameter combinations and therefore hampers mechanistic interpretation of a
model reduction step and of the resulting reduced model.

In [15], backward elimination was discussed by defining admissible regions. Like in the stan-
dard backward elimination setting, the model is iteratively reduced by applying a heuristic
strategy for testing whether parameters can be set to the bounds of the parameter space, e.g. to
zero. This approach is conceptionally the most similar one to our method based on the profile
likelihood. One advantage of our method is that it provides a clear strategy for determining
which parameters have to be tested for reduction. In addition, inferring model reduction steps
involving re-parameterisations of several coupled parameters are feasible.

In summary, the method introduced in the following does not rely on prior knowledge or
likelihood approximation by the Hessian. Moreover, it takes into account parameter uncertain-
ties given model and data and features a clear strategy for determining relationships of multiple
parameters while preserving a mechanistic interpretation of the reduced model.

Methods

The underlying idea
Our method can be motivated by a prominent example from systems biology: consider the
conversion

Sþ E Ð
kþ

k�
C !k2 P þ E ð1Þ

of a substrate S into a product P by an enzyme E via formation of an intermediate complex C.
The Michaelis-Menten kinetics

_P ¼ k2E
S

Km þ S
ð2Þ

is a frequently used approximation which holds for _C � 0. This assumption is satisfied if, for
instance, the rates k+ and k− are much larger than k2. Indeed, in the joint limit k± !1, under

the constraint k�
kþ
¼ const:, the kinetics of the full model converge to Michaelis-Menten kinetics

with Km ¼ k�þk2
kþ

! k�
kþ
. In terms of balancing model complexity with the available data, such a

simplification would be acceptable as long as no other evidence requires employing a more
complex model.

This example summarises concisely the two fundamental principles underlying our model
reduction approach. (1) Reduced models emerge in the limit of extreme parameter values—our
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method constructs and investigates these limits systematically. (2) A reduced model is a valid
approximation if it does not contradict the data at hand—our method systematically searches
for reductions, which cannot be rejected by statistical testing.

Starting with the example above, the Michaelis-Menten approximation is obtained in the
limit of rapid complex formation and decay compared to the conversion rate. This transition is
rendered more precisely in Fig 1. The model response for different values of constant ratio

Km ¼ kþ
k�
is depicted in state space (A), parameter space (B) and the log-likelihood landscape

(C). The different scenarios are parameterised by the complex formation rate k+. For larger val-
ues, the dynamics of substrate and product concentrations approach a limiting behaviour indi-
cated by a black line, Fig 1A, which is the prediction derived from Michaelis-Menten kinetics.
Based on the hypothetical data points, models with slow complex formation/decay (orange
curves in Fig 1A) deviate significantly from the data whereas those with fast complex forma-
tion/decay (blue curves) do not. This can be quantified by means of the least squares function
or the log-likelihood, shown in Fig 1B and 1C. Every point in k+-k− space is associated with a

Fig 1. Emergence of the Michaelis-Menten approximation. A: Fast complex formation and decay (blue trajectories) result in the Michaelis-Menten
approximation, slow formation and decay (orange trajectories) in a significant discrepancy to the data. B: The path in parameter space leading to the
Michaelis-Menten approximation runs parallel to the contour lines of the log-likelihood function.C: The log-likelihood defines a significance threshold,
which is not exceeded in the limit of fast formation/decay rates. Slower rates quickly lead to significant deviations from the data.

doi:10.1371/journal.pone.0162366.g001
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unique model prediction and a corresponding log-likelihood value to measure the distance
from the data points. The model reduction path in this space runs along a valley ending on a
log-likelihood level that is not significantly increased in comparison to the optimal parameteri-
sation of Eq (1) (full model). Since the end-point, the Michaelis-Menten approximation, was
known, we could easily find this path. Conversely, the particular characteristics of our model
reduction method is to construct these paths. This is achieved by computing the profile likeli-
hood [16], which drives the model parameters systematically towards small and large values,
respectively, while controlling and minimising the discrepancy between data and model predic-
tion. The required mathematical tools for maximum-likelihood estimation in dynamic mathe-
matical models and the profile likelihood method are introduced in the next sections.

Mathematical modelling
The rate-equation approach is a well-established methodology employing the mass-action law
of chemical reactions for translating biochemical interactions into a mathematical model. Such
a model ismechanistic, i.e. each component x and parameter of the network model has its
counterpart within the biological process. Thus, it allows to infer knowledge about the underly-
ing network and drives biological discoveries, e.g. in [17–19]. Furthermore, in [20], an overview
about unravelling dynamical features from biological systems by ODE modelling is presented.
The time evolution x(t) of the concentrations of biochemical compounds is computed by solv-
ing the corresponding ODE system

_xðtÞ ¼ f ðxðtÞ; yxÞ ; ð3Þ
with parameters θx, e.g. reaction rates or Hill coefficients. Initial concentrations x0 are either
fixed using prior assumptions or estimated from the data. The internal states x(t) are mapped
to observations y(t) via an observation function g, i.e.

yðtÞ ¼ gðxðt; yx; x0Þ; yyÞ þ �ðtÞ ; ð4Þ

where independent additive Gaussian errors �* N(0, σ2) are assumed. In addition to the
dependency on kinetic rates and initial concentrations, the observation function gmay intro-
duce observational parameters θy, which are subsumed in θ = {θx, x0, θy}. To quantify the dis-
crepancy between model response and measurements, the scaled negative likelihood-function
is calculated via

�2 log ðLÞ :¼ LðyÞ ¼
Xn

i¼1

yi � gðxðti; yx; x0Þ; yyÞ
si

� �2

þ const: ; ð5Þ

for nmeasured data-points yi with standard deviation σi. If the measurement noise is not nor-
mally distributed, transformations resulting in Gaussian errors can be applied in most cases.
Often, a log-transformation is sufficient [21]. Eq 5 can be amended by penalisation terms repre-
senting prior knowledge. These can be e.g. quadratic terms for normally distributed parameters,
with mean and standard deviation taken from literature, or for derived model components such
as the ratio between protein concentrations in different cell compartments. To estimate model
parameters, we apply maximum likelihood [22] by minimising the scaled negative log-likeli-
hood

LðŷÞ ¼ min
y

LðyÞ : ð6Þ

leading to an optimised parameter vector ŷ. To ensure positive values and improve numerical
performance, all entries of θ are optimised on a logarithmic scale throughout the manuscript.
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Finding the global optimum can be challenging due to the existence of multiple local minima.
Therefore, we performed a deterministic multi-start optimisation strategy with widely dispersed
initial guesses [23].

In general, no analytical solution of the ODE system (Eq (3)) exists or is available, hence
numerical solvers are utilised to approximate the dynamics. Here, we used CVODES from the
SUNDIALS suite [24] for ODE integration. The minimisation in Eq (6) is performed numeri-
cally using the trust-region-based large-scale non-linear optimisation algorithm lsqnonlin [25]
as implemented in MATLAB. Gradient-based parameter estimation strategies depend on the
sensitivities of the model function, i.e. inner derivatives of the likelihood. In order to ensure
numerical accuracy, we computed and supplied forward sensitivities [26] by extending the
ODE system with the appropriate sensitivity equations. All model analyses, optimisation and
visualisation of model responses for the manuscript were performed using the freely available
Data2Dynamics modelling environment [27] for MATLAB (http://www.data2dynamics.org/).
Additionally, implementations of the toy models and analyses using the freely available dMod/
cOde packages for R (https://github.com/dkaschek/) can be found in the Supplementary Sec-
tion 1.

Parameter profile likelihood
When fitting models to data, the precision of parameter estimates is assessed by computing
confidence intervals. In non-linear models, confidence intervals that are not confined to the
lower and/or higher limit of a parameter may occur. In this case, a parameter is termed non-
identifiable. In contrast, a parameter with a finite confidence interval is called identifiable.

The profile likelihood is an established concept to assess parameter identifiability in non-
linear regression. It generalises Fisher Information based confidence intervals to the non-linear
setting, resulting in appropriate confidence regions [10]. In short, a parameter of interest θi is
profiled by scanning along its axis and re-optimising all other parameters θj 6¼ i for each value
of θi. Thus, the profile likelihood is defined as

PLðyiÞ ¼ min
yj 6¼i

LðyÞ : ð7Þ

PL(θi) traces an optimal path through the parameter space for each θi, thereby providing global

information in contrast to the curvature of Eq (5) evaluated at ŷ, as used for Fisher Information
based confidence intervals. If w2

a;1 denotes the α quantile of the χ2 distribution with one degree

of freedom, the region for which the inequality

D :¼ PLðyiÞ � LðŷÞ � w2
a;1 ð8Þ

is satisfied yields the confidence interval of the parameter θi to a given confidence level α. This
means that under weak assumptions [28] (1 − α) specifies the probability that, for repeated

experiments, the true value of θi lies within the boundaries of the confidence interval. LðŷÞ þ
w2a;1 defines the threshold that PL(θi) may not exceed for an acceptable parameter. Thereby, the

profile likelihood provides the range of parameter values supported by the available measure-
ment data. The re-optimisation of other parameters during the profile likelihood calculation is
crucial to probe the non-linear relationships between parameters, which are key for discovering
suitable model reductions later in the manuscript.

Concerning parameter profiles, three scenarios can be distinguished: A parameter can be 1)
identifiable, 2) structurally non-identifiable, or 3) practically non-identifiable [10]. Each case is
associated with a recognisable shape of the profile likelihood.

Profile Likelihood Based Model Reduction
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An identifiable parameter has a confined confidence interval, i.e. the corresponding profile

likelihood PL(θi) exceeds the threshold given by LðŷÞ þ w2
a;1 for values above and below its

maximum likelihood parameter estimate ŷ i. For an identifiable parameter the shape of the pro-
file likelihood is often close to quadratic. This setting is referred to as the asymptotic setting,
because the profile likelihood based confidence intervals are similar to those calculated from
Fisher Information. Thus, asymptotic confidence intervals calculated using only the local cur-

vature of the likelihood at the optimum ŷ are valid in this scenario.
Structurally non-identifiable parameters are characterised by the profile likelihood of θi

remaining constant for arbitrary values of θi. Structural non-identifiabilities are a consequence
of over-parameterisation in terms of too many parameters for describing the available data.
Hence, the system harbours symmetries that can be detected by exploiting Lie group theory
[29]. Once the symmetry transformations are found, they allow reconstruction of the full solu-
tion space from a reduced set of parameters. Therefore, one parameter of each detected trans-
formation group is set to a fixed value. Thereby, the reduced set of parameters becomes
structurally identifiable.

Finally, a non-identifiable parameter characterised by a profile with a (not necessarily
unique) global minimum, but which does not exceed the statistical threshold in at least one
direction is called practically non-identifiable. In such cases, the parameter does not have a
finite confidence interval but could be restricted to one side, e.g. the parameter must not be
larger than a certain value but could be arbitrarily small. Hence, asymptotic confidence inter-
vals are inappropriate as they are finite by construction. This feature is inherited from the lin-
earity assumption of asymptotic confidence intervals, making practical non-identifiability a
property that only occurs in non-linear models. For practically non-identifiable parameters,
repeating the same measurements can in principle lead to identifiability, given that the true
solution is part of the parameter space. Experimental design based on parameter profiles can
be applied to efficiently attain identifiability [30]. However, if new data acquisition is impossi-
ble or infeasible, practical non-identifiabilities can be resolved by applying the model reduction
technique presented in the following, eventually resulting in a completely identifiable model.

Results
The reduction procedure described in this paper is based on the parameter profile likelihood
introduced above. Identifiable parameters have a well-defined confidence interval and may not
be reduced. Structurally non-identifiable parameters can be set to an user-defined value. This
leaves practically non-identifiable parameters to serve as starting point for model reduction.
Like in the introductory example (Fig 1), the possibility of practically non-identifiable rate con-
stants being driven to infinity implies that the corresponding reactions may be arbitrarily fast
and are subsequently lumped in a model reduction step.

More general, each point along a parameter profile PL(θi) can be interpreted as a likelihood-
ratio test with the test-statistic D according to Eq (8). If a parameter θi is practically non-identi-
fiable, the profile likelihood does not exceed the threshold and in most cases flattens out to a
constant value in the unbound direction of the confidence interval. The parameter values along
the profile likelihood define a sub-manifold in the parameter space, whose respective dynamics
correspond to model behaviour which cannot be rejected by the likelihood-ratio test. Similar to
the structurally non-identifiable case, the model exhibits a symmetry which can be exploited to
reduce the model. Hence, for practically non-identifiable parameters, the profile likelihood
method systematically drives the system towards limit behaviour. It provides direct information
on the asymptotic coupling/uncoupling of parameters via the parameter paths and reveals the
behaviour of the limit model by inspection of the model predictions along the sub-manifold. It
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is this limit behaviour which ultimately corresponds to the idealised reduced model. In [10], the
authors provide a more detailed description on parameter identifiability.

Four different scenarios leading to model reduction can be distinguished. On the one hand,
a parameter’s limit behaviour that cannot be rejected by the likelihood-ratio test can occur for
parameter values towards plus (+) or minus (−) infinity. On the other hand, the paths of the
remaining model parameters can be coupled (l) to the parameter of interest or remain at the
same value (|). This leads to the four scenarios (+|), (−|), (+l), and (−l). To make statements
more concrete, we chose a representative in-silico example for each of these four scenarios.
Details about their respective model equations, parameter values, and an extensive model
reduction procedure for each example are provided in the Supplementary Section 1. Subse-
quently, reduction of a biological model of the Reelin signalling cascade is exerted using the
presented model reduction strategy based on the profile likelihood.

Scenario 1: (+|)

The illustrative model used for the basic reductions is a cascade X !k1 pX !k2 ppX, where each
arrow indicates an elementary reaction parameterised by k1 and k2, respectively (Fig 2A). The

Fig 2. Reduction of the cascade toy model 1 (scenario 1). A:Model scheme before (upper) and after (lower) reduction with lumped states X and pX. B:
X(t) and pX(t) for fitted parameters. C: Profile likelihood for parameter k1. D: Relationship of k1 to k2 obtained by re-optimisation along the profile likelihood
(panel C). E: Profile likelihood for the identifiable parameter k in the reduced model. F: ppX(t) with simulated data after fitting, with comparison between a
one and two step conversion.

doi:10.1371/journal.pone.0162366.g002
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dynamics of X(t) and pX(t) are shown in Fig 2B. In this scenario, data is observed for ppX(t)
with σ = 0.1 (Fig 2F). By calculating the profile likelihood of the kinetic parameter k1 towards
+1 two observations can be made. (1) two local optima exist around -1 and 0, which reflect
the interchangeability of the reaction rates of two consecutive steps in a conversion chain for
unobserved intermediate pX. (2) the parameter k1 is practically non-identifiable as the profile
likelihood of k1 is below the statistical threshold for large values (Fig 2C). Thus, high values of
the parameter k1 do not decrease the ability of the model to describe the data. Furthermore, no
other parameter is compensating the changes in parameter k1, which manifests in k2 flattening
out for k1 !1 (Fig 2D). Since a large value for k1 corresponds to fast conversion of X to pX, a
reduction of the model by lumping the states X and pX is feasible. In the reduced model

X !k ppX, the remaining rate constant is identifiable (Fig 2E), whereas the data is equally well
described (Fig 2F).

Scenario 2: (−|)
Similar to the previous example, we use a model structure featuring a cascade X to pX and ppX,
as shown in Fig 3A, with simulated data with σ = 0.02 for X(t) and pX(t) (Fig 3B). In addition,

Fig 3. Reduction of the cascade toymodel 2 (scenario 2). A:Model scheme before (upper) and after (lower) reduction. The difference is the basal
deactivation from pX to Xwith rate constant k4. B: X(t) and pX(t) with data for fitted parameters. C: Profile likelihood for parameter k4. D:Relationship of the
remaining parameters to the profile shown in C. E: The reaction associated with the parameter k4 is removed by the reduction, while k5 is identifiable. F: pX(t)
and X(t) with comparison before and after reduction.

doi:10.1371/journal.pone.0162366.g003
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pX is dephosphorylated to X with a basal rate, and by a feedback through ppX. The profile like-
lihood for k4 shows a practical non-identifiability of the basal dephosphorylation, as the lower
boundary is not defined (Fig 3C) with constant values of the other parameters as k4 approaches
−1 (Fig 3D). On the other hand, the parameter k5, reflecting the dephosphorylation through a
feedback by ppX, is identifiable as shown by the corresponding profile likelihood (Fig 3E).
Here, an appropriate reduction is given by the removal of the basal dephosphorylation of pX
(Fig 3A), with similar dynamics of pX(t) before and after reduction (Fig 3F).

Scenario 3: (+l)
In the following, an example of a model is given where the ODE solution of one state can be
replaced by an algebraic equation (Fig 4A). It features qualitatively similar transient dynamics
on a different scale for two successive phosphorylations, pY(t) and pZ(t) (Fig 4B). Data is
observed with σ = 0.05. Since there is no feedback, the activation of state Z cannot be faster
than the one of state Y [31]. If the total amount of Z is not limiting, the dynamics pY(t) and pZ
(t) have similar shape when the phosphorylation and dephosphorylation parameters tend to
infinity. In this example, the kinetic parameter for the dephosphorylation of state Z, kd,Z is

Fig 4. Reduction through functional relation (scenario 3). A:Model scheme before (upper) and after (lower) reduction. The difference is the removal
of state Z, and the algebraic replacement pZ(t) = α � pY(t). B: pY(t) and pZ(t) with simulated data after fitting. C: Profile likelihood for parameter kd,Z. D:
Re-optimisation of remaining parameters along the profile likelihood for kd,Z. E: The profile likelihood for the identifiable parameter α in the reduced
model. F:Comparison of trajectories for pY(t) and pZ(t).

doi:10.1371/journal.pone.0162366.g004
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non-identifiable in its upper direction (Fig 4C). The phosphorylation rate kZ will compensate

for changes since kZ
kd;Z

determines the final concentration level of state Z (Fig 4D). To overcome

this practical non-identifiability, the kinetic rate equation of state Z is replaced by a simple
functional relation given by Z = αY, which makes α identifiable (Fig 4E). The reduced model is
able to describe the measurements without a statistically significant decrease in the likelihood
compared to the full model (Fig 4F).

For this scenario, a comparison with model reduction based on negligible fluxes is con-
ducted in Supplementary Section 1.3.8, demonstrating the advances of profile likelihood based
reduction for non-trivial relations between different model components. In addition, a parame-
ter reduction not proposed by the presented reduction algorithm is illustrated in Supplemen-
tary Section 1.3.9, resulting in a reduced model which is rejected by the likelihood-ratio test.

Scenario 4: (−l)
In the final toy example of a weakly activated signalling pathway, the reduction is based on the
trajectories associated with the parameter profile likelihood. State X is simulated to be phos-
phorylated by an exponentially decaying input through kon, whereby the phosphorylated state
pX can be deactivated with rate constant koff (Fig 5A). In addition, pX is mapped to the obser-
vations by a scaling factor, i.e. pXobs = scale � pX. Data is observed for pX(t) with standard devia-
tion σ = 0.1 (Fig 5F). The parameter profile likelihood reveals that kon (Fig 5C) is practically
non-identifiable and the concomitant change of the parameter scale along the profile likelihood
reveals that only their product is identifiable due to the linear relationship of log(scale) to log
(kon) in Fig 5D. The reason that these are not structurally non-identifiable is revealed by plot-
ting the trajectories associated with the parameter sets at each point of the profile likelihood
(Fig 5B). As the initial level of X is fixed, the time course of its concentration level X(t) tends
towards zero for large kon, i.e. Xmay become limiting (cyan trajectories in Fig 5B). If X is limit-
ing, though, the shape of pX(t) is different from the weakly activated case, where the time
course of X(t) converges to a nearly flat trajectory (blue trajectory in Fig 5B). These dynamics
are associated with the flat direction of the parameter profile likelihood. Thus, the appropriate
model reduction in this case is obtained by assuming that phosphorylation of X leads to a negli-
gible reduction of the concentration of unphosphorylated X, which then serves as constant
input for its phosphorylation. Thereby, the former practical non-identifiablility becomes a
structural non-identifiability, which is depicted by the parameter profile likelihood of kon after
reduction (Fig 5E). Similar to Fig 5D, the parameter scale is coupled to kon but as their relation-
ship is now structural the model can be reduced by fixing one of them, e.g. scale, to an arbitrary
value. After this reduction, the data is equally well described (Fig 5F).

Flow-chart
A summary of the presented model reduction method is depicted in a flow-chart diagram in
Fig 6. The proposed reduction steps are context-specific and should not be applied without
checking their validity. Especially for scenarios 3 and 4, where coupling of parameters is pres-
ent (l), careful investigation of the parameter dependencies and their influence on the model
quantities is crucial. On the contrary, this context-specific step provides additional insight,
since relationships between parameters are revealed by driving the model towards its limits
through the profile likelihood. These dependencies yield sub-systems of the original model and
show the variability present within this sub-system. This modularisation identifies well-
informed parts, and allows for reduction of uninformed parts.
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Model reduction of Reelin signalling cascade
In the following, the presented model reduction strategy will be carried out on a model of the
early Reelin signalling cascade in order to demonstrate its applicability on real-world models of
biochemical reactions. The Reelin signalling cascade is essential for the development of the
mammalian brain by regulating the position of new-born neurons in the neocortex, hippocam-
pus and cerebellum [32, 33]. Moreover, the pathway is involved in the modulation of synaptic
plasticity, learning and memory in the adult brain, and defects in Reelin signalling are associ-
ated with neuropsychiatric diseases such as Alzheimer disease, schizophrenia, autism and epi-
lepsy [34–36]. Although important aspects of Reelin signalling have been deciphered using
classical biochemical approaches and mouse genetics, a superordinate view of the interaction
of its components is needed [37].

Reelin exerts its function by binding to the lipoprotein receptors VLDLR and ApoER2,
which induce tyrosine phosphorylation of the adaptor protein Dab1 through Src family kinases
(SFKs) [38, 39]. As a feed-forward loop, phosphorylated Dab1 then trans-phosphorylates other
Dab1 proteins bound to the receptor complex. In turn, Dab1 activates Akt that is, amongst

Fig 5. Model reduction of weakly activated signalling pathway (scenario 4). A:Model scheme before (upper) and after (lower) reduction. The
difference is the omission of state X. B: X(t) for parameter sets along the profile likelihood of kon (high to low values of kon from bottom to top, i.e. cyan to
blue). C: Parameter profile likelihood of kon, depicting a practical non-identifiability to small values.D: Relation of scale to kon. E: After model reduction,
the parameter kon is structurally non-identifiable and can be set to an arbitrary value. F:Comparison of model fits before and after reduction. Both curves
overlap and cannot be statistically distinguished based on the data.

doi:10.1371/journal.pone.0162366.g005
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others, involved in cell survival and migration (Fig 7A). The signalling is terminated by ubiqui-
tination and degradation of Dab1. The proposed model reduction strategy is illustrated based
on time-resolved data of total Dab1 and phosphorylated Dab1, SFKs and Akt, which were mea-
sured in cortical neurons after Reelin stimulation. In addition, an experiment applying a SFK
inhibitor prior to Reelin stimulation was performed. Protein concentrations were measured in
cell lysates of primary cortical neuron cultures by immunoblotting (see Supplementary Section
2). The measurements cover the first four hours after ligand stimulation, with dense measure-
ments in the first 30 minutes (Fig 7B). Analytic steady state solutions, e.g. through basal phos-
phorylation, were determined for the initial concentration levels. The model consists of 12
states with initial concentrations implicitly given by steady state assumptions, 13 kinetic
parameters, and 23 observational parameters. Taken together, the model therefore has 35 free
parameters, which are fitted to 108 data-points. Computation of one parameter profile likeli-
hood for this setting takes less than one minute on a standard laptop. Details about the data,
model fits and differential equations before and after reduction are provided in Supplementary
Section 2 and 3.

Considering the model parameters, two reductions can be conducted, which both corre-
spond to scenario 3 (+l). In Fig 7A, they are marked as red boxes named A and B. Regarding
box A, the profile likelihood for the release of the SFK inhibitor, SFKdeInhib, does not exceed the
95% threshold for large values (Fig 8A) showing a positive relation to its binding to the SFKs,
SFKInhib (Fig 8B). This indicates that a steady state is reached instantly at every time point,
which results in a consistent partitioning between SFKs with and without bound inhibitor. The
factor Inhpart, which determines the equilibrium concentration, is thereby identifiable (Fig 8E).

Further, the Akt deactivation Aktdeact shows a parameter profile that does not exceed the
95% threshold for large parameter values (Fig 8C), depicted by box B of Fig 7A. The Akt activa-
tion along the profile likelihood (Fig 8C) adapts to the Akt deactivation, as their ratio deter-
mines the steady state concentration of pAkt after Reelin stimulation (Fig 8D). A helpful fact in
order to resolve this non-identifiability is that the time-course of pAkt will approach the time-

Fig 6. Typical flow-chart for model reduction based on the profile likelihood. The depicted steps are to be applied for each parameter individually,
starting with the calculation of the respective profile likelihood. After detection, the procedure resolves non-identifiabilities by fixing parameters, removing
reactions, performing algebraic substitutions, or context-specific reductions. The method terminates when all parameters of interest are identifiable.

doi:10.1371/journal.pone.0162366.g006
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course of the upstream protein Dab1 for large values of both Akt activation and deactivation.
This result is not trivial, since scaling and offset linking both states to their respective observa-
tions are different. Replacing the Akt phosphorylation by a functional relation between pAkt
and pDab1 resolves this non-identifiability. Thus, the pAkt dynamics follow the pDab1
dynamics, and can be mapped with an identifiable scaling factor scalepAkt to the pAkt observa-
tions (Fig 8F). Fig 7B shows the insignificant impact of all model reduction steps on the
dynamics. Statistical agreement of both the original and the reduced model is assessed by the
likelihood-ratio test described in Eq (8), taking the difference in degrees of freedom between
both models into account.

Discussion and Conclusion
Traditionally, mathematical models are small since they phenomenologically describe pro-
cesses like biochemical interactions at a simplified level. In such a setting, one question is
whether an initially chosen level of abstraction turns out to be too stringent demanding for to
model enlargement by additional effects. In contrast to this traditional situation, mathematical
models in systems biology are usually mechanistic, i.e. all relevant processes in living cells have
their counterparts in the model. Therefore, the models typically start out large and the ade-
quate level of complexity has to be checked in both directions, i.e. on the one hand it has to be
tested whether all essential processes and interactions are included and on the other hand

Fig 7. Reelin-induced signalling pathway. A: Scheme of the Reelin-induced signalling pathway. Sub modules that underwent model reduction are
framed.B: Experimental data and model trajectories of the Reelin model. Data points and their measurement errors are shown on a log-scale for the
measurements of total Dab1, phosphorylated Dab1, Akt and SFKs for time points between zero and 240 minutes. Dotted and dashed lines indicate the
model response for the parameter set before and after model reduction, respectively.

doi:10.1371/journal.pone.0162366.g007
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model reductions can be performed. Following such a combined strategy offers the possibility
to obtain a comprehensive model, which is tailored to include only the required components.

The model reduction methodology presented in this manuscript is purely data-based, yet
can take prior knowledge into account. We use the profile likelihood, which is a continuous
representation of the likelihood ratio statistic, to suggest a model reduction strategy that itera-
tively eliminates practically non-identifiable parameters. It considers the distribution and mag-
nitude of data noise in a statistically valid manner and is robust against observation noise.
Investigating the model fit along the profile likelihood and considering parameter coupling
provides educated guesses on where the model may be amenable to reduction. Increasing levels
of data noise would affect the method in a way that more simulation trajectories would be able
to describe the data within the statistical boundaries set by the χ2 function.

Our suggested approach permits simplifications, which would not be rejected by the likeli-
hood-ratio test. However, because only experimentally observed model components and incor-
porated prior knowledge enter the likelihood ratio, such model simplifications face the risk
that unobserved but biologically relevant parts are removed which would manifest in biased
predictions. Unfortunately, significance considerations are not applicable to this issue since

Fig 8. Summary of model reduction steps. A: The profile likelihood of the inhibitor release from SFKs.B: The re-optimised paths of the remaining
parameters with respect to the profile of the inhibitor release. C: Parameter profile likelihood of the Akt deactivation.D: Coupling of the Akt activation, log
(Aktact), to the Akt deactivation shown in panel C. E: Identifiable partitioning of SFKs with and without bound inhibitor. F: The scaling factor scalepAkt, which
links the observations of pAkt to pDab1, is identifiable.

doi:10.1371/journal.pone.0162366.g008
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statistical tests only permit of model simplifications but not of generalisations. However, the
risk of removing relevant parts can be diminished by restricting to biologically meaningful sim-
plifications and by performing validation experiments. Except for this important aspect, the
presented model reduction strategy can be performed iteratively until an identifiable model is
obtained which typically enables precise predictions with small confidence intervals that facili-
tate experimental validation or falsification of the current model structure. Moreover, an iden-
tifiable model permits summarising the experimental outcomes to estimated parameters and
confidence intervals of finite size which is an important requirement for transferring a model
to new applications. Additionally, identifiable models require less demanding computations at
several levels. Optimisation of the parameters for instance is less hampered by ill-conditioned
step size control. Moreover, the performance of ODE integration deteriorates less frequently
because rate constants are restricted to meaningful ranges and the ODEs tend to be non-stiff.

In this study, we do not consider the specific order in which the model reduction steps are
performed. This issue occurs in any model reduction and model discrimination problem and is
usually approached by either completely searching all admissible cases or by stepwise forward
or backward selection or combinations thereof. As an example, [15] consider the order of
model reduction steps by comparing it to the traveling salesman problem. Although not shown
here, established approaches targeting this issue can be readily combined with the presented
model reduction steps.

The profile likelihood has become a well-established method for the analysis of parameter
uncertainty. Its calculation is often routinely performed in systems biology applications. In
such cases, our model reduction analysis can be performed without additional effort. In addi-
tion, the computation of parameter profiles can be performed in parallel on a multi-core pro-
cessor or by means of distributed computing.

To illustrate our profile likelihood-based model reduction strategy, we focused on examples
with general impact covering a broad range of model redundancies. However, these examples
are not exhaustive and additional reductions may occur in special cases. If such context-specific
model reductions are required, investigation of model predictions, e.g. trajectories of the inter-
nal states x(t), for parameter sets sampled along the profile likelihood is often helpful.

Thereby, the presented method reveals features which are crucial for model predictions
while the simplifications can be traced back to their mechanistic origin. Thus, the approach
iteratively builds up confidence in the model, and constitutes a helpful tool for improving
understanding, interpretability, and usefulness of systems biology models.

Supporting Information
S1 File. Implementations and analyses of toy models and further documentation on the
Reelin pathway model.
(PDF)
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