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Protein abundance of AKT and ERK pathway
components governs cell-type-specific regulation
of proliferation
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Abstract

Signaling through the AKT and ERK pathways controls cell prolifer-
ation. However, the integrated regulation of this multistep process,
involving signal processing, cell growth and cell cycle progression,
is poorly understood. Here, we study different hematopoietic cell
types, in which AKT and ERK signaling is triggered by erythropoi-
etin (Epo). Although these cell types share the molecular network
topology for pro-proliferative Epo signaling, they exhibit distinct
proliferative responses. Iterating quantitative experiments and
mathematical modeling, we identify two molecular sources for cell
type-specific proliferation. First, cell type-specific protein abun-
dance patterns cause differential signal flow along the AKT and
ERK pathways. Second, downstream regulators of both pathways
have differential effects on proliferation, suggesting that protein
synthesis is rate-limiting for faster cycling cells while slower cell
cycles are controlled at the G1-S progression. The integrated math-
ematical model of Epo-driven proliferation explains cell type-
specific effects of targeted AKT and ERK inhibitors and faithfully
predicts, based on the protein abundance, anti-proliferative effects
of inhibitors in primary human erythroid progenitor cells. Our find-
ings suggest that the effectiveness of targeted cancer therapy
might become predictable from protein abundance.
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Introduction

Eukaryotic cells use a limited number of signal transduction path-

ways to integrate information from extracellular stimuli and to regu-

late cellular decisions such as proliferation, differentiation, and

apoptosis. In particular, the PI3K/AKT and Ras/MEK/ERK pathways

have been implicated in the control of cell growth and proliferation

in many different cell types (Saez-Rodriguez et al, 2015). The key

components of these pathways are highly conserved, which

suggests that they form generic proliferation-control modules that

function in a specialized way in different cell types. Indeed, previ-

ous studies suggest that the regulation of the AKT and the ERK path-

way crucially depends on the cellular context (McCubrey et al,

2011).

Both pathways are activated by multiple growth factors and

cytokines such as the hormone erythropoietin (Epo), which is the

prime regulator of erythropoiesis. Epo is essential for survival,

proliferation, and differentiation of erythroid progenitor cells and

thereby facilitates continuous renewal of mature erythrocytes

(Koury & Bondurant, 1990). The cognate Epo receptor (EpoR)

is present on the cell surface of erythroid progenitor cells as

a preformed homodimer (Livnah et al, 1999). At the stage of
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colony-forming unit-erythroid (CFU-E), primary cells exhibit highest

EpoR levels and are thus most responsive to Epo (Wu et al, 1995).

Epo-induced signaling comprises besides the activation of STAT5

(Klingmüller et al, 1996) the induction of PI3K and MAPK signal

transduction (Miura et al, 1994; Haseyama et al, 1999). The activa-

tion of MAPK pathways has been associated with erythroblast

enucleation and stress-induced erythropoiesis (Tamura et al, 2000;

Schultze et al, 2012) while PI3K signaling has been shown to

control maturation of erythroid progenitor cells by promoting cell

survival and proliferation (Myklebust et al, 2002; Bouscary et al,

2003). The open question remains how these pathways are inte-

grated to control proliferation.

PI3K/AKT is connected to the initiation of translation by the

mammalian target of rapamycin (mTOR) in proliferating erythroid

progenitor cells (Grech et al, 2008). Phosphorylation of the riboso-

mal protein S6, a downstream target of mTOR, is a crucial step for

protein synthesis, and thus cell growth. If cells are treated with the

mTOR inhibitor rapamycin, they are considerably smaller than

untreated cells (Fingar et al, 2002, 2004). Lately, an mTOR-indepen-

dent S6 activation mechanism through ERK and RSK (Roux et al,

2007) was found. S6 activation, and thus protein synthesis, is

required for cell growth and proliferation of reticulocytes (Knight

et al, 2014). Factor-induced proliferation is a complex process that

can be divided into two steps (Smith & Martin, 1973). First, cells

integrate growth factor signals and grow in G1 phase of the cell

cycle if enough nutrients are available (Pardee, 1974). Second, if a

critical mass is reached and the restriction point is crossed, cells

progress through the cell cycle, synthesize DNA, and finally undergo

cytokinesis to double their number (Jones & Kazlauskas, 2000).

It has been shown that Epo regulates proliferation of erythroid

progenitor cells and modulates cell cycle regulators (Dai et al, 2000;

Bouscary et al, 2003; Sivertsen et al, 2006). Epo stimulation of

erythroblasts results in a rapid upregulation of Cyclin-D2 as well as

Nupr1, Gstpt1, Egr1, Nab2 and a downregulation of Cyclin-G2 and

p27 (Fang et al, 2007). The regulation of cell cycle progression is

rather complex, as it is regulated by multiple feedforward and feed-

back loops (Ferrell, 2013), and for example, the negative regulators

Cyclin-G2 and p27 do not necessarily act in a coordinated manner

(Le et al, 2007). Mathematical models of the cell cycle in mamma-

lian cells have been developed that describe the change of cyclins

and CDKs with time (Yao et al, 2008; Alfieri et al, 2009); however,

only lately mechanistic and dynamic links from signaling to cell

cycle progression were established (Mueller et al, 2015).

The ample knowledge on molecular mechanisms contributing to

the regulation of erythropoiesis has been facilitated, on the one

hand, by the availability of factor-dependent, immortalized

hematopoietic cell lines from mice. For example, the interleukin (IL)

3-dependent cell lines BaF3 of lymphoid origin (Palacios & Stein-

metz, 1985) and 32D of myeloid origin (Greenberger et al, 1983)

have been utilized for decades to unravel structure–function rela-

tionship of cytokine receptors such as the EpoR (Wang et al, 1993;

Klingmüller et al, 1996). Exogenous expression of the EpoR renders

these cell lines responsive to Epo and enables proliferation in the

presence of Epo (D’Andrea et al, 1989). Due to their growth proper-

ties, BaF3 cells are currently widely used in kinase drug discovery

and represent a reliable cellular system to access kinase activity

(Jiang et al, 2005; Moraga et al, 2015). On the other hand, primary

erythroid progenitor cells from mice (mCFU-E) are readily available

from fetal liver or bone marrow, and methods for their cultivation

have been established (Rich & Kubanek, 1976; Landschulz et al,

1989). For the human system, a protocol has been devised (Broudy

et al, 1991; Miharada et al, 2006) to expand and differentiate

human erythroid progenitor (hCFU-E) cells from CD34+ cells mobi-

lized into the peripheral blood of healthy donors. With this strategy,

sufficient material of hCFU-E can be obtained to confirm in func-

tional studies the clinical relevance of observations.

Here, we present a mathematical model that links Epo-induced

activation of AKT, ERK, and S6 to cell cycle progression and prolif-

eration in the context of murine erythroid progenitor cells and

murine hematopoietic cell lines exogenously expressing the EpoR.

We uncover that the cell type-specific protein abundance is suffi-

cient to explain alterations in the dynamics of the signaling path-

ways. Further, we demonstrate how mathematical modeling can

establish a mechanistic connection from signaling to cell growth,

cell cycle progression, and proliferation upon Epo stimulation and

inhibitor treatment. We show that in murine erythroid progenitor

cells, proliferation is primarily controlled by the regulation of cell

growth, whereas regulation of cell cycle progression is the major

determinant of proliferation of the murine hematopoietic cell lines

as well as in human erythroid progenitor cells.

Results

Cell type-specific regulation of proliferation and signaling
by erythropoietin

To quantitatively assess Epo-induced proliferative responses in

murine primary erythroid progenitor cells at the colony-forming

unit-erythroid stage (mCFU-E) and in the immortalized murine cell

line BaF3 exogenously expressing the EpoR (BaF3-EpoR), we incu-

bated the cells in the presence of different Epo doses and measured

as a readout for proliferation DNA synthesis by thymidine incorpo-

ration. mCFU-E cells showed a higher sensitivity toward Epo with

an EC50 of 0.26 � 0.02 U/ml Epo as compared to 0.55 � 0.04 U/ml

Epo for BaF3-EpoR cells (Fig 1A). At saturating doses of 50 U/ml

Epo, mCFU-E cells doubled their number within 13.1 h and BaF3-

EpoR cells within 18.7 h (Fig 1B). We determined the size of

unstimulated cells by imaging flow cytometry and observed average

diameters of mCFU-E cells and BaF3-EpoR cells of 11 and 13.8 lm,

respectively (Fig 1C). mCFU-E cells were smaller and more hetero-

geneous in size. The smaller average size of mCFU-E cells correlated

with a higher sensitivity toward Epo and a shorter doubling time

compared with BaF3-EpoR cells.

To investigate the Epo-dependent regulation of cell growth and

proliferation, we examined the Epo-induced activation of AKT and

ERK pathways in mCFU-E and BaF3-EpoR cells by immunoblotting.

In the first step, the protein abundance and dynamics of phosphory-

lation of EpoR, AKT, and ERK in response to Epo stimulation were

qualitatively assessed. To study the expression and phosphorylation

of the EpoR and AKT, mCFU-E cells were stimulated with 2.5 U/ml

Epo, while BaF3-EpoR cells were stimulated with 5 U/ml Epo to

account for the at least twofold difference in sensitivities toward

Epo (Fig 1A) and the observation that responses in mCFU-E cells

already saturated at 2.5 U/ml Epo, whereas BaF3-EpoR required

more than 5 U/ml Epo (Appendix Fig S1). As shown in Fig 1D, top
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panel, the total expression level of the EpoR and the extent of EpoR

phosphorylation were higher in BaF3-EpoR cells compared with

mCFU-E cells. With regard to AKT, we consistently observed much

lower levels of Epo-induced AKT phosphorylation in BaF3-EpoR

cells. Therefore, to obtain reproducible results for Epo-induced

phosphorylation of AKT in both cell types, we examined per time

point 1 × 106 BaF3-EpoR cells and 5 × 105 mCFU-E cells. These

studies showed that although the apparent abundance of total AKT

was higher in BaF3-EpoR cells, the Epo-induced phosphorylation of

AKT was higher and more sustained in mCFU-E cells compared with

BaF3-EpoR cells (Fig 1D, middle panel). As an indicator for AKT

activation, we focused on the analysis of Ser473 phosphorylation

that is predictive for full kinase activation (Alessi et al, 1996; Scheid

et al, 2002; Sarbassov et al, 2005) since we observed that it corre-

lates with Thr308 phosphorylation in an Epo dose-dependent

manner (Appendix Fig S2). We previously noted that cytokine

receptors activated the MAP kinase pathway to a much lower extent

compared with receptor tyrosine kinases (Iwamoto et al, 2016) and

showed that 50 U/ml Epo is required to achieve an ERK phosphory-

lation degree of at least 10% in mCFU-E cells (Schilling et al, 2009).

Therefore, we stimulated mCFU-E cells and BaF3-EpoR cells with

50 U/ml Epo to reliably examine ERK phosphorylation. As depicted

in Fig 1D, bottom panel, higher ERK protein levels as well as

elevated levels of ERK phosphorylation were observed in BaF3-EpoR

cells, but overall both cell types exhibited a comparable transient

ERK phosphorylation dynamics.

To quantitatively assess the cell type-specific differences, we

determined the specific concentrations of key signaling molecules.

We assumed spherical geometry of the cells and calculated the cyto-

plasmic volumes and cell surface areas by confocal microscopy

(Table 1). For each protein of interest, calibrator proteins of known

concentration were used to determine the absolute number of mole-

cules per cell for mCFU-E, BaF3-EpoR, and 32D-EpoR cells, a cell

line that was used for validation experiments (Table 1). BaF3-EpoR

cells exhibited a ten times higher density of EpoR molecules on their

cell surface (26 molecules/lm2) than mCFU-E cells (2.6 molecules/

lm2). The accurate quantification of total molecules per cell and

the correction for the difference in cellular volume showed that

indeed the concentration of total ERK was higher in BaF3-EpoR

(2964 � 166 nM) than in mCFU-E cells (1140 � 64 nM), whereas

the concentration of total AKT was comparable (510 � 62 nM in

BaF3-EpoR cells and 407 � 16 nM in mCFU-E cells).

To quantitatively examine the dynamics of Epo-induced signal

transduction in mCFU-E and BaF3-EpoR cells, we used randomized

sample loading in combination with quantitative immunoblotting to

determine in a time-resolved manner the phosphorylation of EpoR,

AKT, and ERK in both cell types. In our previous studies (Becker

et al, 2010), at maximum 75% of receptor dimers on the cell surface

were bound to Epo. Therefore, we assumed the EpoR phosphoryla-

tion degree does not exceed 75% (Fig 1E). We experimentally deter-

mined the phosphorylated fraction of AKT by quantitative protein

arrays that combine in-spot normalization and binding model-based

calibration; 54% of AKT was phosphorylated in mCFU-E cells upon

stimulation with 2.5 U/ml Epo for 10 min (Appendix Fig S3). For

ppERK, we previously showed by quantitative mass spectrometry

that at maximum 10% of ERK1/2 is double-phosphorylated in

mCFU-E cells (Schilling et al, 2009). These numbers were used to

derive the nanomolar concentrations of pEpoR, pAKT, and ppERK

in mCFU-E cells. The concentrations of the respective abundance in

BaF3-EpoR cells were scaled accordingly as mCFU-E and BaF3-EpoR

cells were always analyzed on the same blot. In both cell types, the

dynamics of the concentration of pEpoR was transient albeit with

higher peak amplitude and steady state level in BaF3-EpoR cells

(Fig 1E, top panel), which reflects their much larger total density of

EpoR. Despite the higher EpoR activation in BaF3-EpoR cells, pAKT

concentrations were higher in mCFU-E cells (Fig 1E, middle panel).

▸Figure 1. Characterization of Epo-induced proliferation and signaling.

A DNA content of mCFU-E and BaF3-EpoR cells in response to different Epo concentrations. [3H]-Thymidine incorporation was measured after 14 h (mCFU-E) or 38 h
(BaF3-EpoR). Data represented as mean � standard deviation, N = 3. Lines represent sigmoidal regression. EC50 values are given.

B Cell doubling with time in response to 50 U/ml Epo. Cell numbers were determined by manual counting using trypan blue exclusion assay. Data represented as
mean � standard deviation, N = 3. Lines represent exponential regression. Doubling time is indicated.

C Size determinations of mCFU-E and BaF3-EpoR cells. Exemplary fluorescence microscopy pictures upon Hoechst staining for nucleus visualization with 60× objective.
The bar represents 10 lm distance (upper panel). Cell diameter was measured by imaging flow cytometry. Cytoplasm was stained with Calcein, and nuclei were
stained with DRAQ5. Probability density function of size distribution with indicated mean diameter of mCFU-E and BaF3-EpoR cells. All cells were growth factor-
deprived and unstimulated.

D Epo-induced phosphorylation of EpoR, AKT, and ERK of mCFU-E and BaF3-EpoR cells. Above each panel, the number of growth factor-deprived cells examined per
time point is indicated as well as the concentration of Epo applied for stimulation. To the left, the position of the molecular weight marker is indicated in kDa and
arrowheads indicate the position of the protein of interest. For the detection of the EpoR, 5 × 106 mCFU-E cells were stimulated with 2.5 U/ml Epo and 5 × 106 BaF3-
EpoR cells were stimulated with 5 U/ml Epo. Cells were lysed, subjected to immunoprecipitation with anti-EpoR, and were analyzed by immunoblotting using either
anti-pTyr (pEpoR) or anti-EpoR (EpoR) antibodies. For the detection of AKT, mCFU-E cells were stimulated with 2.5 U/ml Epo and BaF3-EpoR cells were stimulated
with 5 U/ml Epo. Per time point, cellular lysates equivalent to 5 × 105 mCFU-E cells and 1 × 106 BaF3-EpoR cells were analyzed by immunoblotting using anti-pAKT
and anti-AKT antibodies. For the detection of ERK, cells were stimulated with 50 U/ml Epo. Per time point, cellular lysates equivalent to 8 × 105 cells were analyzed
by immunoblotting. Immunoblot detection was performed with chemiluminescence utilizing a CCD camera device (ImageQuant).

E Absolute concentrations of pEpoR, pAKT, and ppERK in mCFU-E and BaF3-EpoR cells with time in response to 50 U/ml Epo. Experimental data of a representative
experiment are depicted with filled circles, and dashed lines represent splines. Error bars indicate standard deviation estimated by an error model. N = 1.

F Expression of cell cycle indicator genes of mCFU-E and BaF3-EpoR cells in response to 5 U/ml Epo. Genes were selected based on microarray analysis. Experimental
data are shown as fold change to unstimulated cells with mean � standard deviation, N = 3. Welch modified two-sample t-test, *P < 0.05.

G Fold change of fractions of cells in S/G2/M phase of the cell cycle with respect to 0 U/ml Epo. Growth factor-deprived cells were stimulated with indicated Epo doses
for given time. Fractions in sub-G1, G1, S, G2/M were determined by propidium iodide (PI) staining for DNA content. Data represented as mean � standard deviation,
N = 3. Welch modified two-sample t-test, n.s. = not significant, *P < 0.05, **P < 0.01, ***P < 0.005. The percentage of cells in S/G2/M phase in unstimulated cells is
additionally indicated.

Source data are available online for this figure.
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This is not simply an effect of AKT expression, which was compara-

ble in both cell types (Table 1). Moreover, the maximum concentra-

tion of ppERK was similar, despite the higher abundance of ERK in

BaF3-EpoR cells (Table 1). The dynamics of ppERK in BaF3-EpoR

and mCFU-E cells was slightly different at time points beyond

15 min of Epo stimulation (Fig 1E, bottom panel). These data indi-

cate that EpoR activation is translated into cell type-specific patterns

of activation of the AKT and ERK pathways.

To provide a link between signal transduction and cell cycle

progression, transcriptome analysis was performed for up to 18.5 h

after stimulation of BaF3-EpoR cells with 1 U/ml Epo (Appendix Fig

S4A) and for up to 24 h after stimulation of mCFU-E cells with

0.5 U/ml Epo (Appendix Fig S4B). These analyses revealed that in

both cell types several cell cycle regulator genes were differentially

expressed upon Epo stimulation (Appendix Fig S4). Prominent

among these cell cycle regulators affected by Epo were the activator

Cyclin-D2, and the repressors Cyclin-G2 and p27, all of which jointly

control the progression from G1 phase to S phase—the key event for

cell cycle entry (Fang et al, 2007). On the other hand, other genes

involved in the regulation of the cell cycle such as cyclinE1 (CCNE1)

and cyclinE2 (CCNE2) showed only little regulation in either cell

types. To confirm the transcriptomics studies, we examined the

selected Epo-responsive cell cycle-regulating genes by quantitative

RT–PCR analysis (Fig 1F) and showed that after 3 h of stimulation

with 5 U/ml Epo, a saturating Epo dose for proliferation in BaF3-

EpoR and mCFU-E cells (Appendix Fig S1), mRNA induction of

cyclinD2 (CCND2), and mRNA repression of cyclinG2 (CCNG2) and

p27 (CDKN1B) exhibited comparable fold changes in BaF3-EpoR

and mCFU-E cells. These results suggested that the quantification of

the expression of cyclinD2, cyclinG2, and p27 might provide an early

quantitative measure to compare Epo-induced cell cycle progression

in BaF3-EpoR and mCFU-E cells. To summarize the contribution of

the cell cycle activator and the two cell cycle repressors that coun-

teract each other in controlling cell cycle progression, we defined a

cell cycle indicator as follows:

cyclinD2½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cyclinG2½ � � p27½ �p

As evidenced in Fig 1F, after 3 h of Epo addition we observed in

BaF3-EpoR and mCFU-E comparatively small changes in the expres-

sion of the individual components (e.g. only cyclinG2) but a strong

increase in the cell cycle indicator, 16-fold for BaF3-EpoR cells and

13-fold for CFU-E cells, respectively. These results underscore that

at this early time point the coefficient reflects the complex regula-

tion of cell cycle progression in response to Epo stimulation better

than any of its components alone.

Notably, the cell cycle indicator was significantly (P = 0.04)

higher in BaF3-EpoR cells compared with CFU-E cells (Fig 1F, right

panel). In line with this observation, we observed by propidium

iodide staining after stimulation with 5 U/ml Epo for 16 h (BaF3-

EpoR) or 11 h (mCFU-E) that the fold change of cells in the S/G2/M

phase of the cell cycle in response to Epo stimulation was also

significantly (P = 0.002) higher in BaF3-EpoR cells compared with

mCFU-E cells (Fig 1G). This result supports our notion of the cell

cycle indicator as an early measure for cell cycle progression and

shows that, whereas mCFU-E cells are already committed to cell

cycle progression, an increasing fraction of BaF3-EpoR cells enters

S/G2/M phase in response to stimulation with increasing Epo doses.

The dynamics of EpoR, AKT, and ERK phosphorylation were distinct

between the two cell types, which also differed in their Epo sensitiv-

ity of the proliferative response and their proliferation rate.

Influence of cellular protein abundance on Epo-induced
signaling dynamics

To understand how the cell type-specific signaling dynamics of AKT

and ERK arise, we applied quantitative dynamical pathway model-

ing. Our mathematical model consists of coupled ordinary differen-

tial equations assuming mass action kinetics, and a Hill-type

phenomenological term at the receptor level. As depicted in Fig 2A,

the model describes preformed dimers of the EpoR to be phosphory-

lated (pEpoR) upon Epo stimulation. Dephosphorylation of the

pEpoR is catalyzed by the pEpoR-activated phosphatase SHP1 and a

constitutively active phosphatase. In the model, pEpoR forms

Table 1. Cytoplasmic concentration of pathway components of
mCFU-E, BaF3-EpoR, and 32D-EpoR cells.

mCFU-E BaF3-EpoR 32D-EpoR

Cytoplasm (lm3) 399 1,400 1406

Cell surface area (lm2) 378.5 600.3 607

EpoR surface
(molecules/lm2)

2.6 26.1 22.7

EpoR (nM) 4.16 18.62 16.76

PI3K/AKT

AKT (nM) 407 � 16.3 510 � 62.1 607.7

PI3K (nM) 12.7 � 2.5 12.4 � 0.8 14.3

SHIP1 (nM) 15.4 � 2.5 84.2 � 10.4 127.8

PTEN (nM) 10.4 � 0.5 107.4 � 7.0 96.8

PDK1 (nM) 545 � 80 763 � 175 1554.5

Gab1 (nM) 20.8 � 2.3 – –

Gab2 (nM) – 30 1.1

Ras/ERK

Ras (nM) 3,530 � 249 9,531 � 790 7855.4

Raf (nM) 1,340 � 298 3,886 � 864 7807.3

MEK (nM) 1,460 4,380 4743.9

ERK (nM) 1,140 � 64 2,964 � 166 2326.1

S6 (nM) 5,340 � 694 2,590 � 270 4531.8

Ratio to mCFU-E:

mTOR 1 6.18 1.8

Rictor 1 4.57 0.19

Raptor 1 3.08 2.3

RSK 1 7.4 2.8

Cytoplasmic volumes were estimated using imaging flow cytometry
excluding the nucleus. 1,000 EpoR molecules on the surface of mCFU-E cells
were reported (D’Andrea and Zon, 1990). 15,500 EpoR molecules on the
surface of BaF3-EpoR cells were determined by a saturation-binding assay
with [125I]-labeled Epo (Becker et al, 2010). Number of EpoR molecules on the
surface of 32D-EpoR cells was calculated in comparison to BaF3-EpoR cells
using flow cytometry. All other concentrations were determined as fold
differences to BaF3-EpoR expression level. “–” indicates the absence of
protein. For details, see Appendix G.
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complexes with Sos, PI3K, GTP-Ras, and SHIP1. PI3K generates

PIP3 that recruits AKT and PDK1 to the plasma membrane, trigger-

ing phosphorylation of AKT. SHIP1 and PTEN dephosphorylate PIP3

and thus inhibit the activation of AKT. The pEpoR-Sos complex

induces the formation of GTP-Ras that in turn activates the Raf/

MEK/ERK cascade. ppERK is dephosphorylated by dual-specific

phosphatases (DUSP). Both pAKT and ppERK regulate the expres-

sion of cyclinD2, cyclinG2, and p27. Phosphorylated S6 is linked to

the regulation of cell growth and proliferation (Meyuhas & Dreazen,

2009). Phosphorylated AKT catalyzes the activation of mTOR that

forms the complexes TORC1 and TORC2 with binding partners

Raptor and Rictor, respectively. TORC1 facilitates S6 phosphoryla-

tion. ppERK can also trigger the phosphorylation of S6 via phospho-

rylation of RSK. Thus, pAKT and ppERK signals are integrated in the

phosphorylation of S6 through mTOR and RSK (Appendix Fig S5) as

well as in the expression of cell cycle regulators. To perturb the

system, we used inhibitors acting at different processes (AKTVIII,

phosphorylation of AKT; U0126, MEK activity; BID1870, phosphory-

lation of RSK; rapamycin, mTOR activity). By a systematic model

reduction (Appendix F.2), we tested the binding rates of the adaptor

proteins Gab1/2 (Sun et al, 2008) to the EpoR. We identified that

the adapter proteins Gab1/2 may bind either very fast or slow and

therefore play a negligible role in the fast equilibrium of receptor–

adaptor complex formation. Additionally, we decomposed the enzy-

matic rate constants (e.g. for phosphatases and kinases) into the

product of total enzyme concentration and a biochemical rate

constant (also called catalytic efficiency, or turnover, kcat). This

decomposition enabled us to quantify the biochemical rate constant

as a property of the enzyme, which therefore can be assumed to be

independent of a given cell type, whereas the enzyme concentration

is cell type-specific (Appendix F). For further details on the coupled

ordinary differential equations, the dynamic variables, the parame-

ter estimation as well as their annotation (Appendix Table S1), and

their sensitivities toward inhibitors, see Appendix F. The full SBML

model is available at FAIRDOMHub (https://fairdomhub.org/).

In the mathematical model, cell type-specific and global parame-

ters were distinguished. The total concentrations of all proteins in

the signaling network are specific for the particular cell type

(Table 1; Appendix Fig S7). By contrast, the rate constants for rever-

sible protein binding and enzymatic catalysis are global parameters

independent of cell type. In principle, however, these kinetic para-

meters might still be affected by further regulatory proteins that

have not been included in the model. To test this, the question was

whether the different expression levels of the pathway components

we measured for mCFU-E and BaF3-EpoR cells could explain the

observed cell type-specific signal processing through the ERK and

AKT pathways. To this end, we used the measured protein concen-

trations as an input and otherwise assumed identical kinetic param-

eters for both cell types. The mathematical model was fitted first for

receptor activation and deactivation to account for the different

EpoR and JAK2 levels in the two cell types (Appendix Fig S8; Becker

et al, 2010; Bachmann et al, 2011). In total, 432 data points (the

raw data can be viewed as source data of the Figures and the

Appendix) of Epo-induced pathway activation, measuring pEpoR,

pAKT, GTP-Ras, ppERK, and pS6, were used to estimate the 82

global kinetic parameters of the model. The experimental conditions

comprised different Epo doses and perturbation by inhibitor treat-

ment or overexpression of negative regulators (Appendix Figs S9–

11). We found that the distinct signaling dynamics and dose

responses to Epo were captured by the mathematical model

(Fig 2B–G; Appendix Fig S13).

In summary, our mathematical analysis indicates that differences

in signal processing can be explained by different abundance in

signaling proteins in mCFU-E and BaF3-EpoR cells, based on a

mathematical model with global kinetic parameters.

Experimental validation of model predictions for
negative regulators

Having established the mathematical model for the activation of the

AKT and ERK pathways in CFU-E and BaF3-EpoR cells, the negative

regulators of signaling came into focus.

First, the lipid phosphatases SHIP1 and PTEN were overex-

pressed, and the impact on AKT activation was monitored (Fig 3A).

In mCFU-E cells, a strong effect of PTEN overexpression on Epo-

induced AKT phosphorylation was experimentally observed, and a

weaker effect of a similar overexpression of SHIP1, which were both

captured by the model (Fig 3A, Appendix Fig S13). Further, we

observed that the Epo-induced induction pAKT in wild-type BaF3-

EpoR cells was even lower than in mCFU-E cells with overexpressed

PTEN (Fig 3A), which is consistent with the high concentrations of

SHIP1 and PTEN in BaF3-EpoR cells (Table 1). The mathematical

model calibrated based on these data nevertheless predicted that

overexpression of SHIP1 or PTEN would decrease AKT phosphoryla-

tion even further in these cells. Indeed in an independent experi-

ment, the Epo-induced dynamics of pAKT in BaF3-EpoR cells

overexpressing SHIP1 or PTEN was in agreement with the model

trajectories (Fig 3B). Further, we predicted with the model and

◀ Figure 2. Mathematical modeling of the Epo-induced AKT, ERK, and S6 activation.

A The model is represented as a process diagram and reactions are modulated by enzyme catalysis (circle-headed lines) or inhibition (bar-headed lines). Prefix “p”
represents phosphorylated species. Bold framed species were experimentally measured. White capsules represent inhibitors. Binding of the ligand Epo to its
cognate receptor results in the phosphorylation of EpoR. Receptor and associated complexes are depicted in yellow, the AKT pathway is red, the ERK pathway is
blue, and cell cycle genes and the S6 network are shown in green.

B–G Model calibration with time-resolved quantitative immunoblot data of mCFU-E cells in blue and BaF3-EpoR cells in black. Growth factor-deprived mCFU-E cells
(5 × 106 cells per condition) and BaF3-EpoR cells (1 × 107 cells per condition) were stimulated with different Epo doses, and absolute concentrations were
determined for pEpoR (B), pAKT (C), ppERK (D). The scale for pS6 (E) was estimated in arbitrary units. GTP-Ras (F) and ppERK were determined upon stimulation
with indicated, color-coded Epo doses. pEpoR was analyzed by immunoprecipitation followed by immunoblotting, GTP-Ras was analyzed after pulldown using a
fusion protein harboring GST fused to the Ras binding domain of Raf-1 followed by detection by quantitative immunoblotting. For pAkt and ppERK, cellular lysates
were subjected to quantitative immunoblotting. Calibrator proteins were used for EpoR, AKT, GTP-Ras, and ERK to facilitate the conversion to nM concentrations.
Experimental data are represented by filled circles. Error bars represent standard deviation estimated by an error model. Solid lines represent model trajectories.
N = 1.

Source data are available online for this figure.
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validated experimentally that simultaneous downregulation of

SHIP1 and PTEN to their respective concentrations in mCFU-E cells

enhanced Epo-induced pAKT levels in BaF3-EpoR cells to the extent

observed in mCFU-E cells (Appendix Fig S13).

Second, the DUSPs, a family of phosphatases that negatively

regulate ERK signaling, were examined. The analysis of DUSP

protein abundance is challenging because multiple isoforms with

different functions exist and only very few antibodies, mostly with

low specificity, are available. In our proteome-wide quantitative

mass spectrometry analysis of unstimulated mCFU-E, hCFU-E, and

BaF3-EpoR cells, Epo-regulated DUSP family members were below

the detection limit. Therefore, we used the mRNA expression levels

as proxy, assuming at least some correlation with protein expres-

sion. The mathematical model predicted a log2-fold change of 5.27

higher basal expression of DUSP in BaF3-EpoR cells compared with

mCFU-E cells (Fig 3C). To experimentally validate this model

prediction, we first identified by microarray analysis of mCFU-E

cells (Bachmann et al, 2011) and BaF3-EpoR cells (Appendix Fig

S14) DUSP4, DUSP5, and DUSP6 as family members that are dif-

ferentially expressed in response to Epo stimulation. The analysis of

the basal mRNA expression of these DUSP by quantitative RT–PCR

showed that the log2-fold difference in the basal expression of

DUSP4, DUSP5, and DUSP6 in BaF3-EpoR cells compared with the

expression in mCFU-E cells (Fig 3D) was in agreement with the

prediction by the mathematical model.

In summary, the expression levels of negative regulators of the

AKT and ERK pathways are critical for cell type-specific Epo signal

processing.

Cell type-specific information flow through ERK and
AKT pathways

To test our observation that the abundance of signal transduction

proteins is a key determinant of the dynamics of cell type-specific

signal processing, we examined another Epo-responsive hematopoi-

etic cell line, 32D cells, which are derived from the myeloid branch,

that exogenously express the EpoR, 32D-EpoR. We determined the

abundance of pathway components in 32D-EpoR cells by quantita-

tive immunoblotting (Table 1) and utilized these concentrations in

our mathematical model as cell type-specific parameters. Without

altering the previously determined global kinetic parameters,

we simulated the putative response of pAKT, ppERK, and pS6 at

50 U/ml Epo in 32D-EpoR cells and observed good agreement with
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Figure 3. Model predictions and experimental validations for negative
regulators of AKT and ERK signaling.

A Model calibration with mCFU-E wild-type cells, and mCFU-E cells
overexpressing SHIP1 or PTEN, and BaF3-EpoR wild-type cells. Experimental
data are represented by filled circles. Error bars represent standard
deviation estimated by an error model. Solid lines represent model
trajectories. N = 1.

B Model prediction of pAKT dynamics in BaF3-EpoR cells overexpressing PTEN
or SHIP1. Model predictions are represented by solid lines. Experimental
validation data obtained by quantitative immunoblotting are represented
by filled circles. Error bars represent standard deviation estimated by an
error model. A representative experiment is shown. N = 1.

C Model prediction for the basal expression level of the dual-specific
phosphatase (DUSP). DUSP abundance ratio between BaF3-EpoR and
mCFU-E cells was identified by the mathematical model. The solid line
indicates the profile likelihood. The dashed red line indicates the threshold
to assess point-wise 95% confidence interval. The asterisk indicates the
optimal parameter value.

D Experimental validation of basal DUSP expression in mCFU-E and BaF3-
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BaF3-EpoR cells. Data are normalized to the Rpl32 gene. Ratios of
expression in BaF3-EpoR cells compared with mCFU-E cells are shown as
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1.5*interquartile range. N = 10. For details, see Appendix K.

Source data are available online for this figure.
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the experimental data for ppERK and pS6 (Fig 4A). For pAKT, the

peak time and signal duration were correctly predicted, while the

model overestimated the peak amplitude and steady state of pAKT.

Further, given the similarities in the protein abundance of 32D-EpoR

and BaF3-EpoR cells, we assumed similarities in the dynamics of

pathway activation. However, model simulations in line with exper-

imental data used for model calibration under those conditions

(Fig 2F and G; Appendix Fig S12) indicated that differences in the

peak amplitude, signal duration, and steady state existed between

these two cell types (Appendix L). Further we showed that the good-

ness of fit of a mathematical model calibrated with data from

mCFU-E and BaF3-Epor cells is superior to predict the dynamic acti-

vation of AKT, ERK, and S6 in response to 50 U/ml Epo stimulation

in 32D-EpoR cells when adapted to the cell type-specific protein

abundance compared with mathematical models calibrated with

data obtained from mCFU-E cells or BaF3-EpoR cells alone

(Appendix L).

To systematically characterize the signal flow through the under-

lying molecular network (see Fig 2A) in mCFU-E, BaF3-EpoR, and

32D-EpoR cells and to identify possible similarities or differences,

the relative sensitivities (response coefficients) of the network

output were computed with respect to the expression levels of these

components. As output, the integrated response of pS6 was used as

the most downstream molecular component that integrates the

signals coming from the AKT and ERK pathway (Fig 4B). This anal-

ysis showed a remarkable difference between mCFU-E cells and

BaF3-EpoR cells. The integrated response of pS6 in mCFU-E cells

was primarily sensitive to the AKT pathway (Fig 4B, left column),

whereas in BaF3-EpoR the influence of the Ras/MEK/ERK cascade

dominated (Fig 4B, right column). The 32D-EpoR cells were similar

to BaF3-EpoR cells but with a slightly higher impact of AKT path-

way components AKT, PI3K, SHIP1, PTEN, PDK1, and PI(4,5)P2 on

integrated pS6 (Fig 4B, middle column).

The high sensitivities in the specific cell types were overall asso-

ciated with high abundance of the signaling proteins and pathway

activities (Table 1; Figs 1E and 2B–D). For example, the AKT path-

way was most active in mCFU-E cells and exhibited highest sensitiv-

ities there (Fig 4B, third row), while the Ras/MEK/ERK pathway

was most active in BaF3-EpoR cells having highest sensitivities there

(Fig 4B). This result might seem counterintuitive, as high sensitivity

is typically associated with network components that occur at low,

limiting concentration. However, the distributions of sensitivities

can be rationalized based on the fact that S6 is an integration node

of signals from the Ras/MEK/ERK and AKT pathways. The more

active a pathway is in a given cell type (e.g. AKT in CFU-E cells;

Ras/MEK/ERK in BaF3-EpoR cells), the more it controls S6 phos-

phorylation and, hence, changes in such a pathway will have

greater effects (higher sensitivities) than changes in quantitatively

less important pathways if the system is not saturated. Therefore,

the distribution of sensitivities for the integrated response of pS6

provides a quantitative measure for the differential signal flow along

the Ras/MEK/ERK and AKT pathways in the different cell types.

The sensitivity analysis indicated, for example, that the RSK

abundance (Fig 4B, bottom line) exhibits a high impact on the inte-

grated pS6 response in BaF3-EpoR and 32D-EpoR cells but not in

mCFU-E cells. These model-based insights are consistent with the

high sensitivities obtained for the Ras/MEK/ERK pathway in the

former two cell types, as RSK is downstream of ERK. Although wild-

type 32D-EpoR cells already exhibited 2.8-fold higher levels of RSK

than mCFU-E cells (Table 1), the sensitivity analysis taking this

protein abundance into account suggested that RSK overexpression

in 32D-EpoR cells would result in an increase in integrated pS6 in

response to Epo stimulation. To test this counterintuitive model

prediction, RSK was overexpressed in 32D-EpoR cells. Utilizing the

amount of RSK experimentally detected in wild-type 32-EpoR cells

as well as the amount of RSK present in the cells overexpressing

RSK, the mathematical model predicted a major increase in pS6 in

response to Epo stimulation, whereas pAKT and ppERK remain

rather unaffected. In line with this model prediction, experimental

overexpression of RSK had no effect on the Epo-induced dynamics

of the upstream components pAKT and ppERK in 32D-EpoR cells

but strongly increased the Epo-stimulated phosphorylation level of

S6 (Fig 4C). The mathematical model correctly predicted the effect

of RSK overexpression in 32D-EpoR cells on the Epo-induced

dynamics of ppERK and pRSK, but the peak amplitude of pAKT and

pS6 were underestimated. In four independent experiments, the

▸Figure 4. Validation of Epo-induced signaling dynamics in 32D-EpoR cells under RSK wild-type conditions and upon overexpression of RSK.

A Model prediction and experimental validation for pAKT, ppERK, and pS6 dynamics of 32D-EpoR cells in response to 50 U/ml Epo. Simulations are based on measured,
cell type-specific protein abundance of 32D-EpoR cells and global kinetic rates estimated from mCFU-E and BaF3-EpoR cells. Model predictions are represented by
solid lines. Experimental validation data obtained by quantitative immunoblotting are represented by filled circles. Error bars represent standard deviation estimated
by an error model, N = 1.

B Sensitivity analysis for integrated pS6 in mCFU-E, 32D-EpoR, and BaF3-EpoR cells. Measured, cell type-specific protein abundance and estimated global kinetic rates
were taken into account. Proteins were grouped according to the network modules. Integrated pS6 exhibited high sensitivity toward RSK in 32D-EpoR and BaF3-EpoR
cells but not in mCFU-E cells.

C Model prediction and experimental validation for RSK, AKT, ERK, and S6 activation upon RSK overexpression (oe) and 5 U/ml Epo stimulation in 32D-EpoR cells.
Simulations are based on measured, cell type-specific protein abundance of 32D-EpoR cells and global kinetic rates estimated from mCFU-E and BaF3-EpoR cells.
Model predictions are represented by solid lines. Experimental validation data obtained by quantitative immunoblotting are represented by filled circles. Error bars
represent standard deviation estimated by an error model. Integrated pS6 was significantly higher upon RSK overexpression as compared to 32D-EpoR wild-type (wt)
cells, N = 4 (lower right panel). Two-sample t-test, ***P < 0.005.

D Impact of AKT, Ras, or PTEN overexpression on Epo-induced pS6 dynamics in mCFU-E and BaF3-EpoR cells. Quantitative immunoblotting upon overexpression of
PTEN, AKT, a constitutive active Ras protein, or the empty vector control in mCFU-E cells or BaF3-EpoR cells. Growth factor-deprived mCFU-E cells (5 × 106 cells per
condition) and BaF3-EpoR cells (1 × 107 cells per condition) were stimulated with 5 U/ml Epo for indicated time points. Cellular lysates were analyzed by
immunoblotting employing sequential reprobing anti-pAKT, anti-ppERK, anti-pS6, anti-S6, and to ensure equal loading with anti-beta-actin antibodies. Detection was
performed with chemiluminescence using a CCD camera device (ImageQuant). Quantification of pS6 on the right is depicted as fold change to wild-type samples at
30 min after Epo stimulation. Error bars represent standard deviation. oe: overexpression. N = 3. Welch modified two-sample t-test, n.s. = not significant, *P < 0.05.

Source data are available online for this figure.
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integrated pS6 response was increased (Fig 4C bottom right panel),

validating the prediction of high RSK sensitivity of pS6 in this cell

type. In further agreement with the sensitivity analysis, the observed

experimental overexpression of constitutively active Ras resulted in

comparison with wild-type cells in a significantly (P = 0.04) stronger

elevation of Epo-induced S6 phosphorylation in BaF3-EpoR than in

mCFU-E cells, whereas the overexpression of PTEN significantly

(P = 0.01) diminished Epo-stimulated S6 phosphorylation more

strongly in mCFU-E than in BaF3-EpoR cells (Fig 4D).

Taken together, our results show that the abundance of the

network components directs the signal flow differentially through

the AKT and Ras/MEK/ERK pathways. In mCFU-E cells, signaling to

S6 occurs primarily through the AKT axis and in BaF3-EpoR cells

primarily through the ERK pathway. In 32D-EpoR cells signaling to

S6 is similar to BaF3-EpoR cells, but with slightly higher sensitivity

toward AKT.

Effects of AKT and ERK inhibition on Epo signaling depend on
cell type

Having established how the protein abundance of the network

components controls the information flow through the AKT/ERK/S6

network from the EpoR, the question was how this network controls

Epo-induced proliferation in a cell type-specific manner. To this

end, inhibitors of specific network nodes in the AKT and ERK path-

ways were employed: AKT VIII, an inhibitor of AKT phosphoryla-

tion (Lindsley et al, 2005), and U0126, an inhibitor of ERK

phosphorylation (Favata et al, 1998). The dynamics of AKT, ERK,

and S6 phosphorylation upon inhibitor treatment and stimulation

with 5 U/ml Epo were monitored in all three cell types by quantita-

tive immunoblotting. Specifically, the levels of pAKT, ppERK, and

pS6 were determined in the absence or presence of 0.05, 0.5

and 5 lM of each inhibitor after 0, 10, 30, and 60 min of Epo

stimulation.

In mCFU-E cells, AKT VIII reduced the pAKT amplitude. In 32D-

EpoR and BaF3-EpoR cells, higher AKT VIII doses reduced the

steady state level of pAKT, which therefore became more transient

(Fig 5A, upper panel). The cell type-specific impact of inhibitors on

signaling dynamics was even more pronounced for U0126 treat-

ment. The duration of the ppERK signal decreased with higher

U0126 doses in mCFU-E cells, whereas the signal was overall

reduced in BaF3-EpoR cells and to lesser extent also in 32D-EpoR

cells (Fig 5A, lower panel). Surprisingly, none of the three cellular

systems studied here exhibited a significant cross talk between the

AKT and the ERK axes. Under wild-type conditions, AKT VIII

reduced pAKT but not ppERK, and U0126 decreases ppERK but not

pAKT. S6 phosphorylation was primarily influenced by AKT VIII in

mCFU-E cells, whereas U0126 more strongly diminished the pS6

response in BaF3-EpoR. 32D-EpoR cells occupied an intermediate

position, showing both AKT VIII and U0126 effects on pAKT and

ppERK, respectively. This might, however, depend on protein abun-

dance because overexpression of PTEN, AKT, or Ras could shift the

information flow (Fig 4D). The cell type-specific inhibitor effects are

consistent with the signal flow in the network in the three cell types

(cf. Fig 4B).

To account for the cell type-specific dynamics upon inhibitor

treatment and for the fact that signaling components such as AKT,

ERK, and S6 integrate information (Schneider et al, 2012), the inte-

grated response within 1 h was calculated based on the experimen-

tally determined data points. The values of these integrals were

simulated with our mathematical model. Subsequently, the cell

type-specific model parameters for the strength of the inhibitors

were estimated. The experimentally observed effects of the two inhi-

bitors on integrated pAKT, ppERK, and pS6 responses (Fig 5A) were

reproduced by the mathematical model, except for a slight under-

estimation of the AKT VIII effect on pS6 in 32D-EpoR cells (Fig 5B).

To quantify the impact of the two inhibitors, AKTVIII and U0126,

on the regulation of cell cycle progression, the expression levels of

cyclinD2, cyclinG2, and p27 in response to 5 U/ml Epo stimulation

for 3 h and inhibitor treatment in all three cell types were deter-

mined by quantitative RT–PCR. The observed expression pattern of

the individual genes cyclinD2, cyclinG2, and p27 was complex

(Appendix Fig S16). However, the cell cycle indicator, as a coeffi-

cient which summarizes the influence of the individual components,

showed a graded alteration to the doses of the two inhibitors

(Fig 5C). Specifically, the cell cycle indicator was significantly

reduced already at low doses of AKT VIII in mCFU-E cells, at inter-

mediate AKT VIII doses in 32D-EpoR cells, and only at high AKT

VIII doses in BaF3-EpoR cells (Fig 5C). The effect of U0126 dose on

the cell cycle indicator was graded in a similar manner for the three

cell types (Fig 5C).

Taken together, these data show that the effect of inhibition of

the AKT and ERK pathways depends on the cellular context, and the

main determinant is protein abundance.

Linking Epo-induced signal processing to cell proliferation

Next, the molecular activity of the AKT-ERK signaling network was

linked to cell proliferation. The integrated pS6 response and the cell

cycle indicator quantify key cellular activities contributing to prolif-

eration upon Epo stimulation and inhibitor treatment. On the one

hand, pS6 serves as an indicator of the activity of the ribosomal

◀ Figure 5. Evaluation of the effects of AKT inhibitor AKT VIII and MEK inhibitor U0126 on signaling and cell cycle.

A Epo-induced signaling upon AKT or MEK inhibitor treatment. Growth factor-deprived cells were pretreated for half an hour with AKT VIII or U0126, respectively, and
subsequently stimulated with 5 U/ml Epo. PDI served as loading control.

B Model calibration with integrated pAKT, ppERK, and pS6 data upon inhibitor treatment and 5 U/ml Epo stimulation of mCFU-E, 32D-EpoR, and BaF3-EpoR cells. Area
under curve from time-resolved, quantitative immunoblotting data was calculated and is represented by filled circles, N = 3. Error bars represent standard deviation
estimated by an error model. Solid lines represent model trajectories.

C Analysis of cell cycle indicator genes upon AKT VIII and U0126 treatment. Growth factor-deprived cells were pretreated for half an hour with indicated doses of a
single inhibitor, followed by stimulation with 5 U/ml Epo for 0 and 3 h. The expression of cyclinD2, cyclinG2, and p27 was measured by quantitative RT–PCR and
normalized to the Rpl32 gene. Genes were selected based on microarray analysis. Experimental data are shown as fold change to unstimulated cells with
mean � standard deviation, N = 3. Welch modified two-sample t-test, n.s. not significant, *P < 0.05, **P < 0.01, ***P < 0.005.

Source data are available online for this figure.
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protein S6 kinase, which is a pivotal regulator of protein synthesis

and thus cell growth (Ruvinsky et al, 2006). On the other hand, the

cell cycle regulator quantifies the balance of positive and negative

regulators that control the entry of cells into the S phase of the cell

cycle. Although the details of size regulation of mammalian cells

remain poorly understood (Kafri et al, 2013), it is plausible that

cellular context, such as protein abundance, will determine how

protein synthesis and thus cell growth versus the G1-S transition

rate control factor-induced proliferation. Cells with a long G1 phase

will have sufficient time to grow, so that primarily the regulators of

the G1-S transition, which are quantified by the cell cycle indicator,

should control proliferation. Conversely, proliferation in cells with a

short G1 phase should be more strongly controlled by growth as a

necessary precondition for cell cycle progression.

Linear regression was applied to link the activity of AKT and

Ras/MEK/ERK pathways with the cell cycle indicator (Fig 6A). The

mathematical model of the signaling network was used to evaluate

the integrated pAKT response and the integrated ppERK response in

the absence or presence of 0.05, 0.5 or 5 lM of inhibitor upon 1-h

stimulation with 5 U/ml Epo for mCFU-E, BaF3-EpoR, and 32D-

EpoR cells. The measured values of the integrated pAKT response,

the integrated ppERK response, and the cell cycle indicator for

mCFU-E, BaF3-EpoR, and 32D-EpoR cells yielded high correlation,

indicating that the effects of the inhibitor treatment on the cell cycle

indicator are explained very well by changes in the integrated pAKT

response and the integrated ppERK response with only slight devia-

tion at the highest inhibitor doses (Fig 6B; Appendix N).

To quantitatively connect the integrated pS6 response and the

cell cycle indicator to cell proliferation upon Epo stimulation and

inhibitor treatment (Fig 6A), the proliferation of mCFU-E, BaF3-

EpoR, and 32D-EpoR cells in response to 5 U/ml Epo and in the

absence or presence of 0.005, 0.05, 0.5 and 5 lM of AKT VIII or

U0126 was measured. The analysis shown in Appendix O (Fig 6C)

revealed that both variables are not correlated and therefore are

likely to be regulated independently. Multiple linear regression anal-

ysis was performed to link the integrated pS6 response and/or the

cell cycle indicator with proliferation in mCFU-E, BaF3-EpoR, and

32D-EpoR cells upon Epo stimulation and inhibitor treatment, and

the best model was selected based on Akaike’s information criterion

(Burnham & Anderson, 2002). For mCFU-E cells, Epo-induced

proliferation under inhibitor treatment was described best as a func-

tion of the integrated pS6 response only (R2 = 0.89), whereas for

BaF3-EpoR cells and 32D-EpoR cells, the proliferation data were best

described based on the cell cycle indicator (R2 = 0.86 and 0.81,

respectively; Fig 6D). Noteworthy, the models with contribution of

both the integrated pS6 response and the cell cycle indicator to

proliferation were not significantly more informative than the models

of individual contributions (Appendix O) but predicting proliferation

in mCFU-E, BaF3-EpoR, and 32D-EpoR cells upon Epo stimulation

and inhibitor treatment similarly well (Appendix Fig S26).

In summary, the quantitative dynamical pathway model of

Epo-induced signaling was linked to the phenotypic parameter

proliferation rate by linear regression. The dependence of mCFU-E

proliferation on pS6 indicates that for these rapidly proliferating

cells, protein synthesis and cell growth primarily control prolifera-

tion. By contrast, for BaF3-EpoR and 32D-EpoR cells, the cell cycle

indicator was best predictive for proliferation upon Epo stimulation

and inhibitor treatment.

Combinatorial effects of AKT and ERK inhibitors predicted by the
integrative model

To validate the quantitative link between Epo-induced signaling and

proliferation, the integrative mathematical model (Fig 6A) was

used, which was established for a single Epo dose, to predict prolif-

eration in response to a broad range of Epo concentration and in

response to overexpression of the negative regulators of AKT signal-

ing, SHIP1, and PTEN (Fig 3A and B) for mCFU-E and BaF3-EpoR

cells. Overall these phenotype predictions by the mathematical

model (Fig 7A, upper panels) were in good agreement (R2 = 0.88;

Appendix Fig S19) with the experimental data (Fig 7A, lower

panels). In agreement with the experimental data, the mathematical

model predicted that there was no effect of overexpression of SHIP1

or PTEN on the EC50 of Epo-induced proliferation of BaF3-EpoR,

whereas in mCFU-E cells a small effect was detectable and overex-

pression of PTEN consistently gave rise to the highest EC50 values.

The EC50 values estimated for the experimentally measured prolifer-

ative responses of the wild-type mCFU-E (0.27 � 0.05) and BaF3-

EpoR (0.68 � 0.46) cells were in line with our initial observations

(see Fig 1A). At very low Epo concentrations, the mathematical

model predicted an elevated baseline proliferation for wild-type and

SHIP1-overexpressing mCFU-E cells that was not detected in the

experiment. At these low Epo concentrations, residual phosphoryla-

tion of signaling components is detectable and this information was

utilized for calibration of the mathematical model. However, in the

experiments the activation of signal transduction below a certain

threshold apparently was not sufficient to elicit proliferation and

therefore baseline proliferation is absent. Yet, in line with the exper-

imental observations the mathematical model predicted that overex-

pression of PTEN decreased the proliferative response of mCFU-E

cells and BaF3-EpoR cells the most. Further, the mathematical

model correctly predicted that BaF3-EpoR and 32D-EpoR cells

showed comparable Epo dose-dependent proliferation, an observa-

tion that was experimentally validated (Appendix Fig S20).

The integrative mathematical model was used to predict the

proliferation of mCFU-E, BaF3-EpoR, and 32D-EpoR cells upon stim-

ulation with 5 U/ml Epo and cotreatment with AKT VIII and U0126.

Note that these model predictions (Fig 7B, upper panels) were based

on the results of the multiple linear regression analysis with the

treatment of single inhibitors only. For mCFU-E and 32D-EpoR cells,

AKT inhibition was predicted to control Epo-induced cell prolifera-

tion in a dose-dependent manner, without or negligible combined

effect of MEK inhibition. Only for BaF3-EpoR cells, the model indi-

cated that Epo-induced cell proliferation is strongly inhibited by

increasing doses of both AKT VIII and U0126, resulting in a

combined effect of both drugs together (Fig 7B, upper right panel).

These model predictions were experimentally validated (Fig 7B,

lower right panel) and imply that cellular context determines

whether molecularly targeted inhibitors of proliferation have

combined effect or not.

To highlight that the protein abundance governs cell type-specific

regulation of Epo-induced proliferation and as a consequence the

sensitivity toward inhibitors, we prepared human CFU-E cells from

CD34+ cells mobilized into the peripheral blood of three healthy

donors. By means of mass spectrometry, we quantified 6,925

proteins, of which 5,912 proteins were shared among the hCFU-E

cells from the three independent donors (Fig 8A). Next, we applied

ª 2017 The Authors Molecular Systems Biology 13: 904 | 2017

Lorenz Adlung et al Protein abundance governs proliferative response Molecular Systems Biology

13



Inhibitor (µM)
0 0.05 0.5 5

mCFU-E

Inhibitor (µM)
0 0.05 0.5 5

BaF3-EpoR

Inhibitor (µM)
0 0.05 0.5 5

32D-EpoR

0.0

0.5

1.0

C
el
lc
yc
le
in
di
ca
to
r(
a.
u .
)A

0.4 0.6 0.8 1.0
Integrated pS6 (a.u.)

R2=0.89

mCFU-E BaF3-EpoR

0.4 0.6 0.8 1.0
Cell cycle indicator (a.u.)

R2=0.86

32D-EpoR

0.4 0.6 0.8 1.0
Cell cycle indicator (a.u.)

R2=0.810.4

0.6

0.8

1.0

Pr
ol
ife
ra
tio
n
(a
.u
.)

Inhibitor (µM) 0 0.005 0.05 0.5 5
U0126

Inhibitor (µM)
AKT VIII

0 0.005 0.05 0.5 5

D

Data FitAKT VIII Data FitU0126

Kinetic
modeling

Regression
modeling

B

PI3K MEK

Cell cycle
indicator

Proliferation

AKT ERK

AKT VIII U0126

mTOR RSK

S6

Epo

C

In
te
gr
at
ed
pS
6
(s
im
ul
at
ed
,a
.u
. ) mCFU-E

0.4 0.6 0.8 1.0
Cell cycle indicator
(simulated, a.u.)

0.25

0.50

0.75

1.00

1.25
BaF3-EpoR

0.4 0.6 0.8 1.0
Cell cycle indicator
(simulated, a.u.)

32D-EpoR

0.4 0.6 0.8 1.0
Cell cycle indicator
(simulated, a.u.)

Inhibitor (µM) 0 0.005 0.05 0.5 5
U0126

Inhibitor (µM)
AKT VIII

0 0.005 0.05 0.5 5

Figure 6. Linking cell cycle and integrated pS6 to proliferation.

A Scheme of the mathematical model. Integrated pAKT and ppERK obtained from our kinetic model were linked by linear regression analysis to measured cell cycle
indicator. Similarly, cell cycle indicator and integrated pS6 were linked to measured proliferation by linear regression analysis and model selection.

B Linear regression fit for the respective cell cycle indicator of experimental data. Data points represent mean � standard deviation, N = 3. Solid lines represent the
linear regression fit.

C Simulated integrated pS6 response versus simulated cell cycle indicator of mCFU-E, BaF3-EpoR, and 32D-EpoR cells upon 5 U/ml Epo stimulation and single inhibitor
treatment at indicated doses.

D Linear regression modeling and model selection revealed that while proliferation of mCFU-E cells is best described by integrated pS6 only, for 32D-EpoR and BaF3-
EpoR cells proliferation correlates mainly with cell cycle indicator. Proliferation was measured, and integrated pS6 and cell cycle indicator were simulated with our
mathematical model. The linear regression model selection is based on Akaike’s information criterion. The respective correlation is given. For details, see Appendix N
and O.

Source data are available online for this figure.

Molecular Systems Biology 13: 904 | 2017 ª 2017 The Authors

Molecular Systems Biology Protein abundance governs proliferative response Lorenz Adlung et al

14



Pr
ol
ife
ra
tio
n
(a
.u
.)

0 0.005 0.05 0.5 5

0

0.005

0.05

0.5

5

U
01
26
(µ
M
)

AKT VIII (µM)

Experimental validation

0 0.005 0.05 0.5 5

0

0.005

0.05

0.5

5

U
01
26
(µ
M
)

AKT VIII (µM)

Model prediction

32D-EpoR

0.4 0.6 0.8 1

Proliferation (a.u.)

0 0.005 0.05 0.5 5

0

0.005

0.05

0.5

5

U
01
26
(µ
M
)

AKT VIII (µM)

Experimental validation

0 0.005 0.05 0.5 5

0

0.005

0.05

0.5

5
U
01
26
(µ
M
)

AKT VIII (µM)

Model prediction

BaF3-EpoR

0.6 0.8 1

Proliferation (a.u.)

0 0.005 0.05 0.5 5

0

0.005

0.05

0.5

5

U
01
26
(µ
M
)

AKT VIII (µM)

Experimental validation

0 0.005 0.05 0.5 5

0

0.005

0.05

0.5

5

U
01
26
(µ
M
)

AKT VIII (µM)

Model prediction

A mCFU-E

Epo (U/ml)
0.0005 0.005 0.05 0.5 5 50

.

0.0

0.5

1.0
BaF3-EpoR

Epo (U/ml)
0.0005 0.005 0.05 0.5 5 50

0.0

0.5

1.0

Epo (U/ml)
0.0005 0.005 0.05 0.5 5 50

0.0

0.5

1.0

Epo (U/ml)
0.0005 0.005 0.05 0.5 5 50

0.0

0.5

1.0

Experimental
validation

169 nM (11x) SHIP1

Experimental
validation

125 nM (12x) PTEN

Experimental
validation

Wild type

Model
prediction

337 nM (4x) SHIP1

Model
prediction

322 nM (3x) PTEN

Model
prediction

Wild type

Model
prediction

169 nM (11x) SHIP1

Model
prediction

125 nM (12x) PTEN

Model
prediction

Wild type

Experimental
validation

337 nM (4x) SHIP1

Experimental
validation

322 nM (3x) PTEN

Experimental
validation

Wild type
mCFU-E BaF3-EpoR

mCFU-E

0.8 0.9 1

Proliferation (a.u.)

B

Pr
ol
i fe
ra
tio
n
(a
. u
.)

Pr
ol
ife
ra
tio
n
(a
.u
.)

P r
ol
i fe
ra
tio
n
(a
. u
.)

EC50

EC50

EC50

EC50

Figure 7. Prediction of cell type-specific proliferation.

A Upper panel: Model prediction of Epo-dependent proliferation in mCFU-E and BaF3-EpoR cells overexpressing SHIP1 or PTEN. Solid lines represent model trajectories.
Lower panel: Experimental validation of PTEN and SHIP1 overexpression effects on Epo-dependent proliferation. Proliferation was assessed using [3H]-Thymidine
incorporation 14 h (mCFU-E) or 38 h (BaF3-EpoR) after retroviral transduction with PTEN or SHIP1 construct for overexpression. Data are represented as
mean � standard deviation, N = 3. EC50 values are given.

B Upper panel: Model prediction of proliferation upon combined inhibitor treatment and 5 U/ml Epo stimulation. Maximum proliferation was scaled to 1.
Lower panel: Experimental validation of proliferation upon combined inhibitor treatment and 5 U/ml Epo stimulation. Proliferation was measured as cell numbers
after 14 h (mCFU-E) or 38 h (BaF3-EpoR, 32D-EpoR) with Coulter Counter. Maximum was scaled to 1.

Source data are available online for this figure.
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the “proteomic ruler” method (Wi�sniewski et al, 2014) to calculate

the copy numbers of individual proteins per cell. To convert these

numbers into cytoplasmic concentrations, we measured the average

cell size by imaging flow cytometry (Fig 8B) and calculated the cyto-

plasmic volume from these data. The average cytoplasmic volume

of the hCFU-E of the three donors was comparable but considerably

larger than the volume of the mCFU-E cells (Fig 8C). To relate the

results obtained with the proteomic ruler method to the previous

measurements in mCFU-E, BaF3-EpoR, and 32D-EpoR utilizing

quantitative immunoblotting and recombinant protein standards,

we performed additional mass spectrometric measurements for

mCFU-E and BaF3-EpoR cells. As shown in Fig 8D, for the key

signaling components in the two cell types, the number of molecules

per cell determined with the different techniques showed a good

correlation (Spearman’s rank-based coefficient of correlation

q = 0.88), validating our determinations by quantitative

immunoblotting and confirming that the snapshot measurement by

mass spectrometry yielded reliable results. Surprisingly, the protein

abundance of the key signaling proteins determined for hCFU-E cells

showed very low variance between the three independent donors

but were highly distinct from the values obtained for mCFU-E cells

as well as for the murine cells lines BaF3-EpoR and 32D-EpoR

(Fig 8E). For example, Ras, Raf, and AKT were present at much

lower levels in hCFU-E compared to mCFU-E, BaF3-EpoR, and 32-

EpoR cells, whereas for PI3 kinase elevated levels were observed in

hCFU-E cells. As expected, the levels of the EpoR were comparable

in hCFU-E and mCFU-E and elevated to the same extent in Ba3-EpoR

and 32D-EpoR cells. To link the signaling layer to proliferation, we

applied our concept that larger (see Fig 8B) and more slowly divid-

ing (Appendix Fig S28) cells regulate proliferation primarily by the

control of G1-S progression (Appendix Q). Since the measured

protein abundance of the key signaling proteins was highly compa-

rable in the hCFU-E cells of the three donors, we used the average

concentrations of these proteins to predict with our mathematical

model the impact of the AKT inhibitor and MEK inhibitor on Epo-

supported cell proliferation in hCFU-E cells. Without any further

information (Appendix S), the mathematical model predicted the

effect of the AKT inhibitor, the MEK inhibitor, and a combination

thereof on Epo-induced proliferation in hCFU-E cells (Fig 8F). To

validate this model prediction experimentally, we quantified the

numbers of hCFU-E cells after 96 h of stimulation with 5 U/ml Epo

and individual or combined treatment with AKT VIII and U0126.

Since hCFU-E cells from donor 3 responded most strongly to Epo,

showing a significantly higher fold change in the numbers of cells

compared with donor 1 (P = 0.038) and donor 2 (P = 0.009) after

3 days of subcultivation (Appendix Fig S31) and thus a advanta-

geous signal-to-noise ratio, we focused the analyses of proliferation

inhibition on hCFU-E cells from this donor in biological triplicates

(Fig 8F). We observed that the Epo-induced proliferation of hCFU-E

is impaired upon treatment with both inhibitors individually and

their combination. Pearson’s coefficient of correlation R2 = 0.88 of

the results obtained in two independent experiments confirmed the

reproducibility of our experimental observations (Appendix Fig

S32). When the impact of AKT VIII and U0126 and the combination

thereof on the Epo-induced proliferation in hCFU-E and in mCFU-E

was compared, we observed that the experimental data on prolifera-

tion (Fig 8G) were in line with the model predictions for hCFU-E

(Fig 8F) and mCFU-E cells (Figs 6D and 7B), respectively. The

results depicted in Fig 8G show that the impact of AKT VIII on Epo-

induced proliferation was comparable in hCFU-E and mCFU-E

(P = 0.3), whereas MEK inhibition (P = 0.03) and the combinatorial

inhibitor treatment (P = 0.03) exhibited significantly larger effects

on Epo-promoted proliferation in hCFU-E cells (Fig 8G).

These findings showcase that protein abundance can be reliably

measured from snapshot data of human material. Based on these

data, our integrative mathematical model allows to evaluate the

impact of inhibitors in silico and thus may serve to improve the

treatment of proliferative disorders such as tumors driven by exacer-

bated growth factor signaling.

Discussion

By a combination of quantitative measurements with mathematical

modeling, we show that proliferation upon Epo stimulation and

inhibitor treatment of mCFU-E cells is well predicted by integrated

◀ Figure 8. Predicting combined effects of inhibitor treatment on Epo-induced proliferation of hCFU-E cells solely based on protein abundance.
Human CFU-E cells were prepared from CD34+ cells mobilized into the peripheral blood of three independent stem cell donors.

A Venn diagram representing overlap of hCFU-E proteome from three independent healthy donors. In total, 6,925 proteins were quantified.
B Size determinations of hCFU-E compared to mCFU-E cells. Cell diameter was measured by Imaging flow cytometry. Cytoplasm was stained with Calcein, and nuclei

were stained with DRAQ5. Probability density function of size distribution with indicated mean diameter of hCFU-E and mCFU-E cells. All cells were growth factor-
deprived and unstimulated.

C Cytoplasmic volumes of BaF3-EpoR, 32D-EpoR, mCFU-E, and the hCFU-E cells. All volumes were determined using imaging flow cytometry as described in (B).
D Correlation between protein molecules per cell for key signaling components determined by quantitative immunoblotting or quantitative mass spectrometry and the

“proteomic ruler” method (Wi�sniewski et al, 2014) in BaF3-EpoR and mCFU-E cells. Diagonal line as guide to the eye. Spearman’s rank-based coefficient of correlation
q = 0.88.

E Protein abundance of key signaling components was determined by mass spectrometry of whole cell lysates of hCFU-E cells. Copy numbers of proteins per cell were
obtained by the “proteomic ruler” method and converted to cytoplasmic concentrations with the volumes calculated from (B) and shown in (C).

F Model prediction and experimental validation of proliferation upon single or combined inhibitor treatment with AKT VIII and U0126 upon 5 U/ml Epo stimulation.
Maximum proliferation was scaled to 1. Proliferation was measured as cell numbers, counted with a hemocytometer after 96 h by trypan blue exclusion assay. Solid
lines represent model trajectories. Experimental data are represented as mean � standard deviation. N = 3.

G Comparison of the effect of single or combinatorial inhibitor treatment on Epo-induced proliferation of murine and human CFU-E cells. Proliferation was measured
upon single or combined inhibitor treatment with AKT VIII and U0126 upon 5 U/ml Epo stimulation. Numbers of mCFU-E cells were determined with the Coulter
Counter after 14 h, whereas numbers of hCFU-E cells were determined with a hemocytometer after 96 h by the trypan blue exclusion assay. Maximum proliferation
was scaled to 1. Data are represented as mean (N = 3), and error bars indicate standard deviation. Data of mCFU-E cells are presented in Figs 6D and 7B, and data of
hCFU-E cells are taken from Fig 8F. Tukey multiple comparison of means, n.s. = not significant, *P < 0.05.

Source data are available online for this figure.

ª 2017 The Authors Molecular Systems Biology 13: 904 | 2017

Lorenz Adlung et al Protein abundance governs proliferative response Molecular Systems Biology

17



pS6 as a proxy for cell growth, whereas integrated pAKT and ppERK

regulating cell cycle progression described proliferation upon Epo

stimulation and inhibitor treatment of hCFU-E, BaF3-EpoR, and

32D-EpoR cells best. Importantly, the experimentally observed dif-

ferences in the dynamics of Epo-induced activation of AKT, ERK,

and S6 in mCFU-E, BaF3-EpoR, and 32D-EpoR cells are primarily

due to cell type-specific abundance of key signaling components.

In principle, the link from Epo-induced signaling to cell prolifera-

tion could be established through cell cycle progression or cell

growth or a combination of both. To investigate the connection of

Epo-induced AKT and ERK pathway activation to proliferation, we

linearly connected the integrated responses of pAKT and ppERK to

cell cycle progression and/or the integrated pS6 response reflecting

cell growth.

Since early measurements can be indicative of the outcome of cell

decisions (Shokhirev et al, 2015), we analyzed the expression of

three cell cycle genes after 3 h of Epo stimulation and calculated the

cell cycle indicator as a coefficient to quantify cell cycle progression.

The three cell cycle genes cyclinD2, cyclinG2, and p27 considered

were identified from microarray data as differentially regulated genes

(Appendix Fig S4). At saturating Epo doses, the individual genes

cyclinD2, cyclinG2, and p27 were expressed to similar extent in

mCFU-E and BaF3-EpoR cells (Fig 1F). However, treatment with

AKT inhibitor had only a slight impact on the expression of cyclinD2

in mCFU-E cells (Appendix Fig S18), but due to upregulation of the

cell cycle repressors cyclinG2 and p27 resulted in a strong reduction

of the cell cycle indicator (Fig 6B). Treatment with MEK inhibitor

had only mild effects on the expression of cyclinG2 and p27 alone

(Appendix Fig S16), but the alterations in the expression level of

both genes together in the denominator of the cell cycle indicator

explained the observed effects of inhibitor treatment on Epo-induced

proliferation in BaF3-EpoR cells (Fig 7B). Therefore, the cell cycle

indicator as a coefficient summarizing alterations in the expression

of three genes involved in the control of cell cycle progression is

more informative than alterations in the expression of individual

genes alone. To quantify cell growth, we utilized the integrated pS6

response. It was shown that embryonic fibroblasts from mutant

mice, which cannot phosphorylate S6, are reduced in cell size but

accelerated in cell division (Ruvinsky et al, 2005). Work in chicken

erythroblasts suggested that the length of the G1 phase of the cell

cycle ensures proper balancing between growth and cell cycle

progression rates (Dolznig et al, 2004). We showed that at saturating

Epo concentrations the doubling time, which is considered as a func-

tion of cell growth controlled by integrated pS6, correlates with dif-

ference in size of mCFU-E and BaF3-EpoR as well as 32D-EpoR cells

(Appendix Q). In line with this assumption, hCFU-E cells, which are

considerably larger than mCFU-E cells (Fig 8B), also doubled their

number more slowly than mCFU-E cells (Fig 1B; Appendix Fig S28).

We observed that the impact of AKT or MEK inhibitors on Epo-

induced proliferation in BaF3-EpoR cells and 32D-EpoR cells is

explained by the sensitivity of the cell cycle indicator, whereas for

mCFU-E the impact on the integrated pS6 response is most informa-

tive. To ensure sufficient oxygen supply, the oxygen-carrying capac-

ity of mature erythrocytes has to be tightly controlled (Hawkey

et al, 1991). Therefore, the size of erythroid progenitor cells is

connected to a physiological function and is decisive to maintain

functionality. On the contrary, the hematopoietic cell lines BaF3-

EpoR and 32D-EpoR can proliferate unlimited in the presence of Epo

without fulfilling additional tasks. Therefore, here rapid cell cycle

progression is key and the step controlled by integrated pS6 is no

longer rate-limiting. This is in line with reports proposing that cell

lines evolve toward rapid cell growth (Pan et al, 2008), whereas in

primary cell maintenance of a specific function that depends on cell

size can be key. Therefore, the specific link from factor-induced cell

signaling to proliferation can be cell type specific.

In general, linear models are a simple and robust quantification

of the input–output function. However, it is more difficult to

rationalize mechanistically how the different variables are related.

Therefore, it is still under debate to which detail signaling mecha-

nisms should be modeled and how they can be connected to pheno-

typic behavior (Saez-Rodriguez et al, 2009; Birtwistle et al, 2013).

This study investigates three layers of the cellular response to

growth factors, which operate on distinct time scales: signal trans-

duction, gene expression, and cell proliferation (Appendix Fig S27).

While it is recognized that signal processing occurs across these

layers and time scales (Klamt et al, 2006), so far data-based models

of growth factor signaling have focused—with few exceptions

(Kirouac et al, 2013)—on the fast (< 1 h) signal transduction layer.

This focus has, at least in part, been due to the fact that the molecu-

lar details of signal transduction are overall better understood than

those of the downstream layers. Consequently, data-based mathe-

matical models that connect signal transduction, gene expression,

and cell cycle regulation present a critical challenge that as yet is

largely unmet (Gonçalves et al, 2013). To address this challenge, we

developed a modular modeling approach that links mechanism-

based models of signal transduction with conceptually simple but

effective, linear regression models for the downstream layers. A

practical rationale for this approach is that many targeted drugs for

cancer therapy address signal transduction (reviewed in Saez-

Rodriguez et al, 2015). Hence, our approach describes the immedi-

ate action of the drugs on signal transduction in mechanistic detail

and, in turn, infers from the signaling dynamics the proliferative

behavior of the cells by a linear regression model. This approach

succeeded in quantitatively predicting proliferation inhibition by

combinations of AKT and ERK pathway inhibitors in hCFU-E,

mCFU-E, BaF3-EpoR, and 32D-EpoR cells.

Signal transduction networks, such as the AKT and ERK path-

ways, have a common core topology irrespective of cell type.

Dynamic pathway models have usually been developed for specific

cells by estimating a set of kinetic parameters (mainly enzymatic

rate constants) from measurements of model variables (e.g. phos-

phorylation states) in a given cell (Kim et al, 2010). The concept

of protein abundance determining the utilization of connections

and the dynamics of cellular signal transduction (Appendix F) is

not limited to hematopoietic cell types and can be extended to

other cells (Merkle et al, 2016). It was shown that the abundance

of growth factor receptors correlates with growth factor responses

and AKT/ERK bias in diverse breast cancer cell lines (Niepel et al,

2014). We show here that the mere abundance of a cytokine recep-

tor such as the EpoR is not sufficient to explain proliferative

responses. Whereas mCFU-E and hCFU-E cells harbor comparable

levels of the EpoR, the abundance of key signaling molecules is

very distinct and culminates in major difference in the sensitivity

of their Epo-induced proliferative responses toward the AKT and

MEK inhibitor. Further refinements might become necessary, as

the signaling network topology implemented here involves
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simplifications and neglects presence of different isoforms such as

Gab1 in hCFU-E and mCFU-E cells and Gab2 in BaF3-EpoR and

32D-EpoR cells (Table 1, Fig 8E; Appendix F), which might need

to be included in a larger context as these low-abundant proteins

can be the bottlenecks of signaling (van den Akker et al, 2004;

Shi et al, 2016). However, even the cell type-specific wiring of

feedback loops in signal transduction (Klinger et al, 2013;

D’Alessandro et al, 2015; Stites et al, 2015) ultimately depends on

protein expression and can thus be captured by the conceptual

framework proposed here. By combining the analysis of protein

abundance and structure data, Kiel et al (2013) showed that the

abundance of signaling components determined the cell context-

specific topology of the ErbB signaling network. Further, predicting

signaling dynamics from (comparatively simple) static measure-

ments of protein abundance may become of practical use for prog-

nosis, as shown for the JNK network in neuroblastoma (Fey et al,

2015). However, for cancer cells, oncogenic mutations that affect

enzymatic activities of specific proteins or their binding interac-

tions might also require adjustment of selected biochemical param-

eters or network topologies (Kiel & Serrano, 2009; AlQuraishi et al,

2014).

To determine the abundance of signaling components, we used

in our approach quantitative immunoblotting (Schilling et al,

2005) and quantitative mass spectrometry in combination with the

“proteomic ruler” method that is based on the determination of

total protein concentrations relative to the abundance of histones

(Wi�sniewski et al, 2014). The results shown in Fig 8C demonstrate

that the abundance of the signaling components determined by

quantitative immunoblotting is very comparable to the results

obtained by quantitative proteome-wide mass spectrometric

measurements (Kulak et al, 2014; Hein et al, 2015). Protein abun-

dance in tumor material can be quantified using a label-free

approach as described above or a super-SILAC approach employ-

ing a labeled reference cell line (Zhang et al, 2014). It has been

suggested that the abundance of proteins is characteristic for dif-

ferent cell types (Wilhelm et al, 2014) and can even be used to

separate subtypes of cancer cell lines (Deeb et al, 2012). Even if

not all proteins can be quantified, mathematical modeling linked

with sensitivity analysis provides a hierarchy of important network

components as it is widely applied to investigate parametric

dependence of model properties (Schilling et al, 2009; Maiwald

et al, 2010; Perumal & Gunawan, 2011). In our approach, the rela-

tive impact of protein abundance on integrated pS6 was calculated

and it was shown that in mCFU-E cells, integrated pS6 was

controlled mainly by AKT, whereas in 32D-EpoR and BaF3-EpoR

cells, integrated pS6 mainly depended on Ras, Raf, MEK, ERK, and

RSK (Table 1; Appendix Fig S27). These findings suggest that at

points of signal integration (such as pS6), the more highly

expressed signaling pathway(s) dominates signal processing. This

is in stark contrast to metabolic regulation where the least abun-

dant enzymes usually control the metabolic flux (Heinrich &

Schuster, 1996).

We propose that differences in the protein abundance of signal-

ing components can also explain differential sensitivity to inhibitor

treatment. While the information flow in 32D-EpoR cells is similar

to BaF3-EpoR cells, their proliferation behavior under inhibitor

treatment is akin to mCFU-E cells. Profile likelihoods for the inhi-

bitor parameters suggested that 32D-EpoR cells are significantly less

sensitive to U0126 than mCFU-E and BaF3-EpoR cells (Appendix

Fig S22). 32D-EpoR cells exhibit higher abundance of MEK than

mCFU-E and BaF3-EpoR cells (Table 1). MEK is the target of U0126

and therefore the elevated MEK levels probably buffer the inhibi-

tor’s effect (Appendix Fig S27). This is in line with the observation

that overexpression of activated MEK1 conferred U0126 resistance

in HepG2 cells (Huynh et al, 2003).

In summary, the integrative mathematical model provides new

insights into cell type-specific mechanisms regulating Epo-induced

proliferation in primary erythroid progenitor cells and hematopoi-

etic cell lines. We dissect the cell type-specific contribution of

pAKT, ppERK, and pS6 on cell growth and cell cycle progression

and thereby establish an important basis for rational interference of

cellular information processing and the effects of inhibitor treat-

ment on Epo-induced proliferation. Our study demonstrates that the

determination of the abundance of signaling components is suffi-

cient to adapt the integrative mathematical model and predict sensi-

tivities for individual inhibitors or combinations thereof and

thereby opens new possibility to test and verify therapeutic inter-

ventions.

Materials and Methods

Primary cell and cell line cultures

All animal experiments were approved by the governmental

review committee on animal care of the state Baden-Württem-

berg, Germany (reference number DKFZ215). To obtain primary

human erythroid progenitor CFU-E cells, CD34+ cells, mobilized

into the peripheral blood of healthy donors after written consent,

were sorted by autoMACS (CD34-Multisort Kit, Miltenyi Biotech).

Sample collection and data analysis were approved by the Ethics

Committee of the Medical Faculty of Heidelberg. CD34+ cells

were expanded using Stem Span SFEM II (StemCell Technology)

supplemented with Stem Span CC100 (StemCell Technology).

After 7 days of expansion, cells were differentiated. For differen-

tiation, cells were cultivated in Stem Span SFEM II supplemented

with 10 ng/ml mIL-3 (R&D Systems), 50 ng/ml mSCF (R&D

Systems), and 6 U/ml Epo alfa (Cilag-Jansen) as reported previ-

ously (Miharada et al, 2006). After 3 days of cultivation, human

CFU-E cells were employed to perform experiments.

Primary murine erythroid progenitor CFU-E cells were prepared

from fetal livers of E13.5 Balb/c mice. Fetal liver cells (FLC) were

treated with Red Blood Cell Lysing Buffer (Sigma-Aldrich) to remove

erythrocytes. For negative depletion, FLC of 40 livers were incu-

bated with rat antibodies against the following surface markers:

GR1, CD41, CD11b, CD14, CD45, CD45R/B220, CD4, CD8 (all BD

Pharmingen), Ter119 (eBioscience), and with YBM/42 (gift from

Suzanne M. Watt, Oxford, UK) for 60 min at 4°C. After washing,

cells were incubated for 30 min at 4°C with anti-rat antibody-

coupled magnetic beads (Miltenyi Biotech) and negative sorted with

MACS columns according to manufacturer’s instructions. Sorted

mCFU-E cells were cultured for 14 h in Panserin 401 (Pan Biotech)

and 50 lM b-mercaptoethanol supplemented with 0.5 U/ml Epo

(Cilag-Jansen).

BaF3 and 32D cells were cultured in RPMI 1640 (Invitrogen)

including 10% WEHI conditioned medium as a source of IL3 and
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supplemented with 10% FCS (Invitrogen), penicillin (100 U/ml)

and streptomycin (100 mg/ml).

Plasmids and retroviral transduction

Retroviral expression vectors were pMOWS-puro-MCS/M2 (Ketteler

et al, 2002). For stable transfection of BaF3 and 32D cells with

murine EpoR, pMOWS-Kz-HA-EpoR was generated in our laboratory

(Becker et al, 2008). The murine SHIP1, AKT1, RasV12G, RSK1, or

human PTEN cDNAs were cloned into pMOWSnr-MCS/M2, in which

the puromycin resistance gene was replaced by the LNGFR cDNA

(Miltenyi Biotech) that allows magnetic bead selection of transduced

cells. Transient transfection of Phoenix-eco cells with retroviral

expression vectors was performed by calcium phosphate precipita-

tion. To ensure an efficient uptake of DNA, Phoenix cells were incu-

bated for 6 h in DMEM medium (Invitrogen) supplemented with

25 lM chloroquine and 10% FCS. Subsequently, the medium was

replaced by IMDM (Invitrogen) containing 50 lM b-mercaptoethanol

and 30% FCS and incubated for another 18 h. Each 250 ll of the fil-

tered retroviral supernatant of pMOWS-Kz-HA-EpoR supplemented

with 8 lg/ml polybrene was then used to transduce 1 × 105 BaF3 or

32D cells, which were centrifuged for 2 h at 340× g and 37°C. Selec-

tion with 1.5 lg/ml puromycin (Sigma-Aldrich) started 48 h after

transduction resulting in BaF3-EpoR and 32D-EpoR cells. Surface

expression of EpoR in BaF3 and 32D cells was verified by flow

cytometry using an antibody against HA (Roche) and a Cy-5-labeled

anti-rat antibody (Jackson Immuno Research).

For overexpression experiments, 5 × 106 cells were transduced

using 4.5 ml retroviral supernatant supplemented with 8 lg/ml

polybrene in a six-well plate and centrifuged for 3 h at 340× g

and 37°C. Following spin infection, cells were cultured for 14–

16 h in the standard media. Positively transduced cells were

selected using MACSelect LNGFR selection kit (Miltenyi Biotech)

according to manufacturer’s instructions. Cells were either used

immediately for experiments or further cultivated. Level of over-

expression was always verified at the day of experiment using

immunoblotting.

Time course experiments, cell lysis, quantitative immunoblotting,
and mass spectrometry

Murine CFU-E cells were washed three times with Panserin 401

and were growth factor-deprived in the medium supplemented

with 50 lM b-mercaptoethanol for 1–2 h while BaF3-EpoR cells

were washed with RPMI 1,640 and deprived for 4–5 h and 32D-

EpoR cells for 3 h, in the medium supplemented with 1 mg/ml

BSA (Sigma-Aldrich) at 37°C depending on type of experiment.

Subsequently, cells were stimulated with 0.5–50 U/ml Epo (Cilag-

Jansen) or cells were first pretreated with Akt inhibitor VIII (Milli-

pore) and MEK1/2 inhibitor U0126 (Cell Signaling) for 30 min

before Epo stimulation. For each time point, 0.4–1 × 107 cells were

taken from the pool of cells and lysed by adding 2× 1% Nonidet

P-40 lysis buffer as described elsewhere (Becker et al, 2010).

Immunoprecipitation was performed by adding the respective anti-

body, protein A or G sepharose (GE Healthcare) to the lysates or

the calibrator protein. Sample loading on SDS–PAGE was random-

ized and corrected with a spline-based normalization strategy to

avoid correlated blotting errors (Schilling et al, 2005). Blots were

developed using ECL Western Blotting Reagents (GE Healthcare)

and subsequently detected on a Lumi-Imager F1TM (Roche Diagnos-

tics). Quantification of immunoblots was performed using Image

Quant Software (GE). Antibodies were removed by treating the

blots with stripping buffer as described previously (Klingmüller

et al, 1995).

The following antibodies were used: anti-pTyr (4G10; Upstate/

Millipore), anti-Ras (Calbiochem), anti-PDI (Stressgen), anti-b-actin
(Sigma), and anti-PI3K p85 (N-SH2), anti-Gab1 (all from Upstate),

and anti-EpoR (M20), anti-SHIP1, anti-Gab2, anti-Raf (all from Santa

Cruz), and anti-Akt, anti-pAkt Ser473, anti-pAkt Thr308, anti-

phospho-p44/p42 MAPK (Thr201/Tyr204), anti-p44/p42 MAPK,

anti-PTEN, anti-S6, anti-pS6 (Ser235/236), anti-pS6 (Ser240/244),

anti pRSK (Thr359/Ser363), anti-RSK, anti-mTOR, anti-Rictor, anti-

Raptor, anti-PDK1 (all from Cell Signaling) as well as secondary

horseradish peroxidase-coupled antibodies (Amersham Biosciences/

Dianova).

For determination of protein concentrations of lysates of respec-

tive cells and calibrators for the respective protein, they were

subjected to quantitative immunoblotting. Calibrators were either

commercially available [Ras, Raf, PDK1, S6 (Abnova), ERK (Invitro-

gen)], or self-made.

Human CFU-E cells were washed three times with IMDM

GlutaMAX and growth factor-deprived in IMDM GlutaMAX supple-

mented with 1 mg/ml BSA at 37°C for an hour. 2.5 × 106 cells were

lysed by adding 2× RIPA buffer (100 mM Tris pH 7.4, 300 mM NaCl,

2 mM EDTA, 2 mg/ml deoxycholate, 1 mM Na3VO4, 5 mM NaF).

Similarly, 1 × 107 growth factor-deprived BaF3-EpoR and mCFU-E

cells were lysed. Whole cell lysates were sonicated and protein yield

was determined by BCA assay (Thermo).

Each 75 lg of protein lysates of hCFU-E cells, 100 lg of BaF3-

EpoR protein lysates, or 30 lg of mCFU-E protein lysates was frac-

tionated by 10% 1D SDS–PAGE for 105 min. Gels were then stained

with Coomassie (Invitrogen), each lane was divided into five

segments, and each segment was cut into smaller pieces. In-gel

digestion was performed as previously described (Boehm et al,

2014). Samples were analyzed by liquid chromatography, nano-

electrospray ionization, and tandem mass spectrometry with a

Q-Exactive plus (Thermo). Raw files obtained were then analyzed

by MaxQuant, version 1.5.3.30, as described elsewhere (Cox &

Mann, 2008) by MaxQuant (version: 1.5.0.12). MaxLFQ algorithm

(Cox et al, 2014) was employed for the quantification purpose.

Protein copy numbers per cell were obtained by applying the

“proteomic ruler” method (Wi�sniewski et al, 2014).

Cytoplasmic volumes of mCFU-E and BaF3-EpoR cells were

determined by confocal microscopy with a Zeiss LSM 710. The cyto-

plasmic volume of 32D-EpoR cells was determined relatively to

BaF3-EpoR cells by Imaging flow cytometry. To determine cellular

volumes of hCFU-E cells, the cytoplasm was stained with Calcein

(eBioscience) and DNA was stained with DRAQ5 (Cell Signaling).

Imaging flow cytometry was performed on an Amnis ImageStreamX

(Merck Millipore), and data were analyzed with the IDEAS Applica-

tion v5.0 (Merck Millipore).

The raw data of all qualitative and quantitative immunoblots of

this work can be accessed as source data. Data of quantified immu-

noblots have also been uploaded through Excemplify (Shi et al,

2013) to the http://seek.sbepo.de/ SEEK platform (Wolstencroft

et al, 2015) and FAIRDOMHub (https://fairdomhub.org/).

Molecular Systems Biology 13: 904 | 2017 ª 2017 The Authors

Molecular Systems Biology Protein abundance governs proliferative response Lorenz Adlung et al

20

http://seek.sbepo.de/
https://fairdomhub.org/


The mass spectrometry proteomics data have been deposited to

the ProteomeXchange Consortium via the PRIDE (Vizcaı́no et al,

2016) partner repository with the dataset identifier PXD004816.

Microarray analysis

After washing with serum-free medium, BaF3-EpoR cells were

growth factor-deprived for 5 h and resuspended in RPMI supple-

mented with 1 mg/ml BSA. RNA samples were taken at 0, 1, 2, 3, 4,

5, 7, 18 h after 1 U/ml Epo stimulation.

Per time point, total RNA from 4 × 106 BaF3-EpoR cells was

isolated using the RNeasy Mini Plus Kit (Qiagen). Gene expression

analysis was conducted using Affymetrix Mouse Genome 2.0 Gene-

Chip Arrays (Affymetrix).

Normalization was performed in the R environment together

with the Bioconductor toolbox (http://www.bioconductor.org).

Arrays were normalized via the Robust Multichip Analysis (Gautier

et al, 2004). Subsequent probe annotation was handled with the

Affymetrix mouse4302 annotation package (R package version

3.1.3). If multiple probes mapped to the same Gene ID, the one with

the largest test interquartile range among all time points was

selected. The expression data were deposited in the GEO database

under accession number http://tinyurl.com/GSE72317.

Quantitative RT–PCR

To generate cDNA of mCFU-E, BaF3-EpoR, 32D-EpoR cells, 1–2 lg
of total RNA was transcribed with the QuantiTect Reverse Tran-

scription Kit (Qiagen). Quantitative RT–PCR was performed using a

LightCycler 480 in combination with the hydrolysis-based Universal

Probe Library (UPL) platform (Roche Diagnostics). Crossing point

(CP) values were calculated using the Second Derivative Maximum

method of the LightCycler 480 Basic Software (Roche Diagnostics).

PCR efficiency correction was performed for each PCR setup

individually based on a dilution series of template cDNA. Relative

concentrations were normalized using HPRT or RPL32 as reference

genes. UPL probes and primer sequences were selected with the

Universal ProbeLibrary Assay Design Center (Roche Diagnostics).

Gene
name

Primer
UPL
NoForward Reverse

CCND2 CTGTGCATTTACACCGAC
AAC

CACTACCAGTTCCCACTCCAG 45

CCNG2 CCACGCGATTGTATTTT
GTC

AGCTGCGCTTCGAGTTTATC 15

CDKN1B GAGCAGTGTCCAGGGAT
GAG

TCTGTTCTGTTGGCCCTTTT 62

DUSP4 GTACCTCCCAGCACCAA
TGA

GAGGAAAGGGAGGATTTCCA 17

DUSP5 GATCGAAGGCGAGAGA
AGC

GGAAGGGAAGGATTTCAACC 102

DUSP6 TGGTGGAGAGTCGGT
CCT

TGGAACTTACTGAAGCCACCT 66

RPL32 GCTGCCATCTGTTTTA
CGG

TGACTGGTGCCTGATGAACT 12

HPRT TCCTCCTCAGACCGCTTTT CCTGGTTCATCATCGCTAATC 95

Cell proliferation assays

For proliferation assays, growth factor-deprived murine CFU-E cells

were plated at a density of 20 × 104 cells/well growing for 14–20 h,

while BaF3-EpoR and 32D-EpoR cells were plated at a density of

5 × 104 cells/well growing for 62 h, or 10 × 104 cells/well growing

for 38 h, respectively. Growth factor-deprived human CFU-E cells

were plated at a density of 8.75 × 104 cells/well growing for 96 h.

Cells were cultured in their individual mediums supplemented with

different doses of Epo (Cilag-Jansen), AKT inhibitor VIII (EMD

Millipore), and MEK1/2 inhibitor U0126 (Cell Signaling). Cells were

pre-incubated with the inhibitors for 30 min and subsequently stim-

ulated with Epo. Human CFU-E cells were counted by trypan blue

exclusion assay using a hemocytometer.

For Coulter Counter Assay, cells were plated with appropriate

densities in 24-well plates. After respective days, cell numbers were

determined using a Coulter Counter Z2 (Beckman, particle size

5.00–12.00 lm for mCFU-E cells and 4.00–17.35 lm for BaF3-EpoR

and 32D-EpoR cells).

[3H]-Thymidine incorporation assay was performed as follows:

murine CFU-E or BaF3-EpoR cells were plated in 96-well plates.

After 4-h incubation, 1 lCi/well 3H-Thymidine was added and cells

were cultivated for respective hours. Cells were collected and the

incorporated radioactivity was measured using a scintillation

counter. To quantify the proliferation assay, regression lines were

calculated with a four-parameter Hill regression (y = y0+ax
b/

(cb+xb)). As the logarithmic transformation is a monotonic transfor-

mation, the sigmoidality of the curve is also true for a linear axis

(Schilling et al, 2009).

For the propidium iodide (PI) staining, 2 × 106 cells were perme-

abilized with 70% ethanol at �20°C. Cells were washed with 0.3%

BSA/PBS and incubated with ribonuclease reaction mixture at 23°C.

After an additional washing step, fluorescence was measured by

flow cytometry using a FACSCalibur (Becton Dickinson). Data anal-

ysis was performed with the MultiCycle (Phoenix Flow Systems)

software.

Mathematical modeling

Quantitative dynamic modeling was performed in MATLAB (Math-

works) using the D2D software package from http://www.data2d

ynamics.org (Raue et al, 2015). For parameter estimation, a deter-

ministic derivative-based optimization with a multi-start strategy

based on Latin hypercube sampling was applied (Raue et al, 2013).

For further details on mathematical modeling, see Appendix F.

As an error model for experimental data, 10% relative error plus

5% absolute error of the highest data point under this condition

were assumed.

The relative sensitivity SXp shows the change in variable X with

infinitesimal small changes in parameter p, scaled by the respective

values:

SXp ¼ @X

@p

p

X

As variable, we used pS6 integrated for 1 h:
R t¼60 min
t¼0 pS6ðtÞdt

Parameters were protein abundance of pathway components

(Table 1).
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Linear regression analysis and statistical testing was performed

with R (http://www.r-project.org). Linear regression model selec-

tion was based on Akaike’s information criterion (Burnham &

Anderson, 2002). For further details on linear regression analyses,

see Appendix N and O.

Data availability

The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE (Vizcaı́no et al, 2016)

partner repository with the dataset identifier PXD004816. The

expression data were deposited in the GEO database under acces-

sion number http://tinyurl.com/GSE72317. The raw data of all qual-

itative and quantitative immunoblots have been provided as source

data.

The models are provided in SBML code as Model EV1 (BaF3-

EpoR), Model EV2 (mCFU-E), and Model EV3 (32D-EpoR). Curated

model files have also been made available at JWS online: https://

jjj.bio.vu.nl/models/adlung1/ (BaF3-EpoR model), https://jjj.bio.

vu.nl/models/adlung2/ (mCFU-E model), and https://jjj.bio.vu.

nl/models/adlung3/ (32D-EpoR model).

Expanded View for this article is available online.
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