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Fitting parameters in partial differential equations
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Abstract

We describe a new method for parameter estimation in systems with nonlinear spatiotemporal dynamics. The technique is
able to reliably determine parameter estimates from noisy data and is even applicable in cases with unobserved components.
In a simulation study we investigate its performance in comparison to standard methods and show its superiority. As numerical
example we analyze in detail a complex Ginzburg–Landau equation under realistic conditions.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The study of nonlinear pattern-forming systems
that can be mathematically described with partial dif-
ferential equations (PDEs) has drawn much attention
in recent years. In most cases, the focus has been
on the derivation of amplitude equations based on
symmetry considerations, separation-of-scales argu-
ments and other approximations, and the analysis of
bifurcation points and chaos[1,2]. To connect the
theoretical work to experimental studies, it is neces-
sary to adapt the mathematical model to experiments,
since for most systems, not all dynamical parameters
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are known with sufficient precision. This leads to
the problem of estimating dynamical parameters and
variables based on data.

Unfortunately, currently available methods require
low-noise data where all dynamical variables can be
observed[3–7]. These approaches rely on estimat-
ing temporal and/or spatial derivatives from the data,
sometimes even of higher order, which is critical
when the data are corrupted by noise. Bär et al.[5]
explicitly state that “noise remains a crucial problem.”
To circumvent these problems, we introduce a novel
approach based on the multiple shooting technique,
which is already a valuable tool in parameter estima-
tion in ordinary differential equations (ODEs)[8–10].
No derivatives have to be estimated from the data, and
the method is reliable even when little is known about
the parameters and dynamical variables and when the
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system is only partially observed. Since this approach
is developed from the maximum likelihood estimator
(MLE), it is possible to compute confidence intervals
and use the results for further statistical evaluation
[11].

The main purpose of this manuscript is to de-
velop the principal idea of this new technique and
apply the approach to an example of the complex
Ginzburg–Landau equation (CGLE), which cap-
tures the dynamics of an extended system near a
codimension-2 bifurcation[1,5,12]. In a simulation
study, we compare this technique to standard methods
used in the field.

2. Mathematical analysis and algorithmic
implementation

For ease of notation, we use only one spatial vari-
able and assume periodic boundary conditions. In
more general situations the following derivation also
holds.

Let the dynamics of the system be described by the
PDE

ż(t, x) = f(z, p, t, x, ∂x, ∂xx, . . . )

with observed data

yD(t, x) = g(z, t, x) + η(z, t, x)

with dynamical variablez ∈ R
Q, parameter vector

p ∈ R
P , time t ∈ [t0, tf ] with initial and final time

t0 and tf , spatial variablex ∈ [xlb, xrb) with left and
right boundaryxlb and xrb, observationyD(t, x) ∈

R
K and noiseη. In the following, we assume thatη

follows a Gaussian distribution with zero mean and
standard deviationσnoise = σ0σsignal. σ0 is the noise
level, which is a measure of the strength of the noise.

In most cases, some of the dynamical variables can
be observed directly, while the others are not observ-
able. Additionally, observed data are sampled in time
(ti, i = 1, . . . , I ) and space(xj , j = 1, . . . , J ), so
that the observation functiong simplifies to

yD
k (ti, xj ) = zk(ti, xj ) + η(ti, xj ),

k = 1, . . . , K ≤ Q.

To implement the algorithm, it is necessary to pa-
rameterize the initial conditionz(t0, x), e.g., with a
suitable parametric function. In the following, we
will use L values zl, l = 1, . . . , L, characterizing
the dynamical variables at the initial timet0 and at
discrete locationsxl equally distributed in [xlb, xrb).
L has to be chosen carefully to make sure that the
initial condition and the system state in general are
approximated sufficiently well to capture the entire
dynamics. The parameterization of the system state
at timet0 is denoted byZ0 = Z(t0) = (z1, . . . , zL) ∈

R
Q×L. The general initial conditionz(t0, x), which

is needed to accurately integrate the PDE, can be
easily computed fromZ0 with help of spline func-
tions or polynomials. It is noteworthy that the system
state at any timet , z(t, x), can now be approx-
imated by the corresponding parameterized state
Z(t).

Using the MLE to estimate dynamical parameters
and initial conditions, an objective functionχ2 has to
be minimized, given by

χ2(p, Z0) =
∑

i,j,k

(

yD
k (ti, xj ) − yM

k (Z0, p, ti, xj )

σnoise

)2

,

whose numerator denotes the distance between the
theoretical model trajectoryyM and the datayD. Here
yM
k (Z0, p, ti, xj ) is thekth component of the solution

of the PDEzM(Z0, p, ti, xj ) at timeti and locationxj

with parameterized initial conditionZ0.
Sinceχ2(p, Z0) is highly nonlinearly dependent on

p andZ0, χ2 has numerous local minima apart from
the global one that corresponds to the true parameters.
Therefore, the direct minimization ofχ2, the so-called
initial value approach (IVA) that couples the integra-
tion of the PDE with standard optimization techniques,
generally fails.

To circumvent these difficulties, the problem is for-
mulated in a different way. By introducing a set of
time points (τh, h = 1, . . . , H, t0 = τ0 < τ1 <

· · · < τH < τH+1 = tf ) and additional variables
Z1, . . . , ZH , Zh ∈ R

Q×L which are the parameter-
ized estimates of the dynamical variablez at time
points τh, z(τh, x), the problem can be reformulated
as a constrained, over-determined multi-point bound-
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ary value problem which is solved with a generalized
Gauss–Newton method[13]. Now, the aim is to min-
imize

χ2(p, Z0, Z1, . . . , ZH )

=
∑

h,j,k

∑

τh≤t<τh+1

(

yD
k (ti, xj ) − yM

k (Zh, p, ti, xj )

σnoise

)2

(1)

Fig. 1. Demonstration of the fitting method for an ODE: for a decreasing number of subsets the MSM is applied in each subset leading to
piecewise continuous trajectories after convergence. By reducing the number of subsets and thus the number of degrees of freedom during
the fitting procedure, we obtain a continuous trajectory for the whole data set.

with the additional constraints

Zh
= ZM(Zh−1, t = τh), h = 1, . . . , H.

Zh is the parameterized system state at timeτh and
ZM(Zh−1, t = τh) is the solution of the PDE at time
τh with the parameterized initial conditionZh−1.

Z0, the parameterized system state at timet0, is the
only initial condition that has to be estimated, since
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all other unknownsZh, h = 1, . . . , H , are determined
by the continuity constraints, which are applied in
a linearized form to allow discontinuous trajectories
that help circumvent local minima during the opti-
mization procedure. After convergence, the applied
linearized continuity constraints are equivalent to the
general continuity constraints[8].

The advantage of this approach is that much more a
priori information from the data can be utilized, since
initial estimates for theZh can be directly drawn from
the observed datayD. Despite potentially poor initial
guesses for the parameters, the model trajectory stays
close to the data due to the initially discontinuous tra-
jectory.

Although this approach works in many cases, we
found that local minima are still a major problem due
to the fact that the continuity constraints are applied
too strictly in the multiple shooting method (MSM)
(see also[9]). This led us to the generalization of the
method in the sense that the data set is divided into
several subsets. In each subset, the MSM is applied
separately while dynamical parameters are estimated
simultaneously. These estimated parameters are then
used as initial guesses for a reduced number of subsets.
By further reducing the number of subsets until only
one data set remains, this method leads to a continuous
trajectory.

In principle, we generalize the MSM in the sense
that we introduce a multiple shooting hierarchy. Con-
tinuity constraints are applied successively to different
time scales: in the beginning, independent for every
subset and for a small number of time points, and in
the end for all data points on a much larger time scale.
Each subset requires the estimation of the respective
starting values and a high number of subsets is con-
nected to a high number of degrees of freedom. Hence,
this procedure slowly reduces the number of degrees
of freedom during the parameter estimation process.

The idea of the method is exemplified for the
Lotka–Volterra system, a simple ODE[14] (see
Fig. 1). Starting with a subdivision of the data set
into 10 subsets using two multiple shooting intervals
in each subset, the MSM leads to a continuous trajec-
tory for each subset with a discontinuous trajectory
for the whole data set. Using the estimated dynamical

parameters from the 10 subset situation, the number
of degrees of freedom is reduced and parameters are
estimated anew for five subsets using four multiple
shooting intervals. At the last stage, with one data
set and 10 multiple shooting intervals, the algorithm
leads to a continuous trajectory.

3. Results

To demonstrate the power of this new technique for
PDEs, we analyzed simulated data from a dynamical
system of the CGLE-type[5,12]. The PDE of this
system reads

ż1 = z2,

ż2 = (µ − z2
1)z2 − z1 − az2

1 − z3
1 + ∂xxz1 + κ∂xxz2

with parameter valuesµ = 0.2, a = 2.08 andκ = 1.
Data were simulated with random initial conditions
with the method of lines[15] with sufficiently accurate
temporal and spatial discretizations so that the a pos-
teriori error was below 0.01[16]. The system length
is 100.0 (xlb = 0.0, xrb = 100.0) while the integration
time is 60.0 (t0 = 0.0, tf = 60.0). The number of ob-
served spatial data points per time point was 32 and
overall 50 time points were recorded as data. Different
levels of observational noise were added and the pa-
rameter estimation was carried out. Initial guesses for
the starting conditions for every subset were estimated
directly from the noisy data with the help of smoothing
filters, and initial guesses for the parameters wereµ =

1.0,a = 0.5 andκ = 5.0. To make results independent
from individual data sets, we used 10 different trajec-
tories all computed with random initial conditions.

In the first simulation study, we investigated the
performance of the algorithm when the data (see
Fig. 2(a)) are corrupted with noise (Fig. 2(b)). In
Figs. 2(c)–(f ), the output from the algorithm is shown
for the different stages of the minimization procedure.
The algorithm starts with a discontinuous trajectory
for eight subsets and is close to the data despite poor
initial guesses for the parameters (Fig. 2(c)). After
estimating dynamical parameters simultaneously in
all eight subsets, the number of degrees of freedom
is reduced and parameters are estimated with four
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Fig. 2. Different stages of the fitting procedure: (a) true data set;
(b) observed data set; (c) initial state with eight subsets; (d) initial
state with four subsets; (e) initial state with two subsets; (f ) final
estimated trajectory.

subsets (Fig. 2(d)) and subsequently with two subsets
(Fig. 2(e)). In both the cases, estimated parameters
from the previous fitting procedure are used as initial
guesses. In the end,Fig. 2(f ), the algorithm leads to a
continuous trajectory that is very close to the true one.

To make the illustration more concise, multiple
shooting intervals are not shown, and for better visu-
alization, the data set is presented inFig. 2 consists
of 400 time points and 128 spatial points. Note that
for the estimation procedure, a much smaller num-
ber of data points has been used. The results of this
study are given inTable 1(b) demonstrating that the
approach works well even for high noise levels.

In a second study, to investigate the performance of
the algorithm in the case of unobserved components
for several noise levels, the dynamical variablez2 was
not observed (seeTable 1(c)). As expected, in the case
with a high noise level, the algorithm is not able to es-
timate parameters as reliably as in the first case, since
the amount of information is approximately halved,
but the results are still reasonably good.

In a third study, we compared the eMSM with the
IVA and the MSM without hierarchical shooting. We
investigated the performance of all three methods with
respect to different noise levels and different initial
parameter guesses with both components observed.

We chose five sets of initial guesses for the param-
eter vectorpi = (µ, a, κ): p1 = (0.20, 2.08, 1.0), be-
ing the true parameter vector,p2 = (0.22, 2.00, 1.2),
p3 = (0.24, 1.92, 1.4), p4 = (0.30, 1.80, 1.6), and
p5 = (0.40, 1.50, 2.0). Note that, as in the pre-
vious study, the initial parameter guess wasp =

(1.0, 0.5, 5.0). As before, the noise levels cover a
wide range:σ0 = 0.01, 0.05, 0.10, 0.25, 0.40.

To make the results independent from individual
data sets, we used 20 different trajectories, all com-
puted with random initial conditions. To present re-
sults in an easily accessible way, we do not display the
mean and standard deviation of the estimated parame-
ters as before, but rather define the following statistical
acceptance measure: based on the covariance matrix
at the estimated parameter vector, we calculated 95%
confidence intervals. Only if the true parameter value
was within this interval was the estimate rated accept-
able, since then we expect the estimate to be close
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Table 1
(a) True parameters and (b, c) mean value and standard deviation for parameter estimates from 10 different data sets for both/one observed
dynamical variables with different noise levelsσ0 (initial guesses for the parameters areµ = 1.0, a = 0.5 andκ = 5.0)

σ0 µ a κ

(a) True parameters
0.2 2.08 1.0

(b) Estimated parameters with noise levelσ0

0.01 0.2007± 0.0053 2.088± 0.009 1.001± 0.080
0.03 0.1996± 0.0051 2.082± 0.008 1.035± 0.062
0.05 0.2008± 0.0040 2.081± 0.014 1.018± 0.066
0.10 0.1990± 0.0065 2.092± 0.009 1.033± 0.094
0.25 0.2012± 0.0125 2.094± 0.019 1.088± 0.107
0.40 0.1880± 0.0472 2.094± 0.026 1.140± 0.715

(c) Estimated parameters with one observed component
0.01 0.2022± 0.0178 2.082± 0.007 1.084± 0.306
0.03 0.2120± 0.0130 2.087± 0.010 1.041± 0.278
0.05 0.2137± 0.0190 2.089± 0.018 1.090± 0.244
0.10 0.1813± 0.0155 2.166± 0.025 1.167± 0.290
0.25 0.2343± 0.0440 2.074± 0.022 1.265± 0.528
0.40 0.2505± 0.0571 2.103± 0.037 1.855± 1.536

to the global minimum. All other values were rated
as local minima. Additionally, if the confidence inter-
vals were too large (> 20% of the parameter value),
the estimate was also discarded to avoid coincidental
accepted estimates. This was only the case for a few
simulations.

The results are presented inTable 2. The IVA clearly
has the worst performance of all three techniques, and
if initial guesses for the parameter values are above a
critical level, it fails completely. The MSM is also not
as good as the eMSM since it also often converges into

Table 2
Results of the performance study using 20 data sets investigating
the number of accepted estimates for different noise levelsσ0

and different initial guesses of dynamical parameterspi for all
three methods (the numbers in each triple refer to the results of
IVA/MSM/eMSM; initial parameter guessesp1 to p5 are described
in the text)

σ0 Initial parameter guess

p1 p2 p3 p4 p5

0.01 19/20/20 13/20/20 1/18/19 0/4/20 0/0/17
0.05 11/19/19 12/20/20 1/19/20 0/3/19 0/0/16
0.10 11/20/19 8/19/18 0/17/20 0/2/18 0/0/14
0.25 9/19/18 4/19/19 0/17/18 0/2/14 0/0/13
0.40 6/18/18 1/17/17 0/9/14 0/0/13 0/0/10

local minima. Higher noise levels lead for all three
methods to a decreasing performance.

All computations were performed on 700–866 MHz
Pentium III machines. The average computation time
for one estimation was 70 min for the IVA, 40 min for
the MSM, and 120 min for the eMSM.

4. Conclusions

To summarize our results, we have derived a new
technique for estimating parameters and dynamical
variables in systems described by PDEs. The high
mathematical and computational effort of this new
method is necessary to circumvent the problem of ac-
curately estimating spatial and temporal derivatives
from noisy data. This new approach is able to deal with
cases with noise and unobserved components even
with a small number of data points. In comparison to
standard methods, it is much more reliable, especially
when initial guesses for dynamical parameters are far
from the true ones.

We expect this approach to be useful for adapting
models of spatiotemporal dynamics to experimental
data and for quantitative detection of deviations from
theory. Future work will concentrate on applying this
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new approach to experimental data measured from
traveling waves, weak and full spatiotemporal chaos.
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