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Abstract

Biological systems are frequently analyzed by means of mechanistic mathematical models.

In order to infer model parameters and provide a useful model that can be employed for sys-

tems understanding and hypothesis testing, the model is often calibrated on quantitative,

time-resolved data. To do so, it is typically important to compare experimental measure-

ments over broad time ranges and various experimental conditions, e.g. perturbations of the

biological system. However, most of the established experimental techniques such as West-

ern blot, or quantitative real-time polymerase chain reaction only provide measurements on

a relative scale, since different sample volumes, experimental adjustments or varying devel-

opment times of a gel lead to systematic shifts in the data. In turn, the number of measure-

ments corresponding to the same scale enabling comparability is limited. Here, we present

a new flexible method to align measurement data that obeys different scaling factors and

compare it to existing normalization approaches. We propose an alignment model to esti-

mate these scaling factors and provide the possibility to adapt this model depending on the

measurement technique of interest. In addition, an error model can be specified to ade-

quately weight the different data points and obtain scaling-model based confidence intervals

of the finally scaled data points. Our approach is applicable to all sorts of relative measure-

ments and does not need a particular experimental condition that has been measured over

all available scales. An implementation of the method is provided with the R package blotIt

including refined ways of visualization.

Introduction

The approach of mathematical modeling to analyse and understand dynamic processes of bio-

logical systems requires the collection and quantification of time-resolved experimental data

for many different experimental conditions [1–4]. Frequently, the generation of these type of

data is achieved by techniques like Western blotting [5, 6], quantitative real-time polymerase

chain reaction [7], reverse phase protein arrays [8] or flow and mass cytometry [9] which only

generate measurements on a relative scale. Therefore, the number of experiments that are
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comparable to each other, i.e. provided on the same measurement scale, is typically limited by

the experimental setup, which constitutes a bottleneck for mathematical models with high

complexity.

In the following we focus on Western blotting as a well-established and commonly used

technique. In this technique, protein abundances are measured on a relative scale by chemi-

luminescent antibodies binding to the respective proteins embedded in a gel. Let us consider

such a time-course experiment that has been performed twice and quantified with Western

blot. The experimental setting is assumed to be the same between the two experiments, i.e.

the same biological or experimental conditions were measured, but on two different gels.

Since the Western blot technique only provides a relative measurement, the obtained data

points presumably show a similar dynamical behavior. However, they do not coincide with

each other in absolute numbers due to experimental errors and different measurement

scales. The corresponding unknown scaling factor, i.e. the ratio between the measurement

scales, can be inferred relatively simply by aligning both measurement profiles to each

other.

Now, let us consider another experiment where time courses of two different experimental

conditions, as for example stimulation doses, have been measured separately on two different

Western blots. Here, it cannot be distinguished whether the difference in the results is occur-

ring due to the experimental condition or due to the different measurement scales. In particu-

lar, the scaling factor between the two blots cannot be estimated in this case.

One way to circumvent the missing comparability between measurements is to add recom-

binant proteins to the Western blot samples allowing for an absolute-scale quantification [10].

However, this approach is very expensive and time-consuming and scales with the number of

measured proteins [11]. In systems biology, where the data is employed to estimate parameters

of a mathematical model, it is a common approach to determine the scaling parameters of the

different blots together with the remaining parameters of the model [12]. Besides the disadvan-

tage of enlarging the parameter space when using standard ODE modeling and optimization

methods, the estimates of the scaling parameters might be biased by the model equations,

hampering hypothesis testing and therefore interpretation of the results [13].

As a generally applicable alternative, the Western blot experiments can be designed in a

way that a certain experimental overlap exists between different blots, meaning that the same

experimental condition is measured multiple times. Degasperi et al. [14] present a method to

analytically determine the corresponding scaling factors based on such data. However, to be

able to apply this method, there needs to be at least one experimental condition that has been

measured on all blots which implies additional planing effort, might be limited by the availabil-

ity of the overlap sample and complicates the use of experiments performed at a later time

point.

Here, we present a new data-based approach for the estimation of scaling parameters which

is also applicable in the absence of a unique condition overlapping across all available scales. It

is sufficient when the independent experiments are connected by pairwise overlapping condi-

tions. In addition, the implemented method provides not only the possibility to obtain scaling

parameters and therefore align data points of different Western blots but also to compute con-

fidence intervals for the results by applying a user-defined error model [15]. We implemented

this method in the R package blotIt.

Methods

When analyzing the measured values of a hypothetical experiment, we define three classes of

effects: (A) Biological effects describe biological conditions as for example different targets
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(proteins, mRNA, etc.), stimulation doses, inhibition treatments or measurement time

points of a dynamical process. The set I contains all NI unique combinations of biological

effects. For each element of this set i 2 (1, . . ., NI), there exists one true value yi. (B) Scaling
effects describe the systematic influence of the measurement techniques and evaluation rou-

tines on the particular numerical value that is obtained. In the example of Western blotting,

these scaling effects include for example development time, sample loading, gel thickness or

antibody efficiency. All NJ scaling effects make up the set J, and each scaling factor sj with j 2
(1, . . ., NJ), equally affects the measurements of all yi within the respective experiment. Only

measurements that underlie the same scaling factor can a priori be considered as compara-

ble. In other words, repeated experiments measuring the same effect yi result in a set of val-

ues Yij, where the indices imply that yi is affected by experiment-specific scaling factors sj.
Some properties, e.g. gel imperfections, do not affect the whole experiment uniformly, but

neighbouring lanes can be influenced by a systematic error. To resolve this, randomized

sample loading is advised [16], ensuring that the resulting errors are independent. (C) Resid-
ual noise: In addition to the systematic error sources (A-B), each measurement Yij is affected

by stochastic noise �ij. Based on these three error sources, we present in the following an

approach to align the numerical values of different experiments with the aim of retrieving

one comparable data set.

Definition of the alignment model

In mathematical terms, the influence of scaling factors s on true values y is described by

Y ¼ f ðy; sÞ þ �; ð1Þ

where f(y, s) is the scaling model and � reflects the noise of the measurement which is assumed

to be normally distributed with �ij � Nð0; s2
ijÞ, where σij is the standard deviation of the normal

distribution, and the indices imply that each measurement Yij can in principle have its own

error distribution. To assess the individual error distribution, an error model h is introduced

sij ¼ hðy; s; eÞ ð2Þ

which is based on the error model parameters e. The data quantification happens usually by

relating the luminescence of a sample to signal strength. An example for such a measurement

procedure is Western blotting. Because of an always present background, it is in the nature of

such measurements to have a low signal-to-noise ratio for data points with low signal. Kreutz

et al. elaborate why the error of such measurements is most completely described by a mixed

effects error model hmixed = eabs + erel � f(y, s) composed of an absolute error addressing the

constant background and a signal dependent relative error [15]. In cases where the signal is

significantly higher then the background, or a constant background is subtracted in data quan-

tification, it can be sufficient to describe the error by a purely relative error model hrel = erel � f
(y, s), although this simplified model still bears the danger to underestimate the errors of low

intensity measurements, e.g. of unstimulated controls. In the following, we consider this rela-

tive error model. Kreutz et al. suggested statistical tests to check if this simplification is justified

for a given data set [15].

Calculation of the errors by use of an error model has an additional advantage over the cal-

culation by replicate spread. The error model considers the variance information of all experi-

mental data, what allows for a reliable error estimate even for conditions with small numbers

of replicates.
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When considering Western blot data as a typical use case for the here presented method, a

simple model with gel-dependent scaling effects is usually assumed. The equation then reads

Yij ¼ f ðyi; sjÞ þ �ij ¼
yi
sj
þ �ij; ð3Þ

where the measurement Yij corresponds to the true value yi affected by the scaling factor sj and

the noise �ij. The relative error model for the standard deviation for the measurement Yij then

reads

sij ¼ hðyi; sj; erelÞ ¼ erel � f ðyi; sjÞ ¼ erel �
yi
sj
: ð4Þ

One error parameter erel is determined for all measurements, from which the measurement

errors σij are inferred by multiplying erel with the corresponding model evaluation. The accu-

racy of the estimated errors crucially depends on the validity of the chosen error model. There-

fore, the error model needs to be adjusted for other applications.

Depending on the measurement technique, the data could be given on the logarithmic

scale, and the error model h has to be adjusted accordingly. This is the case e.g. for qPCR data,

which is typically provided on log2 scale:

Yij ¼ flog2
ðyi; sjÞ ¼ log

2
f yi; sj
� �h i

¼ log
2

yi
sj

 !

¼ log
2
ðyiÞ

|fflfflffl{zfflfflffl}
y0i

� log
2
ðsjÞ

|fflfflffl{zfflfflffl}
s0j

þ �ij
ð5Þ

Here, the relative error model becomes an absolute one:

sij ¼ hlog2
ðyi; sj; eabsÞ ¼ eabs ð6Þ

Together, Eqs (1) and (2) describe a combined scaling and error model formulation based

on the assumption that true values of measurements are influenced by scaling factors and

experimental noise. All parameters y, s and e are a priori unknown and have to be determined

based on the data.

From the original to a common data scale

Evaluating the data with the presented method results in three representations of the data,

each of them with its own meaning and application in different contexts: (i) The scaled data

representation contains the original replicate data transferred to the common scale, (ii) the

aligned data representation reflects the underlying estimated true values, and (iii) the predicted
value representation corresponds to model evaluations back on the original scale. The align-

ment process as described in the following is schematically visualized in Fig 1.

Initially, the numerical values of each experiment are on their own original scale shown by

three simulated example time courses at the top of Fig 1. In particular, these measurements are

not comparable to each other. Now, let us for the moment assume that an optimal set of

parameters ðŷ; ŝ; êÞ has been found. With these parameters, we define a common scale as the

scale on which all measurements shall be directly comparable. The model assumes that all true

values y are on this common scale, and describes how the scaling has to be applied to a true

value yi to match the respective measurement Yij. To retrieve the scaled values Ys from the

respective measurements Y under the scaling ŝ, the inverse of this model has to be evaluated

Y s ¼ f � 1ðY; ŝÞ ð7Þ
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with estimated scaling parameters ŝ and measured data Y on the original scale. The resulting

data set with replicates aligned to the common scale is thus called scaled, as shown on the

lower left in Fig 1. Errors are not shown in Eq (7) because the model describes the scaling of

the measured value itself. Error estimates for the measured data are derived from the error

model and are propagated to the original scale by the use of Gaussian error propagation (see

section Error determination for more details). The scaled data set still contains the information

Fig 1. Overview of the blotIt alignment procedure. Top: Three exemplary experiments are represented by cartoon

Western blots along with simulated raw data on the original scale (original). Experiments are indicated by color.

Middle: Raw data is fitted by the alignment model to estimate scaling parameters sj and the underlying true values yi.
Error parameters erel are simultaneously estimated by means of an error model. Bottom: The procedure outputs three

different ways to visualize the result: Single replicates aligned to the common scale (scaled), the time course of

estimated true values (aligned), and a prediction for the replicates on the original scale (predicted). Uncertainties are

shown as shaded areas.

https://doi.org/10.1371/journal.pone.0264295.g001
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about each independent experiment, but all measurement values are directly comparable. This

is useful for the comparison between experiments, e.g. to determine potential outliers and

identifying experiments with obviously significant measurement errors. As input for a dynam-

ical modeling approach, the scaled data set is preferred in comparison to the original data as it

is already on a common scale. Working with this data set, experiment-specific scaling parame-

ters are not necessary anymore. To be able to compare this data on the common scale to

model simulations on a different scale, e.g. absolute concentrations, it is recommended to

include one scaling parameter for the whole data set in the model formulation. This enables a

proper relation of model and data.

If there are only few replicates available, the scaled data set might not be the best input for

dynamic modeling and the aligned data set should be favored. This data set consists of the esti-

mated true values ŷ. Corresponding estimated errors ê quantify the uncertainty of the parame-

ter fit, thereby taking all data into account. These estimated errors might be a more reliable

description of the data spread compared to the information provided by a small number of

replicates.

To identify discrepancies between the true values determined based on all measurements,

and the measurements of a single experiment, the true values can be scaled back to the original

scale. This new data set is termed predicted and consists of the direct alignment model evalua-

tions using the estimated true values and scaling parameters:

yp ¼ f ðŷ; ŝÞ ð8Þ

Note that this data set is again on the original scale, and thus does not provide comparabil-

ity between the experiments. The calculation of errors for the original, predicted and scaled

data is described in the section Error determination.

Parameter estimation

The presented method brings measurements from different experiments to a common scale

applying an alignment and an error model. Assuming the parameters obey Gaussian statistics,

the best maximum-likelihood estimate θ̂ ¼ ðŷ; ŝ; êÞ is the set of parameters, which minimizes

the negative log-likelihood [17]:

θ̂ ¼ arg min
θ
½� 2 log LðθÞ�: ð9Þ

Here, the log-likelihood function log L(θ) consists of three terms:

� 2 log LðθÞ ¼
X

ij

f ðy; sÞ � Yij
hðy; s; eÞ

� �2

ðleast squaresÞ ð10aÞ

þ
X

ij

logðhðy; s; eÞ2Þ þ logðpÞ ðvariance parametersÞ ð10bÞ

þ
1 � �y
10� 3

� �2

ðnormalization constraintÞ ð10cÞ

The special form of the log-likelihood function presented in Eqs (10a) and (10b) is based on

the assumption that observations are affected by normally distributed residual noise. The first

term (10a) includes the weighted least squares, namely the difference between model predic-

tion f(y, s) and corresponding measurements Yij. Residuals are weighted by the variance

s2
ij ¼ hðy; s; eÞ2. The second term (10b) accounts for the simultaneous optimization of the
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error model h(y, s, e) and thereby estimation of error parameters. While the first two terms

ensure minimization of the spread between experiments, the third term (10c) forces the mean

of the estimated true values �y to be one during the optimization process and thereby intro-

duces the common scale.

For computational reasons, the parameters are per default transferred to logarithmic scale

prior to the estimation. This drastically improves numerical stability especially when the input

data varies over multiple orders of magnitude. Estimated parameter values are subsequently

transformed back and reported on the linear scale.

Error determination

In Fig 1, we introduced different output data representations as result of the alignment model.

As a major advantage of this formulation, a measure of uncertainty, i.e. a statistical error, can

be determined for each of these data sets, as summarized in Table 1 and explained in the

following.

First of all, the number of estimated parameters nP = jθj in the alignment model is typically

quite high compared to the number of data points nd: nd nP� 2–3. Under such conditions, the

maximum-likelihood estimation tends to underestimate the standard deviation in a sample.

The effect is more apparent for small samples or, equivalently, when many parameters are esti-

mated from few data points. We account for this bias by applying Bessel’s correction [18] to

scale the estimated sample standard deviation by a factor

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffind
nd � np

r

ð11Þ

that is multiplied with the estimated standard deviation of the measured data within blotIt:

σðgÞ ¼ gσ ¼ ghðθ̂Þ ð12Þ

The error model is evaluated on the scale of the original observations. To retrieve the error

of the scaled data, Gaussian error propagation is employed [19]:

σðgÞs ¼
�
�
�
�
d
dY

f � 1½ �ðY; ŝÞ
�
�
�
�σ
ðgÞ: ð13Þ

In Eq 4 we introduced a relative error model for Western blotting. As described above, this

error serves as estimate for the error of both data sets, original and predicted. To retrieve the

error of the scaled data σðgÞs , we have to consider the scaling model defined in (3).

s
ðgÞ

s;ij ¼ gsj � s
ðgÞ

ij ð14Þ

While all errors considered until now quantify the uncertainty of the measurement, the

error of the estimated true values ŷ are calculated qualitatively differently. Since ŷ are model

parameters, their errors have to be estimated by the model uncertainty itself. In maximum

Table 1. Overview table of the different output data sets of blotIt.

Data set Data Error Scale

Original Y σðgÞ ¼ ghðθ̂Þ Original

Predicted yp ¼ f ðŷ; ŝÞ σðgÞ ¼ ghðθ̂Þ Original

Scaled Y s ¼ f � 1ðY; ŝÞ σðgÞs ¼ jf � 1ðY; ŝÞjσðgÞ Common

Aligned ŷ σðgÞfit ðŷ iÞ ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffi
CiiðθÞ

p
Common

https://doi.org/10.1371/journal.pone.0264295.t001
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likelihood estimation, the uncertainty is reflected in the local curvature of the likelihood land-

scape around the determined parameter value [20, 21]. The uncertainty of the l-th fitted

parameter s
ðgÞ

fit ðŷ lÞ is given by

s
ðgÞ

fit ðŷ lÞ ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffi
CllðθÞ

p
with C ¼ I� 1 ¼ H� 1; ð15Þ

where the local curvature is approximated by the square root of the ll-diagonal element of the

covariance matrix C given by the Fisher information matrix I, which itself is represented by

the Hessian H that is calculated during the optimization process. Note that the Bessel correc-

tion γ is applied here, too.

To sum up, the blotIt approach provides four measures of uncertainty (Table 1). Uncer-

tainty provided with the original data set is estimated based on the error model. This error is

reflective of the between-replicate variability and, as such, is comparable to the standard devia-

tion of a single measurement. Uncertainty provided with the predicted data set is the same as

for the original data set and, thus, reflective of the standard deviation of the single measure-

ment. The uncertainty provided with the scaled data set is the error of the original data set

translated to a different scale, i.e. the common scale. Also this error is reflective of the standard

deviation of the single measurement. Finally, uncertainty provided with the aligned data set is

the estimation uncertainty of the estimated true concentrations, meaning that this error is

comparable to the standard error of the mean. Therefore, with more and more replicate mea-

surements, the error of the aligned data set becomes smaller, whereas the errors provided with

original, predicted, and scaled data sets consolidate.

Simulation study

To compare the performance of different scaling approaches, we generated a simulated data

set following a function with quadratic rise and exponential decay that represents the typical

behavior of e.g. protein phosphorylation or expression dynamics [15].

f ðtÞ ¼ 0:1þ
ccond � 10� 3 � t2

exp
t

50 � ctarget

" #
ð16Þ

The parameters ccond and ctarget were chosen from a uniform distribution Uð0:5; 1:5Þ for

each condition and target to simulate different stimuli and target specific dynamics. The fixed

values were just used to determine the time scale of the dynamics.

An artificial noise consisting of an absolute contribution resembling background noise, as

well as a signal dependent relative part, was added to the simulated data:

fnoise ¼ f ðtÞ � �rel þ �abs: ð17Þ

Because this noise is known to be log-normally distributed, the error was implemented as

fnoise ¼ expflog½f ðtÞ� þN ð0; srelÞg þ exp½N ð0; sabsÞ�; ð18Þ

where N ð0; sÞ describes a Gaussian distribution with mean 0 and standard deviation σ.

To evaluate the goodness of the scaling and compare blotIt with other available methods,

the same generated noisy data was scaled with different normalization approaches. This proce-

dure was repeated 200 times for each normalization approach to be able to statistically evaluate

the results. Inspired by Degasperi et al. [14], the goodness of each normalization was assessed

based on the spread of the scaled data, the standard deviation sd. It was calculated for each
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biological condition i, determined by target, condition, and time point:

sicalc ¼ sd log
Y i

s
�Y i

s

� �� �

: ð19Þ

Since the data was generated with log-normally distributed noise, the data points had to be

log-transformed before the standard deviation was calculated. The so calculated sicalc represents

the normalized spread of the scaled replicates for each biological condition and is comparable

between scaling methods.

Applications

In the following, the application of blotIt is illustrated and compared to alternative approaches

by means of simulated data and a published data set comprising Western blot as well as qPCR

measurements. The scaling and thereby alignment of the different data sets was performed

with the R package blotIt.

Application to simulated data

To assess the performance of blotIt in comparison to alternative normalization approaches, we

conducted a method comparison. Three alternative methods were tested on data realizations

with different overlap, i.e. number of samples measured in all experiments, and different noise

level. Their performance was compared to the one of blotIt. The following methods were ana-

lyzed: (1) Optimal alignment, which is based on the analytical minimization of differences

between all overlap samples. This approach was discussed in detail by Degasperi et al. [14] and

applied e.g. by Wang et al. [22]. (2) Normalization by fixed point, which uses one biological

condition (one yi as defined above) to normalize all experiments by the respective measure-

ment value of this condition [23, 24]. (3) Normalization by sum (setSums), or equivalently

average, which is analog to the fixed point method, but here experiments are divided by the

sum or average of all overlapping biological conditions [25, 26].

We compared the performance of the different scaling techniques for five data realizations

chosen to mimic a variety of real world situations: Full overlap—Each experiment describes

the exact same biological conditions, meaning the exact same experiment was repeated N
times; 50% overlap—In this scenario all experiments share one reference treatment condition,

for which all time points are measured. The second half of each experiment covers an individ-

ual condition; Dose response—Here, a whole time course is measured in replicates analogously

to the previous scenarios, along with an additional replicate set that covers just one time point

in multiple conditions. This could be e.g. a dose response measurement; Signal to noise varia-
tions—Two more data sets with 50% overlap were simulated with mixed signal to noise ratios.

All data sets are visualized in Fig 2a. Experiments describing the exact same biological condi-

tions are referred to as replicate sets indicated by color.

The performance of the individual methods was evaluated for each of the data realizations

based on the spread of the scaled data, the standard deviation σcalc, as described in the methods

section. As the performance might vary with the number of replicates, i.e. the number of

experiments belonging to one replicate set, one scenario with three and one scenario with ten

replicates was analyzed. As displayed in Fig 2b, all methods performed equally well in the sce-

nario with full overlap except for the fixed point approach that had a slightly worse outcome.

However, with decreasing number of overlap samples blotIt gained advantage over the other

methods tending towards overall smaller standard deviations. The scaling evaluation of the

50% overlap data set was especially interesting as it visualized how the distinct approaches

work. The three methods checked against blotIt displayed a small sharp peak for low standard
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deviations comparable to results from the perfect overlap scenario, followed by a larger peak

for higher sigmas. This characteristic was less marked in the optimal alignment approach.

Except for blotIt, all methods just use the overlap present between all experiments to determine

the scaling factors. The just described small peaks for low sigmas were originating exactly from

Fig 2. Method comparison. The performance of four different scaling methods was analyzed for five simulated data sets with different overlap and

signal to noise ratios. (a) Illustration of the tested data sets and their experimental overlap. Rows of the tile plots correspond to the different

experiments (scaling effects), columns correspond to different experimental conditions (biological effects). Tiles indicate whether the respective

condition was measured in the respective experiment (colored) or not (white). Those experiments describing the exact same biological conditions are

summarized and colored as replicate sets. Data with low signal to noise ratio is indicated by shaded area. (b) The performance of the different scaling

methods was assessed based on the standard deviation of the respective scaled data and displayed as density plot. Data sets were analyzed with three

replicates, i.e. replicate sets consisting of three experiments and with ten replicates, respectively. Note that the methods setSums and fixedPoint often

yield very similar results and thus lead to overlaying density plots.

https://doi.org/10.1371/journal.pone.0264295.g002
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these overlap samples. Yet, conditions not measured in all experiments were scaled a lot worse

and led to a larger spread between replicates. In contrast, blotIt uses all samples to normalize

the data. This improves the scaling of samples not measured in all experiments and of data

with low signal to noise ratio as present in data sets NoisyRef and NoisyAddOn. Frequently, a

small overlap between experiments is encountered in the typical scenario of combining time

course and dose response measurements. At the extreme, when the overlap between experi-

ments was reduced to one condition, blotIt outperformed the other methods by far. With only

one overlapping condition, normalization by fixed point and by sums were equivalent in this

scenario. Optimal alignment relied on the common condition to calculate the scaling factor,

which gave the worst outcome, indicating that this method works best when a large overlap is

provided. It has to be noted, however, that the overall scaling performance for all methods got

worse with less overlap.

Comparing the outcome in regard to replicate numbers, similar means of the standard

deviations could be observed for three and ten replicates. The overall performance of the meth-

ods thus did not change. However, With increasing number of replicates the peaks got sharper.

The equal performance might be due to the design of the data sets, where additional replicates

were evenly distributed between reference and individual conditions and thus did not change

the proportion of data used for scaling.

Alignment of Western blot data

In the following, blotIt is applied to a published data set that provides time-resolved measure-

ments for the phosphorylation of cytoplasmic Signal Transducer and Activator of Transcription
1 (STAT1) and mRNA levels of the Suppressor of Cytokine Signaling 1 (SOCS1) [4]. Both tar-

gets are involved in the Interferon alpha (IFNα) signaling pathway, where STAT1 acts as a

transcription factor regulating, among others, SOCS1 expression. Three different IFNα con-

centrations were used to induce signal transduction and thereby phosphorylation of STAT1 as

well as expression of SOCS1. Phosphorylation dynamics of cytoplasmic STAT1 were quanti-

fied by Western blot experiments, while SOCS1-mRNA levels were measured by qPCR and

are analyzed in the next section. The three IFNα doses used for stimulation correspond to

three conditions that are distinguished in the following.

Cytoplasmic STAT1 protein was quantified in three experiments. Measurements are thus

only available on different scales as they originate from distinct gels. Therefore, one can not

directly judge the dynamics of the final time course from investigating the raw data (Fig 3a).

Moreover, a direct comparison for example between experiment two and three is not possible,

since these have not been measured together on the same gel. Instead, as shown in Fig 3b, an

overlap exists between experiments 1 & 2, and 1 & 3 by two replicates, respectively. This allows

the alignment of the three experiments and enables a comparison between all replicates. If no

overlap existed between gels, it would not be possible to determine or define a common scale.

In this case, blotIt would determine scaling factors separately, and the resulting scaled values

would not be comparable between experiments.

Within blotIt, scaling of these Western blot data is performed via the alignment function

alignReplicates() called as
outputWB <- alignReplicates(
data = mydata,
model = “yi/sj”,
errorModel = “e_rel�value”,
biological = yi � name + time + condition,
scaling = sj � name + gelID,
error = e_rel � name)
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Fig 3. Application example for the alignment of Western blot and qPCR data. Raw data of cytoplasmic pSTAT1, measured by Western blot, and

SOCS1 mRNA quantified with qPCR, was taken as a subset from [4]. (a, e) Raw data is shown on the original scale (dots) compared to the predictions

(dashed interpolating lines) as output by the model. Color indicates the different experiments (gels). (b, f) Illustration of the experimental overlap. Rows

correspond to the different gels (scaling effects), columns correspond to different experimental conditions (biological effects). Tiles indicate whether the

respective conditions was measured on the respective gel (colored) or not (white). (c, g) Data points after the alignment are shown. Scaled replicates

(dots) are colored according to their original gel. On the same common scale, estimated true values are shown as gray interpolating lines. (d, h) Aligned

data (dots) and trajectories (linearly interpolating lines) are depicted on the common scale. Color indicates the experimental condition.

https://doi.org/10.1371/journal.pone.0264295.g003
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allowing an individualized structure of model and error model. The structure of the input data

set is oriented towards a recently developed data sharing standard for dynamic modeling, in

particular the measurement file of PEtab [27]. It has to be provided as a data.frame with

obligatory columns name, time and value, specifying the observed target, the measure-

ment time and the measurement value. Further columns characterize additional biological

effects, which have to be distinguished, and scaling effects, e.g. the experimental condition
or the gelID of the Western blot.

The alignment function allows to define these effects as a function of yi or sj in an additive

manner. name and time are obligatory for the argument biological, as different targets at dif-

ferent time points are independent and have to be distinguished. The scaling argument

requires the parameter name, as every observed target may scale differently. Also the error,

here e_rel, can be specified. If the same value of e_rel should be assumed for all condi-

tions, the error is only specified by the target, i.e. name.

Alignment of the pSTAT1 data brings the measured data points from different experiments

to a common scale. The output of alignReplicates() is a list with the entries scaled,

displaying the scaled replicates Yij�sj (Fig 3c) and aligned, containing the estimated true values

yi (Fig 3d), both with uncertainties. Further listed elements describe the original data, data pre-

dictions based on the alignment model, and the respective estimated scaling parameters.

Alignment of qPCR data

The flexibility of the model based alignment approach allows to process qualitatively different

data with only minor adjustments. Thus, in addition to the linear Western blot data, also quan-

titative real-time polymerase chain reaction (qPCR) data can be analyzed with blotIt. During

the process of mRNA quantification in qPCR measurements, a small region of the mRNA of

interest is amplified in a sequence of replication cycles. The mRNA concentration is therefore

measured in Cycles to Threshold (Ct) of PCR, a relative value that represents the cycle number

at which the amount of amplified DNA reaches a defined threshold level. This threshold is in

general individually chosen for each experiment. Since the amount of mRNA is approximately

duplicated in each cycle of the PCR, the Ct value is on the log2 scale. The inferred quantity ΔCt
describes the difference in cycles between the target and a reference gene, where the reference

gene can be a housekeeper which is known to remain relatively stable in response to any treat-

ment. To assess the dynamic development of mRNA expression the ΔΔCt can be used, repre-

senting the difference in ΔCt between the target and a reference condition [28]. Here, an

intuitive reference condition is the zero time point. Because higher Ct values correspond to

lower mRNA abundance in the sample, the quantity −ΔΔCt is used for the description of

expression dynamics.

The freedom of choice for the detection threshold results in an experiment-specific shift in

the number of cycles until detection. Together with the offsets introduced in the ΔΔCt calcula-

tion by potential measurement variances of the zero time point and the housekeeper genes,

this can be summarized into one offset parameter. Since the data is of logarithmic nature, this

offset reflects a multiplicative scaling on the linear scale. The alignment model and the corre-

sponding error model thus have to be log-transformed, which results in an additive model

with an absolute error description. The alignReplicates() function call is adjusted

accordingly:
outputQPCR <- alignReplicates(
data = mylog2data,
model = “log2(yi)-log2(sj)”,
errorModel = “e_abs”,
biological = yi � name + time + condition,
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scaling = sj � name + gelID,
error = e_abs � name)

The results of the alignment process outputQPCR are analogous to those described for

the Western blot data. They are described for the example data set of SOCS1-mRNA on the

right hand side of Fig 3e–3h). Data was quantified in three experiments, where experiment

four and six are not comparable on the original scale and differences in conditions only

become apparent on the common scale. Furthermore, the dynamics of the full time course are

not visible at the level of the single experiments (Fig 3e) but can be analyzed after scaling in Fig

3h. Since the original scale is logarithmic this is also true for the common scale.

Discussion

In many cases, biological data is generated in a way that does not allow a direct comparison

between different measurements. Reasons can be differences in sample loading, antibody

binding or discrepancies between various gels in the case of Western blotting. In turn, these

artifacts lead to different measurement scales for the experimental data and mask the effects of

biologically different conditions like treatments and measurement time points in dynamical

processes.

Analyzing longitudinal data or dose response data without proper preprocessing is not pos-

sible when the measurements are affected by different scaling factors. We here present a

method to scale data of independent experiments to one common scale, where the data is

directly comparable. In addition to the original and the scaled data, we provide two further

outputs of the algorithm: (1) aligned data, i.e. the true values obtained when the impact of dif-

ferent scaling and residual noise is removed; and (2) predicted data, i.e. the values on the origi-

nal scale of the experiments obtained when only the impact of residual noise is removed.

Previously established strategies to correct for the scaling differences include the usage of

recombinant proteins to transform each measurement to an absolute scale, or theoretical

approaches like normalization by fixed point, by sum and optimal alignment. In the latter,

scaling factors are determined by analytically minimizing differences in scaling between the

experiments. The here presented method follows a similar idea but determines the scaling fac-

tors via a more flexible numerical optimization. Our approach has the benefit that no single

condition needs to be present within all experiments, but instead it is sufficient to have a pair-

wise overlap of measured conditions between different experiments. Even if a certain overlap

is given between all experiments, it is common that some conditions are measured only in a

subset of experiments. In contrast to blotIt, the above mentioned approaches cannot use the

data points outside of the overlap to determine the scaling factors, which are therefore scaled

with poor quality. Here the power of blotIt comes in, taking all data into account for the esti-

mation of the scaling factors. This is especially relevant when performing experiments for a lot

of different conditions e.g. times or doses of stimulus or inhibitor. Further, in contrast to the

other methods, we are not only able to determine the scaling factors, but also estimate underly-

ing true values, i.e. maximum-likelihood estimates for the true values disregarding the experi-

mental scaling artifacts. Asymptotic confidence intervals based on the Fisher Information

Matrix are provided for the scaling factors as well as for the estimated true values.

One typical field of application for biological time course data is dynamical modeling

where it is often beneficial to reduce the number of estimated parameters to a minimum, e.g.

via data pre-processing. By determining a common scale with the presented method, it is not

necessary to include experiment-specific scaling factors in the model, decreasing the parameter

space and therefore the model complexity. A special optimization approach termed hierarchi-

cal optimizing also enables the calculation of scaling parameters without effectively increasing
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the parameter space [29, 30]. However, this analytical evaluation of scaling parameters is

always combined with the parameterization of an ODE model as it is the case for Weber et al.

[13]. BlotIt as well as the other analyzed methods are model-free purely data-based approaches,

i.e. methods not depending on a specific ODE model implementation or modeling framework.

However, it might be of interest to investigate these integrative approaches in comparison to

blotIt in a future study.

By utilizing numerical optimization, alignment model and error model can be flexibly

adapted to the appropriate scaling mechanism for the data at hand. One can therefore account

e.g. for data on the logarithmic scale or apply customized scaling approaches. The same free-

dom applies to the error model with the benefit to individually include relative and absolute

errors. With this flexibility, blotIt can not only be applied to data generated by Western blot-

ting, but to all use cases where relative data is generated like quantitative real-time PCR,

reverse phase protein arrays as well as flow and mass cytometry.
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molecular mechanisms regulating sensitization of interferon alpha signal transduction. Molecular Sys-

tems Biology. 2020; 16(7):e8955. https://doi.org/10.15252/msb.20198955 PMID: 32696599

PLOS ONE Alignment of biological replicate data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264295 August 10, 2022 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264295.s001
https://doi.org/10.1126/science.1069492
https://doi.org/10.1126/science.1069492
http://www.ncbi.nlm.nih.gov/pubmed/11872829
https://doi.org/10.1038/msb.2011.50
http://www.ncbi.nlm.nih.gov/pubmed/21772264
https://doi.org/10.15252/msb.20167258
http://www.ncbi.nlm.nih.gov/pubmed/28123004
https://doi.org/10.15252/msb.20198955
http://www.ncbi.nlm.nih.gov/pubmed/32696599
https://doi.org/10.1371/journal.pone.0264295


5. Renart J, Reiser J, Stark GR. Transfer of proteins from gels to diazobenzyloxymethyl-paper and detec-

tion with antisera: a method for studying antibody specificity and antigen structure. Proceedings of the

National Academy of Sciences of the United States of America. 1979; 76(7):3116–3120. https://doi.org/

10.1073/pnas.76.7.3116 PMID: 91164

6. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitro-

cellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences

of the United States of America. 1979; 76(9):4350–4354. https://doi.org/10.1073/pnas.76.9.4350 PMID:

388439

7. Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain

reaction assays. Journal of Molecular Endocrinology. 2000; 25(2):169–193. https://doi.org/10.1677/

jme.0.0250169 PMID: 11013345

8. Spurrier B, Ramalingam S, Nishizuka S. Reverse-phase protein lysate microarrays for cell signaling

analysis. Nature Protocols. 2008; 3(11):1796–1808. https://doi.org/10.1038/nprot.2008.179 PMID:

18974738

9. Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR. Interpreting flow cytometry data: a

guide for the perplexed. Nature Immunology. 2006; 7(7):681–685. https://doi.org/10.1038/ni0706-681

PMID: 16785881

10. Schilling M, Maiwald T, Bohl S, Kollmann M, Kreutz C, Timmer J, et al. Computational processing and

error reduction strategies for standardized quantitative data in biological networks. The FEBS Journal.

2005; 272(24):6400–6411. https://doi.org/10.1111/j.1742-4658.2005.05037.x PMID: 16336276
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