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Language networks
Cognitive functions are organized in distributed, overlapping, and interacting brain networks. Investigation
of those large-scale brain networks is a major task in neuroimaging research.
Here, we introduce a novel combination of functional and anatomical connectivity to study the network
topology subserving a cognitive function of interest. (i) In a given network, direct interactions between
network nodes are identified by analyzing functional MRI time series with the multivariate method of
directed partial correlation (dPC). This method provides important improvements over shortcomings that
are typical for ordinary (partial) correlation techniques. (ii) For directly interacting pairs of nodes, a region-
to-region probabilistic fiber tracking on diffusion tensor imaging data is performed to identify the most
probable anatomical white matter fiber tracts mediating the functional interactions. This combined approach
is applied to the language domain to investigate the network topology of two levels of auditory
comprehension: lower-level speech perception (i.e., phonological processing) and higher-level speech
recognition (i.e., semantic processing).
For both processing levels, dPC analyses revealed the functional network topology and identified central
network nodes by the number of direct interactions with other nodes. Tractography showed that these
interactions are mediated by distinct ventral (via the extreme capsule) and dorsal (via the arcuate/superior
longitudinal fascicle fiber system) long- and short-distance association tracts as well as commissural fibers.
Our findings demonstrate how both processing routines are segregated in the brain on a large-scale network
level. Combining dPC with probabilistic tractography is a promising approach to unveil how cognitive
functions emerge through interaction of functionally interacting and anatomically interconnected brain
regions.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Cognitive functions are organized in large-scale brain networks of
functionally interacting and anatomically interconnected brain
regions (Mesulam, 1990). These large-scale networks are composed
of distributed cortical grey matter regions which functionally interact
through long- and short-distance white matter fiber tracts.

In this study, we introduce a novel combination of functional (i.e.,
directed partial correlation, dPC) and anatomical (i.e., region-to-
region probabilistic tractography) connectivity which enables us to
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infer the organization of cognitive large-scale brain networks from
functional MRI (fMRI) and diffusion tensor imaging (DTI) data.

To analyze the functional network structure underlying fMRI data,
different approaches are conceivable. On the one hand, analytic
routines that are chiefly hypothesis-based like dynamic causal
modeling have been introduced by Friston et al. (2003) and used in
a number of studies investigating cognitive functions such as language
(e.g., Bitan et al., 2005; Heim et al., 2009; Leff et al., 2008; Mechelli et
al., 2005). On the other hand, strategies allowing for a more
hypothesis-free exploration might be advantageous in cases where
such prior knowledge of the putative functional network structure is
scarce. Here, we used the multivariate method of dPC (Eichler, 2005;
Mader et al., 2008) which falls into the second class of hypothesis-free
approaches. In a given network, dPC is capable of detecting direct
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interactions between network nodes. It implements the concept of
Granger causality (Granger, 1969) which, in principle, allows for the
detection of the direction of information flow by taking the past of the
processes into account. Owing to the temporal characteristics of the
fMRI time series, however, it is still questionable to which extent
causal inferences from fMRI data are possible (Roebroeck et al., 2005).
Still, the reason for using dPC as a causal inference method is that
taking into account the past of the processes protects against false-
positive/negative conclusions which might result from ordinary
correlation-based techniques (see below).

To identify the most probable interconnecting white matter path-
ways for pairs of directly interacting nodes, we used a region-to-region
probabilistic tractography (Kreher et al., 2008b). Thus, prior functional
network analysis by means of dPC restricts the fiber tracking to those
connections which turned out to be functionally most relevant.

Once the network nodes are defined by fMRI, the dPC analysis and
the fiber tracking procedure are both completely data-driven, thus no
a priori hypothesis concerning the functional network structure as
well as the spatial course of the white matter fiber tracts is necessary.
We propose that in conjunction, these complementary methods allow
for the identification of the major functional and structural determi-
nates subserving a specific cognitive function of interest.

In this study, this combined approach is applied to the language
domain to describe large-scale networks subserving auditory com-
prehension. In an fMRI event-related experiment, we attempt to map
key regions involved in lower-level speech perception, mainly
attributable to phonological processing (i.e., decoding phonetic
properties) and higher-level speech recognition, mainly attributable
to lexical–semantic processing (i.e., extracting and elaborating
meaning). The resulting sets of key regions represent the nodes of
the networks, which will subsequently be studied concerning their
functional and anatomical network topology.

Methods

Subjects

Thirty-three native German speakers (22 males, mean age 34 yr,
range 18–71 yr, 18 right-handed) participated in the study. Left-
handed subjects were included to facilitate bilateral language
activation for bilateral network analysis (see below). All subjects
were scanned with the approval of the local ethics committee and
gave their written consent.

fMRI: Stimuli and experimental design

Stimuli
The auditory sentence comprehension task consisted of 90 stimuli

of meaningful speech (SP), pseudo speech (PS) and reversed speech
(REV) resulting in a total of 270 stimuli. SP and PS stimuli are identical
with the stimuli used in Saur et al. (2008).

Themeaningful sentences were composed of well-formed German
sentences which all had the same subject–verb–object structure, e.g.,
“Der Pilot fliegt das Flugzeug” (in English, “The pilot flies the plane”).
The pseudo sentences were derived from the normal sentences by
substituting phonemes on the basis of German phonotactical rules
resulting in meaningless sentences with a preserved German sound
structure, e.g., “Ren Simot plieft mas Kugireug” (English translation
not possible). Pseudo sentences match the original sentences in
length, syllable structure, and phonemic complexity, and intonation
was as natural as possible.

The reversed stimuli were obtained by playing the pseudo
sentences in reverse resulting in unintelligible stimuli which have a
disturbed sound structure but the same frequency spectrum like
pseudo sentences. Basically, time-reversed sentences sound like a
strange, unknown foreign language.
Based on these properties, we discriminate two levels of auditory
language comprehension. A lower level of speech perception is
defined by contrasting pseudo with reversed speech. This level should
mainly be attributable to phonological processing because the basic
phonemic sound structure is preserved in pseudo but not in reversed
speech. In contrast, a higher level of speech recognition is defined by
contrasting speech with pseudo speech. This level should mainly be
associated with semantic processing since meaning is preserved in
speech but not in pseudo speech.

Sentences were spoken by a female voice and recorded with the
commercial software GoldWave with a sampling rate of 16 kHz and
16-bit resolution. Reversed speech was generated using the same
software.

Experimental design
Stimuli were presented in an event-related design and distributed

over three sessions. Within each session, the order of sentences was
pseudo-randomized, with pairs of normal, pseudo, or reversed
sentences never occurring in the same session. The duration of the
stimuli ranged from 1500 to 3000 ms, the interstimulus interval
varied between 3000 and 6000 ms. The order of sessions was
randomized across participants.

Task and stimulus presentation
Subjects were asked to listen carefully to all stimuli and press a

button at the end of each stimulus, irrespective of whether they had
heard a normal, pseudo, or reversed sentence. This simple task was
chosen to keep executive task demands constantly low across stimuli.
Stimuli were presented binaurally with the software Presentation
(http://nbs.neuro-bs.com) with MR-compatible headphones. During
scanning, subjects kept their eyes open.

MRI data acquisition

Structural and functional MRI was performed in one scanning
session on a 3-T TIM Trio scanner (Siemens, Erlangen, Germany) with
a standard head coil.

Functional MRI
A total of 260 scans per session with 36 axial slices covering the

whole brain was acquired in interleaved order using a gradient echo
echo-planar (EPI) T2⁎-sensitive sequence (voxel size=3×3×3 mm3,
matrix=64×64 pixel2, TR=2.19 s, TE=30 ms, flip angle=75°).

Diffusion-weighted imaging (DWI)
We acquired a total of 70 scans with 69 slices using a diffusion

sensitive spin-echo EPI sequence with CSF suppression (61 diffusion
encoding gradient directions [b-factor=1000 s/mm], 9 scans
without diffusion weighing, voxel size=2×2×2 mm3, matrix
size=104×104 pixel2, TR=11.8 s, TE=96 ms, TI=2.3 s).

During reconstruction, both fMRI and DWI scans were corrected
for motion and distortion artifacts based on a reference measurement
(Zaitsev et al., 2004).

MP-RAGE
An additional high-resolution T1 anatomical scan was obtained

(160 slices, voxel size=1×1×1 mm3, matrix=240×240 pixel2,
TR=2.2 s, TE=2.6ms) for spatial processing of the fMRI and DTI data.

In total, the scanning procedure took about 60minutes per subject.

fMRI data analysis

Statistical parametric mapping

Preprocessing. Data were analyzed using statistical parametric map-
ping (SPM5, http://www.fil.ion.ucl.ac.uk/spm/software/spm5/).

http://nbs.neuro-bs.com
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/


Table 1a
fMRI data pseudo speechNreversed speech.

Region Coordinates t value Seed

Phonology: pseudoN reversed speech
Left temporal
Anterior STG −57 0 −9 8.09 T1a
Posterior STG −57 −33 0 7.42 T2p

Left frontal
IFG, pars opercularis (BA 44) −51 15 18 6.12 F3op
IFG, deep frontal operculum −39 30 3 5.56 FOP
Precentral gyrus (dorsal premotor cortex, BA 6) −51 −3 48 5.17 PMd

pb0.05 corrected ( tN5.1).
STG, superior temporal gyrus; IFG, inferior frontal gyrus.
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All slices were corrected for different acquisition times of signals by
shifting the signal measured in each slice relative to the acquisition of
the middle slice. Resulting volumes were spatially normalized to the
Montreal Neurological Institute (MNI) reference brain using the
normalization parameters estimated during segmentation of the
coregistered T1 anatomical scan (Ashburner and Friston, 2005). All
normalized images were then smoothed using an isotropic 9-mm
Gaussian kernel to account for intersubject differences.

Statistical analysis. At first level, the three conditions SP, PS, and REV
were modeled as separate regressors. Realignment parameters were
included as covariates of no interest. Onset and duration of stimuli
were convolved with a canonical hemodynamic response function
(HRF) as implemented in SPM5. Voxel-wise regression coefficients for
the three conditions were estimated using weighted least squares.
Our research questions were addressed in a second level random
effects analysis for which the contrast images of the three conditions
were entered into a factorial design with the factors subjects and
conditions. Correction for non-sphericity resulting from unequal
variances between subjects and conditions was implemented. With
respect to our hypotheses, we computed the differential effects
between listening to pseudo versus reversed speech (i.e., phonolog-
ical processing) and meaningful versus pseudo speech (i.e., semantic
processing). From these contrasts, we selected peak activations (see
below) which defined the nodes of the networks to be analyzed.

Directed partial correlation (dPC)

Concept of dPC
DPC (Eichler, 2005; Mader et al., 2008) is an approach in the time

domain quantifying Granger causality, which enables a hypothesis-
free exploration of networks in the sense that once the network nodes
are defined, no further prior assumptions about the functional
network structure are necessary. The concept of Granger causality is
well established in the literature with several approaches to quantify
it (Baccala and Sameshima, 2001; Dhamala et al., 2008; Kayser et al.,
2009; Keil et al., 2009; Roebroeck et al., 2005). In terms of the analysis
technique, dPC is one of many equivalent Granger causality measures
in the time domain.

Granger causality is defined for multidimensional systems and is
based on the common sense conception that causes precede their
effects in time. Conceptually speaking, a process A is Granger causal to
another process B if taking into account the past of process A helps to
improve the predictability of the current state of process B. Granger
himself additionally introduced the concept of instantaneous causality
or instantaneous interaction. These interactions are bidirectional as the
cause cannot be distinguished from the effect based on predictability.
These instantaneous interactions are usually inferred from the
covariance matrix of the stochastic term in autoregressive modeling,
which is used to model Granger causality. By making inference purely
on these covariance matrices, all causal effects are disregarded in the
analysis. As done in other studies using Granger causality-based
techniques in fMRI (Kayser et al., 2009; Roebroeck et al., 2005), one
could use the full information of the analysis to identify causal effects.
However, owing to the temporal characteristics of the fMRI time series,
we restricted the dPC analyses to instantaneous interactions.

Technical description of dPC
In linear theory, the concept of Granger causality is usually

modeled by vector autoregressive (VAR[p]) processes (Eq. (1)).

x tð Þ =
Xp

j=1

A jð Þx t − jð Þ + e tð Þ: ð1Þ

In Eq. (1), the actual state x at time point t is derived from its past p
states with additional input from a Gaussian white noise process ɛ(t)
with mean zero and covariance matrix Σ. The matrices A(j) weigh the
influence of the past states onto the actual state. Non-zero entries in
the j-th matrix indicate Granger causal influences at time lag j, while
zeros represent their absence.

dPC is defined by

πij τð Þ = Aij τð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σiiρij τð Þ

q ð2Þ

with

ρij τð Þ = Σ−1
ij +

Xτ−1

v=1

X
k;l

Akj vð ÞΣ−1
kl Alj vð Þ + A2

ij τð Þ
Σii

: ð3Þ

For the time lag τ=0, (2) simplifies to

πij 0ð Þ = Σijffiffiffiffiffiffiffiffiffiffiffiffi
ΣiiΣjj

q : ð4Þ

Eq. (4) represents instantaneous direct influences. Owing to the poor
temporal resolution in fMRI time series, such instantaneous interac-
tions must be hypothesized for fMRI time series analysis. Eq. (4),
however, differs from that for ordinary correlation based analysis as
dPC analysis takes the processes' own past into account. This avoids
false-positive/negative conclusions about the network structure that
are due to the temporal correlation within time series themselves.

Selection of network nodes
As described above, dPC is hypothesis-free in the sense that no a

priori assumptions concerning the interaction structure are necessary.
However, the nodes of the network have to be selected first. Here we
selected themajor language-relevant activation peaks in the PS versus
REV and SP versus PS contrast (Tables 1a/b). These activation peaks
defined the nodes of four independent networks in the left and right
hemispheres (see Results). Peaks in the frontal pole (superior frontal
gyrus, SFG), dorsolateral prefrontal cortex (middle frontal gyrus,
MFG), supplementary motor area (SMA), and the right primary motor
cortex (M1) were not included into the analysis as activation in these
areas is most likely attributable to language-unspecific executive
demands (Table 1b).

Identical coordinates were used for time series extraction in all
subjects. To prevent false-positive results due to the smoothness of
the fMRI data, selected nodes had a minimum distance of at least
two times the width of the smoothing kernel (i.e., 18 mm) to all
neighboring nodes.

Preprocessing of time series for dPC analysis
From these coordinates, BOLD time series were extracted in each

subject from the fully preprocessed but unfiltered data and averaged
within a sphere of 4-mm radius. To eliminate the scanner drift, a
third-degree polynomial was fitted to each of the averaged time



Table 1b
fMRI data: normal speech versus pseudo speech.

Region Coordinates t value Seed

SEMANTICS: speechNpseudo speech
Left temporal
Posterior MTG −48 −60 18 10.11 T2p
Anterior MTG −51 0 −18 9.70 T2a
Fusiform gyrus −30 −33 –18 8.37 FUS

Left frontal
IFG, pars triangularis (BA 45) −48 27 12 8.95 F3tri
IFG, pars orbitalis (BA 47) −45 27 −12 8.83 F3orb
Middle frontal gyrus −39 18 30 7.01 No seed
Superior frontal gyrus (frontal pole) −9 63 27 8.41 No seed
Supplementary motor area −3 18 54 7.24 No seed

Right temporal
Anterior MTG 51 −3 −18 7.62 T2a
Posterior MTG 42 −54 18 5.77 T2p
Fusiform gyrus 33 −30 −21 5.40 FUS

Right frontal
IFG, pars orbitalis 48 24 −9 6.07 F3orb
IFG, pars triangularis 54 24 9 3.63⁎ F3tri
Middle frontal gyrus 51 30 30 5.24 No seed
Central sulcus 42 −21 54 6.59 No seed

pb0.05 corrected (tN5.1).
⁎pb0.001 uncorrected (tN3,2).
MTG, middle temporal gyrus.
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series. In each single subject, the four different networks were
analyzed with dPC using an implementation programmed in C.

dPC group analysis
To allow comparison across the group, resultant dPC values were

divided by their levels of significance (Mader et al., 2008) resulting in
normalized dPC (dPCnorm) values. Group networks were computed by
averaging these dPCnorm values across subjects (mean dPCnorm). An
interaction on group level was considered significant if the following
condition was fulfilled: (mean dPCnorm− 2×stdv[mean])N1.

Diffusion tensor-based probabilistic fiber tracking

Between pairs of seeds, for which a significant direct interaction
was demonstrated in the dPC group analyses, intra- and interhemi-
spheric region-to-region anatomical connectivity was computed
using the method of combining probability maps (Kreher et al.,
2008b). This method is ideally suited to complement the dPC analysis
as it enables an extraction of the most probable direct pathway
between two seed regions without using a priori knowledge about the
presumed course.

Definition of seed regions
The same coordinates, for which dPCs were calculated, were

identified in the native space of each subject's DTI by using the inverse
normalization parameters obtained during the segmentation proce-
dure of the T1 anatomical scan. These coordinates were enlarged to a
sphere of 4-mm radius each containing 33 voxels. These spheres
defined the seed regions for the probabilistic fiber tracking procedure.

Probabilistic diffusion tensor-based fiber tracking
DTI data were analyzed using an innovative method of pathway

extraction (Kreher et al., 2008b), implemented in the Matlab-based
DTI&Fiber Toolbox (http://www.uniklinik-freiburg.de/mr/live/
arbeitsgruppen/diffusion_en.html). In short, we first computed the
diffusion tensor (DT) (Basser et al., 1994) from the movement and
distortion corrected DTI dataset. Second, a Monte Carlo simulation of
RandomWalks similar to the Probabilistic Index of Connectivity (PICo)
method (Parker et al., 2003) was run from each seed region. Our
tracking procedure differed from the classical PICo method (i) by
empirically extracting the orientation density function from the DT
and (ii) by preserving the main traversing direction (in relation to the
first eigenvector) of each propagated trajectory during the random
walk (extended probabilistic tracking, cf., Kreher et al., (2008a,b) for
details). Preservation of the directional information is important for
the latermultiplication procedure (see below). The number of random
walks was set to 105 and maximum fiber length to 150 voxels. The
tracking area was restricted to a white matter mask to avoid tracking
across anatomical borders, e.g., the lateral fissure or the cerebral falx.
To ensure contact of the cortical seed regions with white matter, a rim
of grey matter was included in the mask. Third, region-to-region
anatomical connectivity between two seed regions was computed by
combining two probabilitymaps of interest (Kreher et al., 2008b). This
combination includes a multiplication, which takes the main travers-
ing direction of the randomwalk into account.Walks starting from two
seed regions may either face each other (connecting fibers) or they
merge and point in the same direction (merging fibers). Within the
pathway connecting both seeds, the proportion of connecting fibers
should exceed the proportion of merging fibers. Using the directional
information (obtained by the extended probabilistic tracking) during
the multiplication procedure, merging fibers are suppressed, while
connecting fibers are preserved (Kreher et al., 2008b).

In the resulting combined maps, values represent a voxelwise
estimation of the probability index that a voxel is part of the
connecting fiber bundle of interest (in short: probability index of
forming part of the bundle of interest, PIBI). Here, intra- and
interhemispheric region-to-region anatomical connectivity was com-
puted between pairs of seeds, for which a significant functional
interaction was demonstrated in the dPC analyses.

Postprocessing of probability maps
The combined maps were scaled to the range between 0 and 1 and

spatially normalized into the standard MNI space.
Group maps for each region-to-region connection were computed

by averaging the combined maps from all subjects, resulting in mean
maps. Consequently, voxels within these mean maps represent the
arithmetic mean of the PIBI. To remove random artifacts, only voxels
with PIBI values N0.0148 were displayed which excludes 95% of the
voxels with PIBIN10−6. This valuewas generated empirically from the
distribution observed in a large collection of preprocessed combined
probability maps (Saur et al., 2008). We used a descriptive statistic
rather than t-statistics on group level as PIBI values do not show a
normal (Gaussian) distribution and no proper null hypothesis can be
formulated.

Results

Network nodes revealed by SPM

Differential effects of PS relative to REV
Contrasting sound-preserved PS with sound-disturbed REV

revealed five significant activation peaks in the anterior and posterior
STG (T1a, T1p), the prefrontal (deep frontal operculum, FOP) and
premotor cortices (pars opercularis of the inferior frontal gyrus [IFG,
F3op] and dorsal premotor cortex [PMd]) (Fig. 1 and Table 1a). In the
right hemisphere, activation for this contrast was only detectable after
lowering the statistical threshold to pb0.01 uncorrected (tN2.4, not
displayed).

Differential effects of SP relative to PS
Contrasting meaningful SP with meaningless PS revealed bilateral,

left-lateralized temporofrontal activation (Fig. 1 and Table 1b). The
five most significant activation peaks in the left hemisphere are
located in the anterior and posterior MTG (T2a, T2p), the fusiform
gyrus (FUS), and in the ventrolateral prefrontal cortex (pars orbitalis
and triangularis of the IFG [F3orb, F3tri]). In the right hemisphere,
homologue nodes with overall lower activation could be defined
(Fig. 1 and Table 1b).

http://www.uniklinik-freiburg.de/mr/live/arbeitsgruppen/diffusion_en.html
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Fig. 1. Network nodes revealed by SPM. Left and right hemispheric networks subserving phonological (pseudo speech [PS] versus reversed speech [REV], blue) and semantic
processing (normal speech [SP] versus pseudo speech [PS], red) identified in a random-effects analysis of 33 subjects participating in an auditory comprehension experiment. SPM t-
maps are displayed as semitransparent maximum intensity projections in sagittal direction (pb0.001, uncorrected, tN3.2). Within major activation clusters, peak voxels defined the
network nodes, indicated with a white dot. From these nodes, parameter estimates (arbitrary units) were extracted for the three conditions SP, PS, and REV and plotted as diagrams
(first row: phonological nodes [PHON], second row: left semantic nodes [SEM-L]; third row: right semantic nodes [SEM-R]). Error bars indicate standard deviation of the mean. FOP,
deep frontal operculum; F3op/orb/tri, pars opercularis/orbitalis/triangularis of the inferior frontal gyrus; PMd, dorsal premotor cortex; T1a/p, anterior/posterior superior temporal
gyrus; T2a/p, anterior/posterior middle temporal gyrus; FUS, fusiform gyrus.
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Functional network topology revealed by dPC

From these nodes, time series were extracted and analyzed in four
independent networks using dPC.

The first network contained the five nodes defined by contrasting
PS with REV (Fig. 2a). In this left hemispheric network (i.e., the
phonological network), direct interactions were found in seven out of
ten pairs of nodes (Fig. 2c). Strongest interactions were observed
between neighboring nodes within the temporal (T1a–T1p) and the
frontal (FOP–F3op, F3op–PMd) lobes. In addition, four long-distance
temporofrontal interactions were also found significant (T1p–F3op,
T1p–PMd, T1p–FOP, T1a–PMd). Using the number of interactions as a
criterion, we identified the posterior temporal node (T1p) as central
network node interacting with all other nodes. Notably, despite the
close spatial neighborhood, the anterior temporal node (T1a) does not
interact directly with the frontal operculum (FOP).
The second and third networks included those five nodes which
were defined by contrasting SP with PS either in the left or right
hemisphere, respectively (Fig. 2b). In these networks (i.e., the left and
right semantic networks), dPC identified a significant interaction in
six out of ten paired nodes in the left and in five out of ten in the right
hemisphere (Fig. 2d). In both hemispheres, strongest interactions
were observed between neighboring nodes within the prefrontal
cortex (F3orb–F3tri). In the left hemisphere, the T2p and F3orb nodes
were found as central nodes, both directly interacting with three
surrounding nodes. In the right hemisphere, this central role for the
T2p and F3orb nodes was not observable. Here, only the T2a node
directly interacts with a frontal node (F3orb). Interestingly, in both
hemispheres, nodes in the fusiform gyrus (FUS) do not directly
interact with the prefrontal nodes.

Next, we analyzed left and right hemispheric nodes together in a
bilateral semantic network of ten nodes. Here, strong interhemispheric



Fig. 2. Functional connectivity in the phonological and semantic networks revealed by dPC. In the upper row, networks subserving phonological (a) and semantic (b) processing are
displayed as maximum intensity projections in sagittal direction (pb0.001, uncorrected, tN3.2). In the lower row, mean directed partial correlation (dPC) values are plotted for each
pairwise interaction within the left phonological (c) and left and right semantic (d) networks, respectively. An interaction was defined significant if the mean dPC value minus two
standard deviations of the mean (indicated by the error bar) were larger than 1 (indicated by the horizontal line). Significant interactions are displayed as dark grey plots.
Abbreviations are as indicated in Fig. 1.
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interactions were exclusively detected between homotopic temporal
and frontal nodes (Fig. 3). These strong interhemispheric interactions
dominate the network structure in a way that some of the intra-
hemispheric interactions, which were significant in the separate
analyses of the left and right semantic nodes, disappear (left FUS–
T2p, FUS–T2a, right FUS–T1p, FUS–T1a, T1a–F3orb). However, no
additional interactions within both hemispheres were detected.
Fig. 3. Functional connectivity within the bilateral semantic network revealed by dPC. Mean
the bilateral semantic network. Please note the strong functional interactions between hom
Abbreviations are as indicated in Fig. 1.
To verify our results, an ordinary partial correlation analysis was
performed. All connections revealed by dPC analysis were detected by
ordinary partial correlation analysis, too. The latter, however,
detected additional interactions (see Tables 1–4 in the supplementary
results). A simulation study (not shown) has demonstrated that
ordinary partial correlation analysis leads to false-positive interac-
tions in addition to the present ones.
directed partial correlation (dPC) values are plotted for each pairwise interaction within
otopic nodes of the left and right hemispheres (diagonal in the left lower quadrant).
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Anatomical network topology revealed by probabilistic tractography

For each pairwise interaction, which showed a direct interaction in
the dPC analysis, we extracted region-to-region anatomical pathways
by combining probability maps from the respective nodes.

In the phonological network, fibers mediating long-distance
interactions between the temporal (T1a, T1p) and the premotor
nodes (F3op, PMd) were found to take a dorsal route via the superior
longitudinal and arcuate fascicles (SLF/AF system, Figs. 4a and b). In
contrast, interaction between T1p and the prefrontal node (FOP) is
mediated by a ventral route via the extreme capsule (EmC, Figs. 4d
and e).Within the temporal lobe, the interaction between the anterior
and posterior STG is enabled by the middle longitudinal fascicle
(MdLF) (Fig. 4c). Within the frontal lobe, functional interaction
between adjacent prefrontal and premotor nodes is mediated by short
association fibers (Fig. 4f, 1–2).

In the left and right semantic networks, long-distance interactions
between temporal (T2a, T2p) and prefrontal nodes (F3orb, F3tri) are
exclusively mediated via the ventral pathway through the EmC (Figs.
5a–c and 6a and b). In the right temporal lobe, MdLF enables
interaction between the anterior and posterior MTG (Fig. 6c). In both
hemispheres, the fusiform node (FUS) interacts with T2p via the
inferior longitudinal fascicle (ILF, Figs. 5e and 6e) and with T2a via a
connection which first runs in posterior direction in the ILF before
turning around and joining the MdLF in an anterior direction (Figs. 5f
and 6f). Within the left and right prefrontal lobe, adjacent nodes
interact via short association fibers (Figs. 5d and 6d).

In the bilateral semantic network (Fig. 3), strong functional
interactions between homotopic nodes were observed. These
interhemispheric interactions were shown to be mediated by
distinct commissural fibers (Fig. 7). Interactions between both
F3orb nodes are conveyed via commissural fibers running through
the genu of the corpus callosum (CC) anteriorly to fibers connecting
both F3tri nodes (Figs. 7a–d). In contrast, interactions between
homotopic temporal nodes are mediated by commissural fibers
running through the splenium of the CC. Within the splenium, a
spatial alignment of fibers was found, too. For the fusiform nodes,
Fig. 4. Fiber tracts mediating functional connectivity in the phonological network. Long (
phonological network as revealed by probabilistic tractography. The color coding represen
Methods) across 33 subjects; the value at the top of the color bar represents themaximumm
sections. Three dimensional (3D) rendering in panel a illustrates the spatial course of all th
T1p–PMd, T1p–F3op). Rendering in panel d illustrates the ventral temporofrontal connectio
optimized for spatial visualization and do not represent a quantitative estimation. AF/SLF, ar
fascicle; abbreviations of network nodes are as indicated in Fig. 1.
transcallosal fibers run inferiorly to fibers from the middle temporal
nodes (Figs. 7a, b, e–g).

Fig. 8 summarizes the findings of the functional and structural
network analyses. Networks attributed to phonological and semantic
processing are displayed as schematic diagrams: Functional interac-
tions as revealed by dPC were drawn with the knowledge of the most
probable anatomical course of the underlying white matter fiber
tracts as revealed by fiber tracking.

Discussion

In this study, we introduce a novel combination of functional and
structural connectivity which is capable of describing large-scale
cognitive brain networks. In contrast to a recent suggestion by
Stephan et al. (2009) who constrained their models of effective
connectivity by instilling anatomical information derived from
probabilistic fiber tracking, we here constrained a region-to-region
probabilistic tractography with the results from the functional
connectivity analysis to identify the fiber tracts most likely mediating
the functional interactions. Exemplarily, we applied this combined
approach to the data of an auditory language comprehension
experiment to describe the specific functional and anatomical
network characteristics of two distinct processing levels. We first
discuss issues concerning the employed methods followed by a
functional discussion of the networks.

Methodological issues

The nodes of the networks were selected based on the contrasts
either between PS and REV or SP and PS. The selection of nodes is a
critical step in every kind of network analysis, irrespective of the
underlying computational method. Here we decided to select the
major language-relevant clusters in both contrasts. If essential nodes
characterizing the differences between the two conditions are
missing, false conclusions might arise. However, we believe that our
selection is representative for both contrasts and best reflects the
cognitive processes of interest. Having defined the nodes, subsequent
a–e) and short (f) association fibers connecting functionally interacting nodes in the
ts the mean PIBI value (probability index forming part of the bundle of interest, see
ean PIBI value for each connection. Dashed, vertical lines indicate the level of the coronal
ree dorsal temporofrontal connections (i.e., T1a–PMd [displayed as section in panel b],
n between T1p and FOP (shown as section in panel e). Colors in the 3D renderings are
cuate/superior longitudinal fascicle; EmC, extreme capsule; MdLF, middle longitudinal



Fig. 5. Fiber tracts mediating functional connectivity in the left semantic network. Long (a,b, e,f) and short (d) association fibers connecting functionally interacting nodes in the left
semantic network as revealed by probabilistic tractography. The three-dimensional rendering in panel a illustrates the spatial course of all three ventral temporofrontal connections
(i.e., T2a–F3orb, T2p–F3orb, T2p–F3tri [displayed as section in panel b]). An overlay of these connections shows that all fibers run through the EmC, with some degree of spatial
segregation (c). EmC, extreme capsule; MdLF, middle longitudinal fascicle; ILF, inferior longitudinal fascicle. Abbreviations of network nodes are as indicated in Fig. 1.

3194 D. Saur et al. / NeuroImage 49 (2010) 3187–3197
analysis of the functional and anatomical network architecture was
fully data-driven and required no further a priori hypothesis.

From a computational point of view, the crucial characteristic of
the dPC analysis is that it takes the past of the processes into account.
If temporal resolution is high, e.g., in EEG or MEG measurements,
delays in the signal between regions allow for the detection of
directed (causal) interdependencies (i.e., “effective connectivity”).
However, in the case of fMRI with sampling rates of about 2 s,
interactions must be regarded as instantaneous, thus information of
the past cannot be used to explain the direction of information flow.
With reference to the imaging terminology (Stephan, 2004), using the
dPC method, we computed “functional connectivity,” i.e., undirected
interactions among areas. The problem of poor temporal resolution of
fMRI time series, however, is not a drawback specific to the dPC
Fig. 6. Fiber tracts mediating functional connectivity in the right semantic network. Long (a–
right semantic network. The three-dimensional rendering in panel a illustrates the spatial cou
longitudinal fascicle; ILF, inferior longitudinal fascicle. Abbreviations of network nodes are
method but rather concerns all network identification procedures
when applied to fMRI data. In contrast to dPC, which infers
connectivity directly from the BOLD time series, other network
identification procedures like dynamic causal modeling (DCM)
(Friston et al., 2003) perform a deconvolution procedure of the
BOLD data to estimate connectivity at the neuronal level. Directed
interactions therefore are assumed to be detectable independent from
delays in the BOLD signal. Using a deconvolution procedure, however,
does not increase the temporal resolution per se. It is therefore
questionable to which extent the analysis on the neuronal level does
contain the information necessary to determine causal inferences.

Despite this shortcoming due to the temporal properties of the
fMRI data, the consideration of the processes' past has a major
advantage, which makes dPC a valuable tool in deducing functional
c, e–f) and short (d) association fibers connecting functionally interacting nodes in the
rse of the connections displayed in panels b and c. EmC, extreme capsule; MdLF, middle
as indicated in Fig. 1.



Fig. 7. Commissural fibers mediating interhemispheric connectivity between homotopic nodes. Commissural fibers passing through the midsagittal plane of the corpus callosum
(CC) mediating interhemispheric interactions between homotopic nodes. Panel a illustrates the spatial course of all five commissural fibers; panel b summarizes the topography of
the CC by an overlay of binary maps of all five commissural tracts. Abbreviations of network nodes are as indicated in Fig. 1.
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connectivity from fMRI data. It ensures that contributions that can
directly be explained from the processes' past do not influence the
results of instantaneous connection estimation which reduces the
number of false-positive/negative conclusions. For example, false-
positive interactions might arise from blood flow patterns that are
independent from neural activity. Strong resting state correlations
have been reported between homotopic brain regions which might –
at least partly – be explained by the symmetry between the blood
supply routes of homologues regions (Hampson et al., 2002). Give
that dPC are more likely to diminish those task irrelevant fluctuations
than other techniques, the strong interhemispheric interactions
between homotopic nodes in our analysis are considered as task
relevant interactions. In contrast, false-negative interactions in
ordinary correlation-based techniques might result, e.g., from inter-
regional variability of the HRF's shape (e.g., onset-delay) despite
similar neuronal activity (Sun et al., 2004).

For directly interacting pairs of nodes, a region-to-region proba-
bilistic fiber tracking (Kreher et al., 2008b) was performed to visualize
the most probable white matter fiber tracts mediating these
interactions. That is, prior functional network analysis restricts the
fiber tracking to task-relevant interactions which represents an
important advancement to recent studies combining fMRI and DTI
(Friederici et al., 2006; Parker et al., 2005; Saur et al., 2008).

We first computed one-sided probability maps from each network
node. The resultingmaps represent a probabilitymeasure for the visited
voxels to be connected with the start voxel. To get region-to-region
anatomical connectivity, we multiplied those maps, for which a direct
interaction was found in the dPC analysis. This multiplication takes the
directional information of the randomwalks into account which allows
Fig. 8. Functionally and anatomically defined networks subserving phonological (a) and
correlation (dPC) and probabilistic fiber tracking. Black lines indicate significant functional i
course as identified by tractography. Central nodes within the networks (indicated with
longitudinal fascicle; EmC, extreme capsule.
for distinguishing connecting from merging fibers. This approach
enables a highly efficient detection of the most probable anatomical
connection – even if seed regions are small and distances are long –

without a priori knowledge concerning the presumed course of the
connection. Owing to the multiplication step, this kind of tracking is
most sensitive to the midsection of a connection since here, despite
distance effects, probabilities are still high for both seed regions.
Notably, the region-to-region fiber tracking does not necessarily
demonstrate the existence of a monosynaptic anatomical connection
between two nodes but rather visualizes themost probable anatomical
course along which the functional interaction might be mediated.

The dPC and fiber tracking are both independent but complemen-
tary in the sense that the demonstration of a functional interaction
supports the functional relevance of the anatomical connection and
vice versa. This is especially important since one might argue that the
detected functional interactions (partly) arise from a third, uniden-
tified region. Converging evidence from two independent methods
therefore foster the significance of the resulting networks.

Although it might be straightforward to relate functional (e.g., dPC
values) and anatomical (e.g., PIBI values) connection strengths to each
other, those ideas must be taken with great caution as a quantitative
comparison between different probabilistic tracts so far is difficult.
This is because PIBI values depend on many parameters such as
anatomical properties of the fiber tract (e.g., consider the EmC which
typically shows high PIBI values at the level of the insular cortex due
to high fiber alignment), partial volume effects (i.e., each voxel
contains a different texture of fibers, neural and glial tissue), noise in
the DTI data, as well as distance effects (i.e., the visiting frequency
decreases with increasing distance to the seed region). The lack of
semantic (b) processing. Schematics of the networks evaluated with directed partial
nteractions as revealed by dPC which are drawn with the knowledge of the anatomical
a black circle) are defined by their number of interactions. AF/SLF, arcuate/superior



3196 D. Saur et al. / NeuroImage 49 (2010) 3187–3197
quantification of fiber tracking results is a matter of great discussion
and maybe overcome by novel fiber tracking techniques, e.g., global
tracking of white matter as in the recently suggested Gibbs tracking
(Kreher et al., 2008a) as well as MR developments which improve the
spatial resolution of DTI.

Functional interpretation

We characterized two levels of auditory language comprehension:
a lower level of speech perception, mainly engaged in phonological
processing and a higher level of speech recognition, mainly attribut-
able to semantic processing. This differentiation might be criticized as
linguistically underspecified. For example, one might argue that
reversed speech contains legal phonemes as well (see Scott and Wise
(2004) for a comprehensive review on this issue) and thus, the
phonological condition might be underestimated. Or, the experiment
does not sufficiently control for syntactic or prosodic features.
However, it distinguishes reasonably two processing levels in natural
auditory language comprehension which are characterized by highly
plausible functional and anatomical network characteristics.

Within thenetwork attributed to phonological processing, thenode
in the posterior STGdirectly interactswith all other nodes and thuswas
identified as a central node. This is in agreement with a number of
previous findings emphasizing the importance of the posterior STG in
early auditory stages of sound-to-meaning transformation, or, more
specifically, in phonetic discrimination (Buchsbaum et al., 2001;
Burton et al., 2005; Demonet et al., 2005; Jacquemot et al., 2003;
Nadeau, 2001; Vigneau et al., 2006). However, none of these studies
explicitly related this central role to its functional and anatomical
connections to other areas. Here, we showed that the posterior STG
exhibits extensive direct interactions with all frontal nodes. With the
premotor nodes, this interaction is mediated via the dorsal AF/SLF
system (Frey et al., 2008; Saur et al., 2008). This temporo–premotor
interaction via the dorsal pathway is important for a rapid, automated
conversion of acoustic representations into motor representations
(Liberman and Whalen, 2000; Nadeau, 2001; Vigneau et al., 2006).
Thus, phonetic discrimination during speech perception depends not
only on acoustically based processes in superior temporal areas but
rather is achieved through the simulation of themotor responsewithin
an interacting system of temporal association and frontal premotor
cortices (Liberman's “motor theory of speech” (Liberman andWhalen,
2000)). This view is directly supported by our previous study (Saur
et al., 2008) in which we showed that sublexical repetition of
pseudowords involves a quite similar temporofrontal network.

In contrast, interaction with the deep frontal operculum (FOP) in
the prefrontal cortex is mediated via the ventral EmC/MdLF system
(Frey et al., 2008; Saur et al., 2008). The FOP, in turn, strongly interacts
with the premotor nodes via short association fibers (Schmahmann et
al., 2008). We suggest that this indirect interaction of the STG with
premotor regions via the FOP is important for controlling the dorsal
sensory–motor loop during speech perception.

Within the left semantic network, the node in the posterior MTG
(T2p) directly interacts with both prefrontal nodes and the F3orb
node directly interacts with both middle temporal nodes. This
identified these nodes as central relay stations in the left semantic
network. By taking into consideration the specialization for different
aspects of semantic processing of the participating regions, the
posterior MTG (and neighboring parts of the ITG) is proposed to
store and provide access to lexical–semantic representations (Crinion
et al., 2003; Hickok and Poeppel, 2004, 2007; Leff et al., 2008). Via the
ventral MdLF/EmC system (Frey et al., 2008; Saur et al., 2008), the
middle temporal nodes interact with the prefrontal nodes. These tight
functional and anatomical interactions between temporal and
ventrolateral prefrontal areas are essential for contextual integration
(Dapretto and Bookheimer, 1999; Kaan and Swaab, 2002), controlled
retrieval (Thompson-Schill et al., 1997), and selection (Rodd et al.,
2005) of lexical information and relation of linguistic meaning to
stored knowledge about the world (Hagoort et al., 2004). MEG studies
have shown that about 90 ms after auditory presentation of a spoken
word, a temporal source starts to build up while a prefrontal source
appears later, after about 120 ms (Pulvermuller et al., 2003). The
integration of this temporal information into our left semantic
network model (Fig. 8b) leads to the conclusion that the direction
of information flow during auditory comprehension runs from
temporal to frontal (cf., also Leff et al., 2008). That is, during auditory
comprehension, the posterior temporal cortex exerts influence upon
prefrontal regions via both, direct and indirect interactions via inferior
temporal and anterior temporal regions.

Activations in the right hemisphere were weaker but essentially
mirrored those in the left. By analyzing the time series of left and right
semantic nodes in a single network, we found strong functional
interactions between all homotopic nodes. These interhemispheric
interactions are mediated by distinct commissural fibers crossing
through the genu (linking bilateral PFC) and splenium (linking
bilateral temporal cortex) of the corpus callosum. This topography is
in accordance with tract tracing studies in monkeys (Schmahmann
and Pandya, 2006) and a DTI-based parcellation study of the human
callosum (Huang et al., 2005). Together, these complementary results
are consistent with a bilateral, parallel operating network for
semantic processing in which the right hemisphere performs
computations for the same general processes as the left. According
to Jung-Beeman (2005), in the right hemisphere, these computations
might be less finely tuned. The hypothesis of a bilateral, parallel
processing language network is also supported by the observation
that homologue right hemisphere language areas contribute to
language recovery in patients with left hemispheric lesions (Crinion
and Price, 2005; Leff et al., 2002; Saur et al., 2006;Weiller et al., 1995).

Here, we experimentally segregated phonological and semantic
processing steps to identify the functional and anatomical character-
istics of these subsystems. Nevertheless, we are aware that it is not
universally accepted that an explicit sublexical perceptual level exists
which identifies phonemes after acoustic analysis and prior to lexical
activation (Scott and Wise, 2004). Rather, it is more likely that in
natural language comprehension, both processes work in parallel and
influence each other (McClelland and Rogers, 2003).

In summary, the combination of functional and anatomical
connectivity represents a promising approach to describe how
specific cognitive operations emerge through interaction between
anatomically interconnected brain areas. This type of analysis should
be applied to patients with focal brain lesions, e.g., due to ischemic
stroke. We postulate that central network nodes as identified by dPC
represent those brain areas, to which damage causes a network
disruption associated with a severe language deficit (“concept of the
critical lesion”). It would therefore be of great interest to see how real
(in case of, e.g., stroke) or virtual (e.g., using transcranial magnetic
stimulation) disruption of particular network components alters the
network structure, or, depending on the lesion, how well the
functional deficit might be predicted by these networks.
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