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Quantification of Oxygen Metabolic Rates in Human Brain
With Dynamic 17O MRI: Profile Likelihood Analysis
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Purpose: Parameter identifiability and confidence intervals
were determined using a profile likelihood (PL) analysis meth-
od in a quantification model of the cerebral metabolic rate of
oxygen consumption (CMRO2) with direct 17O MRI.
Methods: Three-dimensional dynamic 17O MRI datasets of the
human brain were acquired after inhalation of 17O2 gas with the
help of a rebreathing system, and CMRO2 was quantified with a
pharmacokinetic model. To analyze the influence of the different
model parameters on the identifiability of CMRO2, PLs were
calculated for different settings of the model parameters. In par-
ticular, the 17O enrichment fraction of the inhaled 17O2 gas, a,
was investigated assuming a constant and a linearly varying
model. Identifiability was analyzed for white and gray matter,
and the dependency on different priors was studied.
Results: Prior knowledge about only one a-related parameter
was sufficient to resolve the CMRO2 nonidentifiability, and
CMRO2 rates (0.72–0.99mmol/gtissue/min in white matter, 1.02–
1.78mmol/gtissue/min in gray matter) are in a good agreement
with the results of 15O positron emission tomography studies.
Nonconstant a values significantly improved model fitting.
Conclusion: The profile likelihood analysis shows that CMRO2

can be measured reliably in 17O gas MRI experiment if the 17O
enrichment fraction is used as prior information for the model
calculations. Magn Reson Med 78:1157–1167, 2017. VC 2016
International Society for Magnetic Resonance in Medicine.
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INTRODUCTION

The oxygen metabolism is altered by many neurodegen-
erative diseases such as Alzheimer’s disease, Parkinson’s
disease, and Huntington’s disease (1–9), or in brain

tumors (10–14). For a quantitative analysis of the meta-
bolism of these diseases, an imaging method would be
desirable that can map the local cerebral metabolic rate
of oxygen consumption (CMRO2). The only clinically
established method for direct oxygen quantification is
positron emission tomography (PET) with the oxygen
isotope 15O (3,4,10,15–18); however, it is rarely used due
to the short isotope half-life of only 2 min, which
requires costly on-site production. As an alternative,
many indirect methods for CMRO2 imaging with 1H MRI
have been proposed (19–25). Yet, the detection of the
MR accessible stable oxygen isotope 17O is preferable for
CMRO2 quantification as it can directly detect the meta-
bolic end product H2

17O. To calculate metabolic rates of
oxygen consumption in humans, the 17O MRI signal
changes from H2

17O molecules are observed during and
after inhalation of isotope-enriched 17O gas (26–33).

Direct 17O MRI and MR spectroscopy has been pre-
dominantly performed at ultra-high magnetic fields
(UHFs) of 7T and 9.4T (26–29,32–36). UHFs are advanta-
geous for 17O MRI because they partly compensate for
the low MR sensitivity of the 17O isotope which is only
about 1.1 � 10�5 of 1H due to the low natural abundance
of 17O nucleus of 0.037% and the approximately seven-
fold lower gyromagnetic ratio. Unfortunately, UHF MR
systems are not widely available and are not yet used in
clinical routine. Recently, feasibility of direct 17O MRI in
human brain and heart at clinical field strengths of 3T
has been reported (37), which has the ultimate goal of
implementing CMRO2 quantification at clinical MR sys-
tems. In the previous studies, a rebreathing (RB) system
was implemented for efficient usage of rare and expen-
sive 17O2 gas by re-inhalation of the stored 17O2 gas in
subsequent inhalation cycles (27,33). Unfortunately, this
delivery method leads to uncertainties in the determina-
tion of the 17O enrichment fraction of the inhaled gas,
which in turn can lead to systematic errors in the quanti-
ties derived from this enrichment fraction.

Our objective was to exploit the method of profile like-
lihood (PL) to determine parameter identifiability and
their confidence intervals (CIs) in a nonlinear CMRO2

quantification model. Using a recently proposed mathe-
matical modeling framework (38), likelihood-based CIs
are considered instead of CIs based on Fisher informa-
tion which cannot be applied for nonlinear CMRO2

quantification models with sparsely sampled 17O signal-
time curves (39). The likelihood-based CI for a parameter
is determined by scanning the particular parameter along
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its axis while reoptimizing all other parameters in the
model (see below for a detailed description), thereby
revealing nonlinear relations between parameters. Unlike
Fisher-based CIs, a parameter profile can become flat as
the parameter is driven to its boundaries, indicating that
the model structure has to be altered or that additional
measurements are required. The parameter is identifiable
if the likelihood-based CI is finite. If the CI is infinitely
extended in one or two directions, the parameter is prac-
tically or structurally non-identifiable, respectively.

Because the proposed modeling framework does not

require an analytical solution of differential equations

for the CMRO2 rates, more complex input functions can

be used for the 17O enrichment fraction. Based on the

parameter profiles of the amended pharmacokinetic

model, the amount of prior information is analyzed that

is crucial for the identifiability of the CMRO2. In addi-

tion, the dependence of the CMRO2 uncertainty on the

confidence of the prior information is calculated.

THEORY

The temporal behavior of the H2
17O concentration xðtÞ in

the 17O MRI inhalation experiment can be described by

the underlying ordinary differential equation (ODE):

_x
�

t;uðtÞ; u
�
¼ f
�

xðtÞ;uðtÞ; u
�
; [1]

which depends on initial values and kinetic rate parame-

ters contained in u and an externally provided stimulus

uðtÞ. The model components are linked to the measured

magnitude of the 17O MR signal, here denoted yðtÞ, by

an observational function g:

yðtÞ ¼ g
�

x
�

t;uðtÞ; u
��
þ eðtÞ; [2]

with the assumption of Gaussian errors e � Nð0;s2Þ,
which is valid if the signal-to-noise ratio (SNR) of the

MR images satisfies at least SNR>2 (40). To compare

the model response to the measured data, the scaled log-

likelihood is calculated via
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þ const:

[3]

The optimal parameter set û is estimated through mini-

mization of x2ðuÞ. To estimate parameter uncertainties,

the PL approach is used (41,42). Herein, the PL of

parameter uj is defined as

PLðujÞ ¼ min
ui 6¼j

x2ðuÞ: [4]

The CI of parameter uj is then given by all parameter val-

ues for which the corresponding likelihood value does not

exceed the threshold denoted by DCL, the x2 distribution

with one degree of freedom and confidence level CL (42):

CIuj ;CL ¼ fuj jPLðujÞ � x2ðûÞ þ DCLg: [5]

From the CI, fundamental information about the identifi-

ability of parameters can be derived and results in an

infinite CI. A flat parameter profile renders the particular

parameter as structurally non-identifiable. In this case,

either no information about the parameter is contained

in the measurements, or the other parameters can fully

compensate if the parameter value is fixed. On the other

hand, a parameter profile which exceeds the threshold

given by DCL in maximal one direction renders the

parameter practically non-identifiable (41). Here, the

data possess insufficient information to restrict the

parameter to a finite CI. Whereas structural non-

identifiabilities can be resolved by fixing model parame-

ters, e.g. through prior knowledge, elimination of practi-

cal nonidentifiabilities requires additional information

through new experiments.
Once the quantification model is modified, the

improvement over the original model needs to be deter-

mined. For this, the statistical significance of the model

change is quantified by the likelihood ratio (LR) test

(43). Therein, a null hypothesis H0: u0 is compared with

an alternative hypothesis H1: u1, with u0 2 u1. As the

negative log-likelihood in Equation [3] is minimized, the

LR is transformed into differences of x2 values. The test

statistic reads

LR ¼ x2ðu0

^
Þ � x2ðu1

^
Þ: [6]

Similar to parameter profiles, the test statistic is asymp-

totically x2-distributed (44) with ndof degrees of freedom

according to the difference in dimensionality of both

parameter sets: ndof ¼ nu1
� nu0

. Based on x2
ndof

, a P value

can be assigned, and the new model is rated an improve-

ment over the original one if P< 0.05.

METHODS

17O MRI Measurement

17O MRI data sets from one volunteer were acquired in

two dynamic 17O2 inhalation experiments (Exp1 and Exp2)

on a clinical 3T MR system (Magneton TIM Trio; Siemens

Healthcare, Erlangen, Germany) with a custom-built Tx/Rx
17O volume head coil. This four-leg low-pass birdcage coil

was tuned to the 17O resonance at f0¼16.7 MHz and was

driven in a linear mode as described previously (30). For

dynamic data acquisition, a three-dimensional (3D) ultra-

short echo time density-adapted radial acquisition tech-

nique (45) was employed, with a nominal spatial

resolution Dx of 10 mm (Exp1) and 8 mm (Exp2) at a tem-

poral resolution of 1 min (Tpulse¼ 0.8 ms; repetition time¼
8/7 ms; echo time¼ 0.52 ms; bandwidth¼150/175 Hz/pix-

el; 1 average; 7500/8570 projections� 128 sampling points

per projection; readout time¼6.7/5.7 ms). 17O MR images

were reconstructed using Kaiser-Bessel gridding (46) with-

out additional filtering of the raw data.
The volunteer inhaled 2.7 L (Exp1) and 2.5 L (Exp2) of

70%-enriched 17O2 gas (NUKEM Isotopes Imaging, Alze-

nau, Germany) via an oxygen gas delivery system with a

RB circuit. Gas was administered in pulses of 40/50 mL

using a non-MR safe demand oxygen delivery system

(DODS) (Oxytron3; Weinmann, Hamburg, Germany),

which efficiently delivers the rare and costly 17O2 gas to

the alveoli by inspirational triggering.
The imaging experiment was divided into a baseline

phase (10.5/9.2 min), wherein 17O MR signal was acquired
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at natural abundance, followed by two phases with a closed

RB system (Fig. 1a): the DODS phase (5/4.2 min), wherein
17O-enriched gas was delivered in pulses, and the RB phase

(7.5/5.5 min), during which the volunteer was breathing

the gas stored in the RB system (which contains the

exhaled 17O2 gas that is then reused to increase the 17O MR

signal). In the final washout phase (25.1/22 min), the

breathing system was opened and the volunteer was breath-

ing room air.

Spatial Registration and Extraction of the 17O Signal-Time
Curves

For anatomical comparison and co-registration, a T1-

weighted 3D 1H MR image was acquired in a separate

measurement with a standard MPRAGE sequence

(repetition time¼ 2300 ms; echo time¼2.86 ms; inver-

sion time¼1100 ms; resolution¼0.6� 0.6� 1 mm3).

First, both 17O and 1H MR images were interpolated onto

128� 128� 128 matrices. The 1H data were then manual-

ly co-registered to the 17O image, which was averaged

over the whole MR examination, using anatomical

landmarks that are visible in both images (e.g., the eyes,
the ventricles, and the outer contour of the brain) to
compensate for the different head positions in the 1H
and the 17O coils. Rigid transformation consisting of
translation and rotation in three directions was per-
formed and a transformation matrix for 1H images was
obtained. Second, the software tool Statistical Parametric
Mapping Package (SPM8) (47,48) was used to segment
gray matter (GM) and white matter (WM) brain regions
in the original 1H MPRAGE data of high spatial resolu-
tion. After this, the transformation matrix was applied to
the 3D binary masks of WM and GM regions, the masks
were then applied to the coregistered 17O MR images.
Finally, averaged 17O MR signals were calculated for
each tissue to obtain tissue-specific 17O signal-time
curves. Partial volume effects were not corrected in this
study.

CMRO2 Quantification Model

In the dynamic 17O MRI experiment, the time evolution
of the 17O MR signal is observed. It can be assumed to
be linearly correlated with the concentration of 17O due
to the short relaxation times (26,37,49). 17O MRI only
detects the H2

17O signal, and not the 17O2 molecules
bound to hemoglobin in the blood or in the gas phase
(28). Thus, the observed 17O MR signal increase after gas
inhalation is exclusively proportional to the amount of
the metabolized H2

17O water and the time evolution of
the measured observable yðtÞ (Eq. [2]) can be considered
to be proportional to the moles of H2

17O water MH17
2 O. To

convert the 17O MR signal into in vivo H2
17O concentra-

tion in mmol per gram tissue, the 17O signal intensities
before gas inhalation (i.e., during the baseline phase)
were normalized using the H2

17O natural abundance of
20.56mmol/gwater, water partition coefficients [0.71 g/mL
for WM and 0.83 g/mL for GM (50)], and averaged densi-
ty of brain tissue of 1.038 g/mL (51).

Following the principle of mass conservation, the
change of the H2

17O concentration within a given volume
can be caused either by water creation and conversion to
other intermediates in the volume, or inward and outward
diffusion to or from neighboring volumes. Therefore, the
CMRO2 quantification model, as proposed by Atkinson
and Thulborn (26), describes the change d

dt MH17
2 OðtÞ in the

given volume as an ODE:

d

dt
MH17

2 OðtÞ

¼ 2 � CMRO2 �A
17OðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H17
2 O metabolism

�KL �MH17
2 OðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

H17
2 O loss

þKG � BH17
2 OðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

H17
2 O gain

;
[7]

where the rate constant KL reflects the loss by diffusion
to blood and chemical conversion to other intermediates
and KG represents the gain by diffusion from blood. A
factor of 2 is included because 2 mol of water are pro-
duced from one mole of oxygen. A

17

OðtÞ denotes the
fraction of 17O-labeled arterial oxygen gas with

d

dt
A

17OðtÞ ¼
0

r
�

a�A
17OðtÞ

� t < TDODS

t > TDODS

;

8<
: [8]

FIG. 1. (a) Expected 17O signal change during MR examination

with inhalation of 17O2 gas based on the reaction rates reported
by Hoffmann (33) for WM region. Four phases of the experiment
are indicated. (b) Time evolution of the 17O enrichment fraction (a)

for the advanced CMRO2 quantification model. It assumes a non-
constant enrichment fraction and includes contributions from

DODS pulses (aDODS) and 17O2 gas stored in the RB circuit, which
is described during the DODS phase by s1 and during the RB
phase by aRB and s2. (c) Simplified quantification model, which

assumes constant a values.
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and BH17
2 OðtÞ is the relative amount of H2

17O in blood

(both in excess of natural abundance):

d

dt
BH17

2 OðtÞ ¼ A
17

OðtÞ: [9]

Here, a is the 17O enrichment fraction of the inhaled gas

above natural abundance, and r¼ 0.75 min�1 is the rate

at which fresh 17O binds to hemoglobin in the pulmo-

nary (26). TDODS denotes the beginning of the 17O

gas supply. The expected dynamic signal-time curve

MH17
2 OðtÞ in the GM region is shown in Figure 1a based

on the rate constants from Hoffmann (33).
Figure 1b shows the proposed time evolution of the

enrichment fraction aðtÞ for the experiment with the RB

circuit and a pulsed supply of 17O gas. This curve takes

into account that a small fraction of the 17O2 gas is

exhaled, as it did not reach the alveoli. Exhaled 17O2 gas

is stored in the RB circuit and is used up in subsequent

inhalation cycles. Thus, during the DODS phase, in addi-

tion to the 17O2 gas being delivered by DODS pulses

(aDODS), re-inhalation of the exhaled 17O2 gas occurs,

leading to a linear increase in a. Therefore, a linear

increasing model with a slope s1 was introduced. Simi-

larly, in the RB phase, a was assumed to be linearly

decreasing (s2) to aRB. The CMRO2 quantification model

can be simplified by setting both slopes s1 and s2 to zero

(Fig. 1c), i.e. assuming constant a values (26,33), but it

might lead to a reduced model fit quality. The advanced

model with slopes s1 and s2 is hereafter compared with

the simplified model with constant a values using the

LR test (Eq. [6]).

Model Analysis for CMRO2 Quantification

Parameters of the pharmacokinetic model for CMRO2

quantification were calibrated according to Equation [3].

The numerical optimization was conducted using the

trust region-based optimization algorithm lsqnonlin

implemented in MATLAB (MathWorks, Natick, Massa-

chusetts, USA) (52). In a nonlinear setting, multiple local

optima are often present. Thus, a deterministic multistart

was performed to find the global optimum (39). All mod-

el analysis, optimization and uncertainty calculations

were performed within the open-source and freely avail-

able MATLAB-based framework D2D (39). Therein, the

ODE solver CVODES from the SUNDIALS suite is used

for ODE integration (53). Following the model calibra-

tion, parameter uncertainties of the pharmacokinetic

model were calculated. If the target parameter CMRO2

was nonidentifiable, prior information based on estima-

tion of the other model parameters was included to

resolve the nonidentifiability. Thereby, a small amount

of additional prior information was desired, because the

measurement of the models prior is complex and implies

additional sources of errors. The influence of the uncer-

tainty of the prior information on the optimal CMRO2

values, estimated through minimization of x2ðûÞ (Eq. [4]),

and on the calculated CIs (Eq. [5]) was also investigated.

In this case, relative CIs of CMRO2, which are the CIs of

CMRO2 divided by the optimal CMRO2 values, were

considered to account for different CMRO2 values in var-
ious brain tissues.

To analyze the prediction capability of the advanced
pharmacokinetic model for CMRO2, the following
approach was taken: first, the model parameters CMRO2,
KL, KG, aDODS, aRB, s1, and s2 were allowed to vary (flat
prior) within boundaries of �5 to 3 in log-space. If
CMRO2 was non-identifiable, aDODS was fixed to 0.27/
0.31 (for Exp1/Exp2) based on the estimated amount of
17O2 inhaled with a single DODS pulse as in (27,32). If
CMRO2 was still non-identifiable, an averaged value of a

during the DODS phase, which constrains both aDODS

and s1, was used as prior information. This averaged 17O
enrichment fraction was calculated based on the total
amount of delivered 17O gas and the total duration of
DODS phase (0.27/0.31 for Exp1/Exp2). For the simpli-
fied pharmacokinetic model, aDODS was fixed to 0.27/
0.31 (for Exp1/Exp2). A 10% uncertainty was assumed
for both aDODS and the averaged a. Lower and upper
boundaries of the CIs of CMRO2, which include the opti-
mum CMRO2 value, were calculated using Equation [5]
for the confidence level CL¼0.33 and were used to pre-
sent the calculated CMRO2 values. It is worth noting that
in this study the CMRO2 values were presented for each
dataset separately, and not as the range among several
MR examinations.

RESULTS

An example of a 3D 17O MRI data set with the co-registered
1H MPRAGE image as well as WM and GM masks are
shown in Figure 2. The contour of the brain, which has
higher water content than the rest of the head, as well as
the eyes are clearly visible on 17O MR images. The proto-
type custom-build coil was driven in the linear mode,
which can cause L-R asymmetries in the excitation pro-
file as seen in the posterior parts of the brain due to non-
ideal coil matching. These asymmetries, however, have
only minor effects on CMRO2 quantification, because
H2

17O signal-time curves were obtained from large WM
and GM regions and were normalized to the baseline
before 17O gas inhalation. The number of 17O voxels
within the GM region was 59.5 � 103, and 41.0 � 103 with-
in the WM region. The SNR of the MR images acquired
within 1 min in the baseline phase were 6/4 for Exp1/
Exp2, thus the noise pattern can be assumed to be Gauss-
ian (40), as is presumed in Equation [2].

Figure 3 shows the calculated PLs of the parameters of
the advanced CMRO2 quantification model (in log-
space), where all model parameters were set with a flat
prior, i.e. no prior knowledge about a was assumed. The
only quantifiable parameter was KL, since it determines
the decay constant in the wash-out phase, when A17O is
zero and BH17

2 O is constant (Eq. [7]). The target parameter
CMRO2 and the other model parameters were structural-
ly non-identifiable. After assuming a constant value of
aDODS (results not shown), CMRO2 still remained non-
identifiable.

When the averaged a value during the DODS phase
was taken as a constraint, the structural non-identifiability
of parameters CMRO2, KG, and aRB was resolved (Fig. 4).
However, either aDODS or s1 are practically non-identifiable
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for each of the presented data sets. The profile of the

parameter s2 shows that a value of zero (i.e., a is con-

stant during the RB phase) is consistent with the model

without impairing the x2. The cyan dashed line repre-

sents the contribution of the chosen prior to the respec-

tive parameter profile. For example, the optimal CMRO2

value is slightly left from the minimum of the chosen

prior, and the CI of the parameters CMRO2 and KG are

dominated from the uncertainty of the prior. In contrast,

the prior uncertainty has a much smaller impact on the

CI of KL and s2.
Model fits for WM and GM regions are shown in Fig-

ure 5, in which prior knowledge about the mean a value

during the DODS phase was used. Here, CMRO2 rates

were 0.80–0.99/0.72–0.95mmol/gtissue/min in WM and

1.02–1.27/1.21–1.78mmol/gtissue/min in GM for Exp1/

Exp2 (Table 1). Compared with the results of 15O-PET

studies (16), CMRO2 rates were 34%–42% overestimated

in WM and 9%–28% underestimated in GM (Table 1). If

one/two of the first DODS pulses are disregarded to

account for the 94-mL dead volume of the cable connect-

ing DODS system with nasal cannula (i.e., a later signal

onset is assumed), 3%–4%/7%–8% higher CMRO2 val-

ues were found.
In Figure 6, the comparison of model calibration with

the advanced and the simplified models is presented. The

simplified model shows a stronger deviation from the data

in the DODS phase than the advanced model, which is

also reflected in the x2 values: x2¼ 40.0 (simplified) and

x2¼ 55.6 (advanced). From this, the LR test, described by

Equation [6], was calculated (P¼ 4.1 � 10�4< 0.05) showing

a significant improvement with the advanced model. More-

over, the calculated CMRO2 in the GM region with the

simplified model of 1.11–1.59mmol/gtissue/min is 9% and

18% underestimated compared with the advanced model

and with the results of 15O-PET studies (16).
Figure 7 shows how the a-uncertainty affects the rela-

tive CIs of CMRO2. In this case, CI, which is the differ-

ence between upper and lower boundaries of the

calculated parameter, represents two standard devia-

tions. These dependences are well represented by a qua-

dratic polynomial, but the CIs are specific for each data

set. For example, a 10% uncertainty in a leads to relative

CIs of CMRO2 of 0.22/0.28 for the WM region, and 0.23/

0.40 for the GM region in Exp1/Exp2.

DISCUSSION

Altered oxygenation is found in brain tumors and neuro-

degenerative diseases. Thus, it is of high clinical interest

to map oxygen metabolism in clinical routine. With the

recent implementation of 17O MRI (26,27,30–33), clinical

CMRO2 quantification and oxygen metabolism mapping

might become feasible; however, the different parameters

in the numerical description of the oxygen uptake are

often not identifiable from time-resolved measurements

alone. In this study, the PL method was used to identify

those parameters in the CMRO2 quantification model

that require prior knowledge for a unique identification.

FIG. 2. (a) Different orientations of an 17O MR image from Exp1, averaged over the whole MR examination. (b) Coregistered T1-weighted
1H MR image. (c) Transversal slice of WM mask. (d) Transversal slice of GM mask.

Quantification of CMRO2 With 17O MRI: Profile Likelihood Analysis 1161



FIG. 3. Exploiting the PL of the parameters of the advanced CMRO2 quantification model in WM (a, c) and GM (b, d) regions from Exp1

(a, b) and Exp2 (c, d). All presented model parameters were set with a flat prior in log-space (i.e., no prior knowledge about the 17O
enrichment fraction a was assumed). Optimal parameter values û are indicated by asterisks, with the likelihood value indicated by blue
lines; thresholds for 95% and 67% CIs are indicated by red dashed lines. Flat CIs indicate structurally non-identifiable parameters.

CMRO2, KG, and KL have units of mmol/gtissue/min, s1 � min�1, and s2 � min�1; aDODS and aRB are dimensionless.
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FIG. 4. Exploiting the PL of the parameters of the advanced CMRO2 quantification model in WM (a, c) and GM (b, d) regions from Exp1
(a, b) and Exp2 (c, d). The averaged a value during the DODS phase was implemented as prior knowledge. Optimal parameter values û

are indicated by asterisks, with the likelihood value indicated by blue lines; thresholds for 95% and 67% CIs are indicated by red
dashed lines. Cyan dashed lines represent the contribution of the chosen prior to the respective parameter profile. CMRO2, KG, and KL

have units of mmol/gtissue/min, s1 � min�1, and s2 � min�1; aDODS and aRB are dimensionless.
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The PL is an established method to assess parameter
uncertainties in nonlinear settings (39,41,54), where
asymptotic CIs based on, for example, Fisher information

are typically inappropriate (41). The latter are exact if
the solution of the model is linear in the parameters and
are a good approximation for a large amount of data and

low measurement noise. If these conditions are not ful-
filled, the Fisher information is underestimating the true

CI and cannot capture the nonlinearity effects outside
the region near the optimum. In the 17O MRI experi-
ments, the SNR of the acquired MR images was

SNR¼4–6, leading to a relatively high measurement
noise. Because the CMRO2 quantification model is non-
linear, asymptotic CIs, which are commonly used in the

least-square fitting algorithms, might be misleading.
Initially, the RB system was proposed in (27), where a

potential 17O signal during RB phase was excluded from

the data analysis due to complexity of the analytical
solution of Equation [7]. Later, it was solved for constant
a values (33); in this study, a numerical integration was

used instead of solving the ODEs analytically. This
numerical solution is beneficial for modeling of H2

17O
signal-time curves because it is more flexible and can be

used for more elaborate 17O MRI experiments that, for
example, use a lower amount of the rare 17O2 gas.

Both the DODS and the RB circuit were used to effi-

ciently deliver and use the rare and costly 17O gas.
Decreasing the amount of the 17O gas required for a sin-
gle patient experiment would directly reduce the total

cost of 17O MR examination, which might be an impor-
tant aspect for clinical studies. The DODS is triggered
internally by the patient’s inhalation and efficiently

delivers a precise and well-defined amount of 17O gas
for each inhalation. As originally discussed by Hoffmann

FIG. 5. H2
17O signal-time curves obtained in two 17O MR experiments (Exp1 and Exp2) with 17O2 gas inhalation in the WM and GM

brain regions (black squares). Data fit with the advanced pharmacokinetic model is represented by blue lines. For all data, additional

information on the 17O enrichment fraction was taken into account.

Table 1
Comparison of the CMRO2 Rates in WM and GM Regions of Human Brain (in mmol/gtissue/min), Quantified with Direct 17O MRI in Two

Experiments (Exp1 and Exp2) with 17O2 Gas Inhalation, to the Results from 15O-PET (16) and 17O MRI (26,27) Studies

Exp1 Exp2 15O-PET (16) 17O MRI at 9.4T (26) 17O MRI at 7T (27)

White matter 0.80–0.99 0.72–0.95 0.52–0.72 0.64–0.86 0.50–0.89

Gray matter 1.02–1.27 1.21–1.78 1.36–1.82 1.37–1.47 0.80–1.61
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et al. (27), the risk of gas leakage and accidents in gas
handling are minimized, because no transfer of the rare
gas from the cylinder is required and standard, clinically
approved breathing components can be used. The PL
analysis showed that only one a-related parameter needs
to be estimated in more complex CMRO2 quantification
model for the MR examination with DODS and RB
phases, as it is the case for the experiment with RB
phase only (26). The parameters of the advanced model,
s1 and s2, are practically nonidentifiable but have no
influence on either precision or uncertainty of the target
parameter CMRO2.

In this study, the advanced pharmacokinetic model for
CMRO2 quantification was used, which accounts for
linearly varying enrichment fraction of the inhaled 17O

gas (Fig. 1b). If all model parameters were initialized

without prior information, the values of CMRO2 and a

were non-identifiable (Fig. 3). Additional prior informa-

tion about aDODS, which represents the 17O enrichment

from a DODS pulse, was not sufficient to quantify

CMRO2. However, if the averaged a during the DODS

phase was taken as prior, the structural non-identifiability

of CMRO2 was resolved (Fig. 4). The identifiability is

achieved because both aDODS, which describes the inhaled

portion of 17O gas from a fresh DODS pulse, and s1,

which describes the additional amount of 17O gas from

the RB circuit, are constrained. This leads to an improved

description of the nonlinear increase of MH17
2 OðtÞ through

the change from a constant a to a more realistic input

shape. In particular, the influence of the H17
2 O gain via

metabolism and diffusion from blood, which are both pos-

itive in Equation [7], can be distinguished by the model

and lead to a better description of the data. From an anal-

ysis of the parameter profiles, s2 could be excluded from

the model without affecting either the optima or the CIs

of the other model parameters. A constant a value during

the RB phase is equivalent to a closed RB system in

which 17O2 gas is homogeneously distributed after the

DODS phase and in which the 17O fraction remains con-

stant, although the total amount of oxygen decreases after

each inhalation.
As can be seen in Figure 4, either aDODS or s1 are prac-

tically non-identifiable; however, this non-identifiability

does not affect the identifiability of the target parameter

CMRO2 and the other model parameters. If s1 is set to

zero, the practical non-identifiability of aDODS is

resolved. However, this simplified pharmacokinetic

model with constant a values, which has been used pre-

viously (27,32,33), led to a significant decrease of x2 of

the model up to 28% (Fig. 6), whereas CI and optimal

values of CMRO2 were underestimated up to 9%. Thus,

the use of the advanced model is beneficial even if not

all model parameters can be fully identified.
In the simulation of different uncertainties for the

prior information contained in a, a quadratic

FIG. 7. Relative CIs of CMRO2 as a function of the uncertainty of the estimated averaged 17O enrichment fraction during the DODS

phase (a) for WM (left) and GM (right) brain regions. Calculated values are fitted with a quadratic polynomial for two MR experiments
(Exp1 and Exp2).

FIG. 6. H2
17O signal-time curve obtained in the 17O MR experi-

ment (Exp1) in the GM region (black circles). Data points are fitted
with the simplified model with constant a values (dashed blue
line) and the advanced CMRO2 quantification model (red line).

Additional information on the 17O enrichment fraction was taken
into account.
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dependency between the relative CI of CMRO2 and the
uncertainty of a could be retrieved, as shown in Figure 7.
Precision of a can be increased by measuring the tidal
volume and the dead volume of the lungs. The tidal vol-
ume can be measured with spirometry, which is a stan-
dard pulmonary function test. In addition, when the CO2

concentration of the exhaled air is measured, the dead
space can be calculated. The increase of the a precision
from 10% to 5% would lead to an increase in CMRO2

precision of 20%–39%/10%–33% for WM/GM regions.
Another model parameter that affects the CMRO2 value

is the arrival time of the first 17O2 gas pulse at the alveo-
li. The 17O2 gas bottle and the DODS system, neither of
which are MR safe, were placed outside the MR magnet
room, and the tube delivering 17O2 gas into nasal cannu-
la had a dead volume of 94 mL. Thus, the first two
DODS pulses (volume: 40/50 mL in Exp1/Exp2) had a
lower 17O2 concentration than the remaining pulses due
to mixing with the dead volume. In a worst-case scenar-
io, this would lead to 7%–8% underestimation of
CMRO2. In our experiments, the DODS system was test-
ed with 17O2 gas pulses before the actual MR examina-
tion, so that the tube was well filled with 17O2 gas.
Thus, this time delay potentially only affected the first
17O2 pulse, which would lead to a systematic error in
the CMRO2 quantification of no more than 1%–2%,
which is much smaller than the calculated CIs.

CMRO2 rates obtained in both 17O MRI experiments
are in a good agreement with previously reported results
of 15O-PET studies (10,13,14,16) and 17O MRI at UHFs
(26,27,32,33). Yet, CMRO2 values of GM and WM regions
are closer to each other compared with the results of
15O-PET studies (Table 1). This is mainly caused by par-
tial volume effects due to the low spatial resolution of
17O MR images (Dx¼ 10/8 mm for Exp1/Exp2) and fast
transverse relaxation time T�2¼2 ms. It increases the the-
oretical full width of half maximum of the point spread
function (55) to 23%; an additional increase of 31% is
caused by the radial acquisition of k-space. Thus, almost
every pixel of 17O images contains constitutes of several
brain regions. The effect of this blurring of the CMRO2

values is lower in Exp2 compared with Exp1, because
the nominal spatial resolution of Exp2 was 20% higher.
To overcome this limitation, a partial volume correction
can be applied using, for example, a “geometric transfer
matrix” algorithm as used by Hoffmann et al. (32).
Another alternative is to use prior information from the
co-registered 1H images of higher spatial resolution in
the iterative reconstruction of 17O MR images, which can
be used for partial volume correction (31,56).

The CMRO2 values obtained in 17O MR experiments at
UHFs (Table 1) were also affected by partial volume
effects. At 9.4T, CMRO2 of 0.64–0.86/1.37–1.47mmol/gtis-

sue/min in WM/GM were found (26). At 7T, CMRO2 val-
ues of 0.50–0.89/0.80–1.61mmol/gtissue/min in WM/GM
were determined (27), and the values had a higher uncer-
tainty because data from the RB phase needed to be dis-
carded, and an estimation of a needed to be provided.
Pixel-wise CMRO2 quantification is the ultimate goal of
17O MR studies but thus far has been obtained only at
9.4T (26). In this preliminary work at 3T, the SNR of the
individual dynamic 17O MR images obtained in 1-min

intervals was not sufficient for pixel-wise CMRO2 quanti-
fication. To increase SNR, an optimized 17O quadrature

coil is under construction and iterative image reconstruc-
tion using the mutual information from coregistered 1H
images [e.g., tissues boundaries (31,56)] can be used.

In contrast to models used previously (26,27,33), pro-

file likelihood allows addressing the amount of prior
knowledge needed for robust CMRO2 quantification. As
shown by the structural identifiability in Figure 3, an

arbitrary value of CMRO2 may be determined if no suffi-
cient amount and quality of data are available or if the
chosen model renders the parameter non-identifiable.
Whenever a nonlinear model is used, the method of pro-

file likelihood should be used to assess accurate uncer-
tainties of the parameters. The practical advantage of the
advanced model is the flexibility it gives for 17O MR

experiments. Because the model equations do not need
to be solved analytically, more efficient and sophisticat-
ed 17O gas handling can be modeled, as was the case for

the DODS in this study. For example, in future improve-
ments of the setup, the problem of the oxygen shortage
at the end of the RB phase will be solved by switching

to a 16O gas supply during the RB phase, which can be
included in the advanced quantification model. Thus,
the volume of 16O gas pulses can be adjusted to compen-

sate for the losses in the RB circuit. In this case, a will
significantly decrease and aRB can be calculated based
on the amount of the supplied 16O gas.

In general, the profile likelihood approach might also
be of interest to investigate identifiability of model

parameters in other fields of MRI, as e.g. in dynamic
MRI examinations with contrast agent injections, or it
could help in other medical imaging techniques, like

PET, where tracer kinetics are modeled to determine
physiological parameters. In conclusion, the results of
the profile likelihood analysis show that CMRO2 can be

measured reliably in 17O MRI experiment with 17O gas
inhalation if the 17O enrichment fraction is estimated
based on the experimental system and introduced as pri-

or information into the model calculations.
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