
Estimation of Gene Induction Enables

a Relevance-Based Ranking of Gene Sets
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ABSTRACT

In order to handle and interpret the vast amounts of data produced by microarray ex-
periments, the analysis of sets of genes with a common biological functionality has been
shown to be advantageous compared to single gene analyses. Some statistical methods have
been proposed to analyse the differential gene expression of gene sets in microarray ex-
periments. However, most of these methods either require threshhold values to be chosen for
the analysis, or they need some reference set for the determination of significance. We
present a method that estimates the number of differentially expressed genes in a gene set
without requiring a threshold value for significance of genes. The method is self-contained
(i.e., it does not require a reference set for comparison). In contrast to other methods which
are focused on significance, our approach emphasizes the relevance of the regulation of gene
sets. The presented method measures the degree of regulation of a gene set and is a useful
tool to compare the induction of different gene sets and place the results of microarray
experiments into the biological context. An R-package is available.
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1. INTRODUCTION

The investigation of expression patterns of different biological entities using microarray experi-

ments has become a standard technique over the last years. The results of many of these studies are often

lists of genes that are differentially expressed between the sample groups. The interpretation of these lists to

understand the underlying biological phenomena is tedious and often depends on the experimentalists’

experience, sometimes leading to subjective interpretations. Also, the resulting gene lists can exhibit large

variations when studies between different laboratories are compared, showing the limitations in the repro-

ducibility of the expression patterns for single genes (Shi et al., 2006; Järvinen et al., 2004). A better approach

is to investigate the gene expression of biologically related sets of genes. These sets can for example be a

collection of genes belonging to the same pathway or ontology, or having the same chromosomal location.

Besides the integration of previously achieved biological knowledge, a further advantage of the analysis of

sets of genes is the better reproducibility of the results.

A number of methods to analyse the expression of sets of genes have been proposed in the last couple of

years. These methods range from simple combinatorial considerations (Al-Shahrour et al., 2004; Beissbarth

and Speed, 2004; Hosack et al., 2003; Lee et al., 2005; Pehkonen et al., 2005; Yi et al., 2006; Zhang et al.,
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2004; Zeeberg et al., 2003; Breitling et al., 2004; Al-Shahrour et al., 2005) via the extension of the

Significance Analysis of Microarray to gene sets (SAM-GS) (Dinu et al., 2007) and the comparison of

empirical distributions as utilized in the Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003;

Subramanian et al., 2005) to logistic regression models (Goeman et al., 2004; Mansmann and Meister,

2005). Among the large number of gene set analysis approaches proposed, the GSEA is the most widely

used method so far.

Most of these methods require a threshold value to determine whether a single gene is differentially

expressed or not. The results of these methods can strongly depend on the choice of this value.

In addition, many methods are competitive (Goeman and Bühlmann, 2007). That means, the expression

of genes in a certain set is compared to the expression of genes in a reference set. This reference set can for

example consist of all genes that are available on the microarray. Thus, for these competitive methods the

significance of a gene set cannot be given independently, but only in comparison to the reference set, and an

exchange of this reference set alters the final results. This issue has also been addressed in Allison et al.

(2006), Goeman and Bühlmann (2007), and Damian and Gorfine (2004).

Moreover, most methods use permutations across gene labels for the determination of the significance.

As pointed out by Allison et al. (2006) and Goeman and Bühlmann (2007), this can lead to inaccurate

p-values, as it assumes transcripts to be independently regulated, which is often not the case.

Furthermore, for many methods the null hypothesis that is tested either is not clearly defined (Allison

et al., 2006), or it is a weak null hypothesis such as ‘‘no genes in the gene set are differentially expressed’’

or ‘‘the genes in the gene set are at most as often differentially expressed as the genes in the reference set’’

(Goeman and Bühlmann, 2007). These hypotheses are weak in the sense that their rejection does not

necessarily mean that a meaningful amount of genes in the gene set is differentially expressed. In other

words, significance of a gene set in the sense of the above stated null hypotheses can mean in the extreme

case, that just one gene in the set is differentially expressed. Thus, a significant p-value is either difficult to

interpret in the case of an unclearly defined null hypothesis, or its significance is not necessarily suitable for

the evaluation of the relevance of a gene set in the case of weakly stated null hypotheses.

In this article, we present a new algorithm to estimate the number of genes in a gene set that are

differentially expressed between two groups. This estimation does not require a threshold value for the

detection of differentially expressed genes. The confidence interval of this estimate is determined by

bootstrapping the group samples. Based on these estimations, a regulation index is defined as a measure for

the regulation of a gene set. In contrast to the p-value of hypothesis tests of many other gene set analysis

approaches that focus on the significance of gene sets, this index is a measure for the degree of differential

gene regulation of a gene set and is thus suitable for evaluating the relevance of a gene set. We demonstrate

the applicability of our method for simulated data as well as for a microarray study comparing acute

lymphoid leukemia (ALL) and acute myeloid leukemia (AML) published in Armstrong et al. (2002).

2. RESULTS AND DISCUSSION

2.1. Principle of the method

A standard approach in most microarray studies is to statistically test whether the expression value of a

gene is significantly different between two groups using statistical tests like the Student’s t-test or its non-

parametric pendant the Mann-Whitney U-test. Available methods differ in the underlying statistical as-

sumptions. Therefore, the choice of a test depends on the assumptions for the measurements. It is assumed

in the following that the test for detecting differentially expressed genes was chosen appropriately. In this

case, the p-value of a statistical test is the probability of obtaining a value of the test statistic as large or

larger than the observed by chance. Like for any hypothesis test, the distribution of these p-values under the

null hypothesis obtained by multiple tests is by definition a uniform distribution. On the other hand,

p-values resulting from statistical tests where the null hypothesis does not hold accumulate around zero. In

fact, the more power an hypothesis test has, the closer is the accumulation of p-values around zero for genes

for which the null hypotheses is violated.

The method we present in this article employs these properties of statistical hypothesis testing to estimate

the percentage of differentially expressed genes in a gene set. Hereby, the gene set can be any user-defined

collection of genes, like a certain Gene Ontology (GO) association, a signaling or metabolic pathway

affiliation or the set containing all genes present on the microarray.
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This problem is closely related to the estimation of the false discovery rate (FDR), which has been

addressed by several groups; for example, see Benjamini and Hochberg (1995), Storey and Tibshirani

(2003), Pounds and Morris (2003), Scheid and Spang (2004), Broberg (2005), and Langaas et al. (2005). In

principle, methods for estimation of the FDR can be adapted to the estimation of gene induction. However,

the scope of these approaches is not the determination of the number of differentially expressed genes for

gene sets of limited size but the estimation of the FDR for microarray experiments with several thousand

genes. Therefore, most existing methods show limited applicability for the analysis of smaller gene sets. A

comparison of the performance of existing methods with our new approach introduced below for gene sets

of limited size is given in the appendix.

Given a gene set of size N with a total number of R differentially expressed genes and a number of N – R

genes that are not differentially expressed, the probability density for the resulting p-values r( p) can be

decomposed into a uniform distribution runif ( p) and an unknown, towards zero shifted, alternative dis-

tribution ralt ( p):

q( p)¼ R

N
qalt( p)þ 1� R

N

� �
qunif (p) (1)

As shown in Figure 1a, the height of the plateau resulting from the uniform distribution is (1�R/N) and

corresponds to the percentage of genes that are not differentially expressed. Thus, an estimation of the

height of the plateau of the uniform distribution leads to an estimate of the number of differentially

expressed genes in the gene set. Since the empirical distribution function depends on the binning and is not

continuous, an estimation of the probability distribution based on the histogram of p-values is tedious

especially for small gene sets. The empirical cumulative probability density on the other hand is a con-

tinuous function and better suited for parameter estimation. The drawback for parameter estimation based

on an empirical cumulative distribution is that here the data are correlated. This leads to overestimated, thus

conservative confidence intervals, as will be described below.

The cumulative distribution function of p is given by:

cdf (p)¼
Z p

0

q(p¢)dp¢

¼ R

N
cdfalt(p)þ 1� R

N

� �
cdfunif (p),

(2)

a b

FIG. 1. Probability distribution. (a) Probability distribution of a sample of p-values resulting from Student’s t-tests

performed on a set of N genes with R differentially expressed genes. (b) Cumulative distribution function of the

probability distribution shown in (a). The offset of the linear fit corresponds to the percentage of differentially expressed

genes in the set.
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where cdfalt ( p) and cdfunif ( p)¼ p denote the cumulative distribution of the probability density under

the alternative hypothesis and the uniform probability density, respectively. Since the mass of ralt ( p) is

accumulated at small values of p, cdfalt ( p) is a concave function and approximately equal to one for large

p-values. Accordingly, for large p-values, where cdfalt ( p)� 1, the cumulative distribution function cdf ( p)

can be approximated by

f (p)¼ R

N
þ 1� R

N

� �
p: (3)

Thus, the percentage of differentially expressed genes corresponds to the y-axis offset of f ( p) (Fig. 1b).

In order to determine the number of differentially expressed genes in a gene set, Equation (3) is

iteratively fitted to the realization of the cumulative distribution cdf ( p) obtained from testing for differ-

ential gene expression. In the first iteration step, all p-values are used for the linear fit and a first estimate of

the number of differentially expressed genes Rest is obtained. In the second iteration step, the Rest-smallest

p-values are omitted from the linear fit, and a new estimate Rnew
est is achieved. This procedure is repeated

until Rest converges, i.e., until Rnew
est ¼Rest (Fig. 2). This iteration process ensures that Equation (3) is only

fitted to the uniform part of the cumulative distribution. Note that it is not necessary to set a threshold value

that distinguishes between genes that are differentially expressed and genes that are not.

ba

FIG. 2. Iteration algorithm. (a) Flowchart for the iteration algorithm: Rest denotes the estimated number of differ-

entially expressed genes, pmin the minimum p-value entering the fitting algorithm and PRest the Rest smallest p-value.

Starting with an initial Rest¼ 0, f ( p), Equation (3), is fitted in the entire interval [0, 1] to empirical cumulative

distribution and a first estimate for Rest is achieved. The inclusion of the p-values of the differentially expressed genes

into the fitting procedure leads to an underestimation of the number of differentially expressed genes R. Thus, in the

next iteration step, the Rest-smallest p-values are excluded from the fitting procedure, and only the resulting N – Rest

largest p-values are considered. Thus, the fitting interval is reduced to [PRest, 1] and a new estimate for Rest is

calculated. This procedure is repeated until Rest converges. (b) Illustration of the algorithm. After each iteration step,

the linear function converges closer to the uniformal part of the cumulative distribution function.
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This iteration algorithm always has to converge for the following reason: Let Ri
est be the estimated

number of regulated genes in iteration step i. Since the cumulative distribution function cdf ( p) is mono-

tonic increasing, the p-values that are omitted in the next iteration step iþ 1 all contributed negative

residues to the linear fit in the preceding iteration step i as illustrated in Figure 3. Thus, the linear fit in

iteration step iþ 1 will yield an estimate Riþ 1
est that cannot be smaller than Ri

est. The series of the estimated

Ri
est is therefore monotonic increasing with an upper bound at 1 and has to converge.

The confidence interval of an estimated value for R is calculated by bootstrapping the group samples.

Hereby, the microarrays are re-sampled with replacement by maintaining the sample group assignment.

Then the number of differentially expressed genes R is estimated for each realization. As pointed out by

Allison et al. (2006) and Goeman and Bühlmann (2007), bootstrapping the arrays and not the genes ensures

the conservation of correlations between genes. Correlated genes have similar expression patterns and

therewith similar p-values. Hence, the p-values of correlated genes accumulate in the probability distri-

bution function, leading to a steeper slope in the cumulative probability function at this p-value. For a new

bootstrap-sample, a new realization of the expression pattern is simulated, resulting in a new realization of

p-values. Accordingly, for each bootstrap-realization, the point of accumulation in the cumulative distri-

bution function is shifted, and concomitantly a different estimate for R is yielded. Thus, correlated genes

lead to an increase in the estimated standard deviation.

In order to be able to compare the differential gene expression of several gene sets, we define the ‘‘Gene Set

Regulation Index’’ (GSRI) Z as the 5% quantile of the distribution of Rest/N determined by bootstrapping.

Thus, the GSRI Z is a measure of the regulation of a gene set, meaning that with a probability of 95% Z or more

genes are differentially expressed in this gene set. In contrast to many other gene set analysis approaches, the

GSRI is not a statistical test that determines the significance for the rejection of some null hypothesis. The

GSRI is rather a meaningful measure to quantify the regulation of a gene set and thereby to determine its

relevance. Nevertheless, the GSRI can also be interpreted as a significance measure for the null hypothesis that

no gene in the gene set is differentially expressed. By definition, a value of the GSRI larger than zero means

that with a probability of 95% at least one gene is differentially expressed. This corresponds to the rejection of

the above stated null hypothesis that no gene is differentially expressed with a significance level a¼ 0.05.

2.2. Simulation study

To demonstrate the applicability of our method, a simulation study is performed for a gene set of size

N¼ 100 with 20 microarray samples. The first 10 samples are the control group, and the second 10 samples

are the treatment group. A series of 101 simulations was performed, increasing the number of differentially

expressed genes from 0 to 100. The expression values for genes that are not differentially expressed were

FIG. 3. Convergence of the algorithm. Let Ri
est / N be the offset of the linear fit in the i-th iteration of the algorithm.

For the next iteration i – 1, the Ri
est-smallest p-values are omitted. These p-values (dashed line) are by construction all

below the dotted line. Therefore, the residues of these p-values to the linear fit in the i-th iteration are all below the

linear fit. Omitting these values from the next iteration iþ 1 can under no circumstances lead to a decrease of the offset

of the linear fit.

ESTIMATION OF GENE INDUCTION 963



generated from a standard normal distribution N(0,1) for both sample groups (control and treatment). The

expression values for the differentially expressed genes on the other hand were drawn from N(0,1) for the

control group and from N(1,1) for the treatment group, i.e. the mean value for differentially expressed

genes in the treatment group was one standard deviation larger than the mean value in the control group.

For these data, the cumulative distribution function cdf ( p) was calculated from the p-values obtained from

a Student’s t-test. Fitting Equation (3) to cdf ( p) using the iteration process illustrated in Figure 2 then

yielded an estimate for the number of differentially expressed genes R. The confidence intervals were

estimated by bootstrapping a thousand times from the sample groups.

The results of the simulation study are depicted in Figure 4. The left panel shows the GSRI Z as well as

the estimated percentage of differentially expressed genes Rest /N in the set plotted versus the true per-

centage of differentially expressed genes R/N, indicating a good agreement between estimate and true

value. The right panel shows the histogram of the difference between the true percentage of differentially

expressed genes R and the GSRI Z. The 5%-quantile of this distribution being larger than zero shows that

the estimation of R and its standard deviation std(Rest) is conservative.

There are two reasons for this. First, the result for the estimation of the number of differentially

expressed genes Rest is in general a rational number. In each iteration step in the fitting procedure, the

Rest-smallest p-values are disregarded from the optimization process. Thus, Rest has to be rounded to a

natural number. Rounding off Rest in each iteration step leads to an underestimation and therefore a

conservative estimate of R. Second, the data points in the cumulative distribution are correlated. Therefore,

the bootstrapping algorithm overestimates the standard deviation, equivalent with a conservative estimate

of the standard deviation. Together, this leads to an underestimation of the 5%-quantile of the distribution

of Rest respectively the GSRI Z, which is the reason for the 5%-quantile being larger than zero in Figure 3b.

2.3. Application to microarray datasets

To demonstrate the applicability of our approach, we applied our method to a study comparing the gene

expression profiles of 24 ALL patients and 24 AML patients, published by Armstrong et al. (2002). For the

analysis, we used gene sets with a minimum size of fifteen genes from the curated gene sets (c2) taken from

the MSigDB, see Subramanian et al. (2005). This is a collection of gene sets consisting of pathways,

ontologies, and lists of genes adopted from other publications.

FIG. 4. Simulation study. (a) The estimated percentage of differentially expressed genes with confidence intervals

plotted versus the real percentage of differentially expressed genes. For a better representation of the results, only every

fourth simulated data point is shown. (b) Histogram of the difference between the true percentage of differentially

expressed genes R/N and the GSRI Z. The 5%-quantile of the distribution is 0.013, demonstrating the conservative

estimation of the percentage of differentially expressed genes Rest /N and standard deviation std (Rest /N). This leads to

an underestimation and herewith conservative estimate of the GSRI.
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We compared our analysis with the results of the GSEA introduced by Mootha et al. (2003). We used

GSEA for comparison, since this is the most frequently used gene set analysis approach (Houstis et al.,

2006; Krivtsov et al., 2006). The GSEA uses a weighted Kolmogorov-Smirnov statistics to test the null

hypothesis that rankings of genes in a gene set are randomly distributed over the ranking of all genes.

For the Leukemia dataset, the GSEA is significant with a p-value smaller than 0.05 for 124 out of 1219

sets. When these p-values are corrected for multiple testing using FDR, only two gene sets are still

significant, although about 60% of all genes in the experiment are differentially expressed. This lack of

significance for gene sets containing a large amount of differentially expressed genes is a consequence of

the competitive nature of the GSEA. The regulation of a gene set is compared with that of a reference set.

This leads to decreasing power if a large amount of genes are differentially expressed in the reference set.

Only those sets either containing a few highly differentially expressed genes or having disproportionate

more differentially expressed genes than the reference set are significant.

The results for the ten gene sets with the highest GSRI are listed in Table 1. Both sets that were detected

by the GSEA are also represented in this list. The GSRI for all these sets is larger than 79%, indicating a

very large degree of regulation in these gene sets.

Eight of the top ten gene sets are gene sets that have previously been experimentally identified in other

microarray studies that are closely related to the Armstrong experiment. These experiments dealt with

cancer development (Schuringa et al., 2004; Iizuka et al., 2005), leukemia (Golub et al., 1999; Haslinger

et al., 2004), or gene regulation in lymphocytes (Nakajima et al., 2001; Hu et al., 2004; Haddad et al.,

2004). The strong association of mRNA processing and PIP3 signaling pathway in B-lymphocytes is also

not surprisingly, since it has been shown that PIP3 plays an important role in tumorgenesis (Abubaker et al.,

2007) and that altered mRNA processing is a feature of various kinds of cancer, including leukemia

(Stoilov et al., 2002; Beghini et al., 2000; Perrotti and Neviani, 2007).

Summarizing, it can be stated that GSRI is capable of meaningfully measuring the degree of regulation

of gene sets and is thus a useful tool for a further interpretation of the results of microarray experiments.

3. CONCLUSION

In this article, we introduced a new procedure to estimate the percentage of differentially expressed

genes in a gene set for microarray experiments. It is based on the fact that the p-values resulting from a

statistical test follow a uniform distribution when the null hypothesis is fullfilled and p-values under the

alternative accumulate near zero. We introduced the Gene Set Regulation Index for quantifying the degree

of differential gene expression in a gene set. In a simulation study, we have shown that this approach gives

a conservative estimate of the number of differentially expressed genes and its standard deviation. We have

Table 1. Summary of the Top Ten Gene Sets for the Leukemia Data Set

Gene set N Rest /N GSRI GSEA p-value GSEA FDR Reference

Schuringa, STAT5A down 17 91.6% 84.7% 0.109 0.493 Schuringa et al. (2004)

mRNA, processing 40 94.8% 82.6% 0.108 0.325 MSigDB (Subramanian

et al., 2005)

Golub, ALL vs. AML up 18 87.5% 81.7% <0.001 0.249 Golub et al. (1999)

Nakajima, MCSMBP MAST 39 89.0% 81.1% 0.016 0.669 Nakajima et al. (2001)

Genotoxins, ALL 4hrs reg 17 92.9% 81.0% 0.252 0.455 Hu et al. (2004)

Haddad, HSC CD10 up 196 85.6% 81.0% <0.001 0.039 Haddad et al. (2004)

Haddad, HPCLympho enriched 206 83.9% 79.3% <0.001 0.020 Haddad et al. (2004)

PIP3 signaling, in B Lymphocytes 32 90.4% 79.2% 0.018 0.294 Sambrano et al. (2002)

Haslinger, B CLL 12 19 87.6% 79.2% 0.209 0.440 Haslinger et al. (2004)

Iizuka, G1 SM G2 22 90.6% 79.2% 0.244 0.440 Iizuka et al. (2005)

The ten gene sets with the highest GSRI for the leukemia data set. ‘‘N’’ is the number of genes that are in the gene set as well as on

the microarray. ‘‘Rest/N’’ is the estimated percentage of differentially expressed genes in the set. ‘‘GSRI’’ is the Gene Set Regulation

Index. ‘‘GSEA p-value’’ and ‘‘GSEA FDR’’ are the nominal p-values and FDR q-values calculated with the Gene Set Enrichment

Analysis proposed in Subramanian et al. (2005). For all sets in this list, more than 79% of the genes are differentially expressed. For

five out of the top ten gene sets, the GSEA determined a p-value smaller than 0.05, whereas after correcting for multiple testing, two

sets were found to be significant by GSEA.
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also shown that this method is applicable to experimental data and enables a meaningful ranking of the

investigated gene sets. The advantages of our approach are (i) no thresholds are required, (ii) the method is

self-contained (i.e., it does not require a reference gene set for comparison), and (iii) the result of the

method is a meaningful measure of the differential gene expression of a gene set and can thus be applied for

the determination of the relevance of a gene set.
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