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Confidence Regions for Spectral Peak Frequencies 
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s-ly 
A procedure is proposed to obtain confidence regions for spectral peak frequencies. The method is 
based on resampling the penodogram from the estimated spectrum in order to reestimate the spectrum 
and its peak frequency. We investigate the dependence of the results from the applied spectral estimator 
in three simulation studies and apply the method to tremor data. 
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1. Introduction 

Spectral analysis is widely applied to investigate oscillatory phenomena in basic 
medical and biological research (MARSDEN et al., 1969; NELSON et al., 1979; HFXR- 
MA”, 1982; GUNTHER, BRUNNER and KLUSSMA”, 1983; CLEEVES and FINDLEY, 
1987; HEFIER et al., 1987; BEUTER and DE GEOFFROY, 1996; F’INNA, MAESTRI, DI 
CESARE, 1996; KHUTORSKAYA and FJODOROVA, 1996) and clinical diagnosis 
(DEUSCHL et al., 1996; Muzr and EBERT, 1993). Often, the power of the oscillation 
and the peak frequency are of major interest. In general, the spectrum and the 
peak frequency of a stationary stochastic process are a complicated function of the 
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parameters of the process and can not be expressed analytically. Analytical formu- 
las are known for special classes like the linear autoregressive moving average 
processes. 

Especially in clinical diagnosis it is desirable to decide whether an observed 
peak frequency is singificantly different from the range of peak frequencies ob- 
tained from an ensemble of healthy subjects, indicating a pathology. We propose a 
procedure to obtain such a confidence region. This procedure is based on an heur- 
istic idea, inspired by the parametric bootstrap (EFRON and TIBSHIRANI, 1993) and 
the theory of spectral estimation (BROCKWELL and DAVIS, 1987). We investigate its 
behavior in two simulation studies. General aspects of bootstrapping in the fre- 
quencies domain are discussed in FRANKE and HARDLE (1992), JANAS and DAHL- 
HAUS (1994) and DAHLHAUS and JANAS (1995). Bootstrapping procedures to obtain 
a confidence region for the mode of densities are discussed in ROMANO (1988). In 
the next section we briefly summarize parts of the theory of spectal estimation 
which are necessary for the proposed procedure introduced in Section 3. In Sec- 
tion 4 three simulation studies are reported which investigate the dependence of 
the resulting confidence region on the spectral estimator. An application to tremor 
data is given in Section 5. 

2. Spectral estimation 

The spectrum S ( o ) ,  E I-%,=) of a stationary stochastic process X ( t > , , ,  is defined 
as the Fourier transform of the autocovariance function ACF (t): 

ACF (t) = E ( X ( t )  X ( t  + t)) , (1) 

1 
S ( o )  = - ACF (t) exp (ioz) , 

2x r 

where “E(.)” denotes expectation (BROCKWELL and DAVIS, 1987). The autocovar- 
iance function is assumed to be absolutely sumably. The estimation of the spec- 
trum is usually based on the Fourier transform d(o) and the periodogram Per (0) 

of the data x(t) ,= l,... (which are usually tapered in order to reduce spectral leak- 
age) : 

1 N  

Per (0) = ld(o)I2. 

The periodiogram is evaluated for the frequencies: 
(4) 

N 
’ 2 ’  
- k=0, ... 2Jck ok = - N ’  
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For two different frequencies 01 and 0 2 ,  the values Per (01) and Per ( 0 2 )  are 
asymptotically independent. For o $! (0, n} the periodogram is asymptotically 
distributed as 

1 1 
2rc 2 
- Per (U) - - S(O) $. 

Thus, the expectation of the periodogram is the spectrum but the periodogram is 
not a consistent estimator for the spectrum. In order to estimate the spectrum con- 
sistently, the periodogram has to be smoothed by a window function Wj: 

1 h  h 

2n j = - h  j = - h  
S(wk) = - KPer(ok+j) ,  y =  1 .  (7) 

General aspects of spectral estimation concerning the choice of the window func- 
tion Wj and its width 2h + 1 as well as other procedures to estimate spectra are 
given in BRWKWELL and DAVIS (1987). To determine global optimal values of h, 
there exist bootstrap and cross-validation procedures (FARAWAY and MYOUNGSHIC, 
1990) as well as data driven methods using a frequency dependent width of the 
smoothing window (TIMMER, LAUK and DEUSCHL, 1996). The latter two-step algo- 
rithm was developed for an optimal estimation of the spectrum in the region of 
the main peak. First, the width of the main peak is estimated from a spectrum 
obtained by uniform smoothing. In a second step, based on the estimated width of 
the peak, a frequency dependent width of the smoothing window is chosen. The 
width of the kernel at the peak frequency opeak is proportional to the width of the 
peak. This reflects the fact, that the curvature of the spectrum at opeak is recipro- 
cally related to the width of the peak. The higher the curvature the less smoothing 
is optimal. The width of the kernel increases linearIy with 10 - opeakl up to some 
maximum value. 

We do not discuss these algorithms in detail here but show the dependence of 
the resulting confidence intervals on the smoothing procedure in Section 4 be- 
low. 

3. Thealgorithm 

The procedure to obtain a confidence region for the estimated peak frequency is 
given by : 

(1) Estimate the spectrum. 
(2) Simulate numerous periodograms from the estimated spectrum according to 

(3) For each of the simulated periodograms reestimate the spectrum by eq. (7) 

(4) Obtain the confidence region from the quantiles of the empirical distribution 

eq. (6). 

and the peak frequency. 

of these estimated peak frequencies. 
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the peak frwluency of spectrum esti- 
mated from the data by i and that of the reestimated spectra i*, the proposed 
procedure approximates the distribution of i - Ac, by i* - x. 

For two fixed frequencies the values of the periodogram are asymptotically in- 
dependent. Two adjacent values of the periodogram might show correlations inde- 
pendent of the number of data points depending on the true spectrum and the 
tapering window applied @ROCKWELL and DAVIS, 1987). The procedure does not 
take these correlations into account since they decay rapidly within some fie- 
quency bins and the smoothing according to eq. (7) usually involves more fre- 
quency bins than that correlation length. 

In the case of nonlinear or non-Gaussian processes, there might be higher order 
correlations, e.g. triple correlations described by the bispectrum (NIKIAS and MY- 
SORE, 1987). For oscillatory, i.e. non chaotic, processes these higher order correla- 
tions usually appear for harmonically related peaks. Since the proposed procedure 
only considers the distribution of the periodogram in the neighborhood of the single 
peak of maximum power, these correlations have not to be taken into account. 

Denoting the true peak frequency by 

4. Simulation Studies 

For the simulation studies we choose processes inspired by data of human hand 
tremor. For treatment monitoring and analysis of temporal fluctuations of tremor, 
confidence regions of spectral peaks are of special importance. 

Fig. 1 shows a typical time series, the periodogram and the estimated spectrum 
of a time series obtained from a physiological human hand tremor. Fig. 2 shows 
the corresponding plots for a time series obtained from a patient suffering from 
Parkinson's disease. Obviously, apart from the number of frequency bins entering 
the spectral estimation, the obtainable precision of the estimated peak frequency 
depends on the curvature of the spectrum at the peak. 

The behavior of the proposed procedure will be investigated in three simulation 
studies which are inspired from the tremor data shown in Fig. 1 and 2. Apart from 
the above mentioned curvature of the true spectrum, the smoothing window used to 
estimate the spectrum according to eq. (7) will determine the confidence region, too. 
The optimal width of the smoothing window depends on the true spectrum. There- 
fore, we apply rectangular Daniell windows of different widths as well as the data 
driven adaptive procedure to choose a frequency dependent width which has been 
described in TIMMER et al. (1996). Each simulated time series consists of loo00 data 
points. This is a typical amount of data in tremor measurements and also for other 
electrophysiological applications like EEG or ECG. For each simulation study the 
bias and the variance of the estimator for the peak frequency and the coverage prob- 
ability is estimated. The resampling procedure described above uses 500 simulated 
periodograms, where 90% coddence intervals based on the lower and upper 5% 
quantiles are considered only. Each simulation study consists of 500 repetitions, too. 
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Fig. 1. Representative data, the periodogram and estimated spectrum of a physiological hand 
tremor times series 

In order to treat the problem of choosing confidence intervals for the discrete 
distribution on the frequency bins, there exist three possibilities: 

0 The two bins where the 5% and 95% quantiles are located are included in the 

0 Out of the three possible combinations (include both bins, left or right bin) 

0 A randomized confidence redon is chosen (STUART, 1991). 

confidence region. 

that one is chosen, that leads to the least conservative confidence region. 

Here, we chose the first possibility. 
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Fig. 2. Representative data, the periodogram and estimated spectrum of a Parkinsonian hand 
tremor time series 

The physiological tremor is well described by a linear stochastic autoregressive 
(AR) process (mu, 1973; GANTERT, HONERKAMP, and TIMMER, 1992). An 
AR process of order p is given by: 

where E ( t )  denotes i.i.d. Gaussian random variables with mean zero and variance 
U*. Such a process can be interpreted in terms of physics depending on the cho- 
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sen parameters as a combination of relaxators and damped oscillators (HONER- 
KAMP, 1993). For example, in the case of an AR process of order 2 with ap- 
propriate chosen parameters a1 and u2, the process describes a damped linear 
oscillator. The characteristic period T and relaxation time t are related to the 
parameters by : 

ul = 2cos (F) exp ( - l / t> ,  (9) 

u2 = -exp (-2/t) . (10) 
The spectrum is given by: 

and the peak frequency is located at: 

 peak = xccos (COS ( ~ J c / T )  cosh (l/t)) . (12) 
The width of the peak Aw can be measured by the difference of the fiequencies 
where the power decreased to half the value at the peak. This half power width of 
the peak is monotonically related to l /t .  

For the first simulation study we choose the characteristic times to be T = 50 
and t = 100 in order to obtain a broad spectral peak. The half power width of the 
peak measured in frequency bins in 33. Fig. 3 displays the results for the uniform 
smoothing window of different widths. Due to the symmetry of the spectrum in 
the neighborhood of the peak frequency, the bias (0) between the estimated h a -  

x 
0.950 = .- E 

c 
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Fig. 3. Result of simulation study for an AR [2] process with T = 50 and r = 100. Shown 
is the dependence of the bias (0), standard deviation (+) of the estimator for the peak 
frequency and the coverage probability (U) on the width of the smoothing window 
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tion and the true location of the peak is near zero for small kernel widths. The 
standard deviation (+) is large for small widths and decreases for increasing width. 
The coverage probability (El) is above the nominal value of 0.9 for all smoothing 
widths, i.e. the confidence regions are conservative. The smallest degree of conser- 
vatism appears for a window width of h = 5. For the data driven choice of the 
kernel width, the bias is 0.2 frequency bins, the standard deviation 4.1 frequency 
bins and the coverage probability 0.918. 

For the second simulation we choose T = 50 and t = 500 leading to a sharper 
peak of half power width 8 measured in frequency bins. Fig.4 displays the re- 
sults for the uniform smoothing window of different widths. Again, the confi- 
dence regions are conservative for all h. Because of the sharper peak, a smaller 
width of the smoothing window compared to the first simulation study yields the 
least conservative region. For the data driven choice of the kernel width, the bias 
is 0 and the standard deviation is 2.1 frequency bins. The coverage probability 
was 0.984. 

The Parkinsonian tremor has been shown to be a non-linear process (GANTERT 
et al., 1992 TIMMER et al., 1993). Without claiming any physiological signifi- 
cance the characteristic features of this process regarding the asymmetry in the 
time domain and the higher harmonics in the frequency domain (see Fig.2) 
can be captured by a (non-linear) threshold autoregressive (TAR) process (TONG, 
1983): 

1.998x(t - 1) - 0.99&r(t - 2) - 0.03 + E ( t )  x ( t  - 1) > 0 
1.992x(t - 1) - 1.002x(t - 2) - 0.2 + E ( t )  x(t  - 1) 5 0 

(13) 

x ( t )  = 
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Fig. 4. Result of the simulation study for an AR [2] process with T = 50 and t = 500. 
Shown is the dependence of the bias (0). standad deviation (+) of the estimator for the 
peak fnquency and the coverap probability (U) on the width of the smoothing window 



Biometrical Journal 39 (1997) 7 857 

COV 

0 

-3 

1 .OOo 

% c .- - 
E 
6 

CL 
0 

0.980 $ 

m e 
9 
0 0 

U 
0.960 

- E 
c 

L t  

0.940 
0 5 10 15 20 

h [frequency bins] 

Fig. 5. Result of the simulation study for a simulated Parkinsonian tremor. Shown is the 
dependence of the bias (0), standard deviation (+) and the coverage probability (U) on the 
width of the smoothing window 

with &(t)  - (0, 0.1). Here, the true peak frequency was estimated from a spec- 
trum that was estimated by averaging loo0 simulated periodograms. The half- 
power width of the main peak amounts to only 3 frequency bins reflecting the 
nearly deterministic behavior of tremor in Parkinson’s disease. Fig. 5 displays the 
results for the uniform smoothing window of different widths. For the data dri- 
ven choice of the kernel width, the bias is 0, the standard deviation 0.2 fre- 
quency bins and the coverage probability 0.996. The extreme conservative beha- 
viour of all estimation procedures is relativized by the fact that the average 
length of the confidence regions amounts to 1.2 frequency bins for the data dri- 
ven estimation procedure and to 1.8 frequency bins for the fixed interval estimator 
with h = 3. 

The conservatism is partially caused by the inclusion of the frequency bins 
where the 5% and 95% quantiles are located in the confidence region. Simulation 
studies with randomized confidence intervals reveal that these intervals are still 
conservative. 

5. Application 

We apply the proposed method to data from human hand tremor. Time series analy- 
sis methods have an increasing impact in supporting tremor diagnosis (DEUSCHL et 
al., 1996). The tremor time series are recorded by an accelerometer attached to the 
hand. The recording of -34 s is sampled with 300 Hz yielding 10240 data points 
which cover approximately 200 to 300 periods of the tremor oscillation. 
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Healthy subjects show a small amplitude tremor called physiological tremor. Its 
peak frequency ranges from 6.5 to 11.3 Hz. This range was determined from the 
lowest and highest peak frequency observed in 52 healthy subjects (DEUSCHL. et 
al., 1996). In most cases a discrimination between physiological and pathological 
tremors is easy because of the different amplitudes. A differential diagnosis of the 
various types of pathological tremor is more difficult. The two most frequent 
pathological forms of tremor are the essential tremor and the tremor which ap- 
pears as a symptom in Parkinson’s disease. The rate of false diagnosis between 
these two tremors especially in the first years of the disease is estimated to be 
20% (FINDLEY and KOLLER, 1987). Essential tremor peak frequencies range from 
4.6 to 10 Hz. This range was detennined from 42 patients. 

In Fig. 6 the spectrum of the tremor series of a subject suffering from Parkinson’s 
disease is displayed together with the 99% confidence region of the peak frequency 
for the frequency dependent choice of the smoothing width. The thin horizontal bar 
shows the range of peak frequencies for the healthy controls and the thick bar that 
for patients with essential tremor. The 99% confidence region is based on 5000 
resampled periodograms. The result allows the conclusion that the considered time 
series was neither derived from physiological nor from essential tremor. 

For the time series of a physiological tremor displayed in Fig. 1 the estimated 
peak frequency was 7.30 Hz. The 95% confidence region based on 5000 re- 
sampled periodograms was [7.04Hz, 7.70HzJ. The asymmetry of the confidence 
region reflects the slight asymmetry of the spectrum around the peak. 
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Fig.6. Estimated spectrum of Parkinsonian tremor time series with the 99% confidence 
interval for the peak frequency. The horizontal bars indicate the range of peak frequencies 
for healthy subjects (thin bar) and the patients with essential txmor (thick bar) 
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For the time series of a parkinsonian tremor displayed in Fig. 2 the estimated 
peak frequency was 5.92Hz. The 95% confidence region based on 5000 re- 
sampled periodograms was r5.86 Hz, 6.01 Hz]. The smaller confidence region 
compared to the physiological tremor reflects the sharper peak in this case. 

6. Discussion 

Confidence regions for spectral peak frequencies allow to describe the variability 
of estimators for spectral peak frequencies and, hence, contribute to the evaluation 
of the significance of findings. 

The procedures to construct confidence regions considered in this paper depend 
on the smoothing width chosen to estimate the spectrum. The confidence region 
seems to be conservative always. Furthermore, the results of the simulation studies 
suggest that the data driven frequency dependent choice of the smoothing width 
results in a less conservative coverage probability than any fixed choice. The for- 
mer method also showed a smaller bias and standard deviation of the estimator for 
the peak frequency than the latter. 

In many other application of the bootstrap either the data are resampled directly 
or new realizations are drawn from one probability density in the case of param- 
etric bootstrap. In the case considered here, the situation is one step more complex 
since first the spectrum has to be estimated by smoothing the periodogram and 
then, for each frequency, a random variable is realized. Therefore, the resulting 
confidence regions depend on the chosen smoothing procedure. 

The choice of an non-optimal width of the smoothing window leads to larger, i.e. 
more conservative confidence regions. This can be explained as follows: A smaller 
than optimal smoothing window causes a large variance of the spectral estimator 
used in the bootstrap. Consider, as an extreme example, the case of estimating the 
spectrum by the periodogram, i.e. no smoothing at all, see e.g. Fig. lb. Drawing 
random variables according to eq. (6) and reestimating the spectra by the same, i.e. 
no, smoothing procedure leads to an even more erratic behavior of the restimated 
spectra. Therefore, the maxima of the spectra reestimated from the realized period- 
ograms will show a distribution which is too broad. For a broader than optimal 
smoothing window the peak is oversmoothed leading to an estimated spectrum 
which is too flat. Then, accidental fluctuations in the reestimated spectra cause a too 
broad distribution of the location of the reestimated spectral maxima. The optimal 
bandwidth minimizes these two effects. Since the smoothing window is positive 
definite, the peak power is always underestimated and the width of the peak is al- 
ways overestimated in the finite case. This underestimation vanishes only asymptoti- 
cally. Increasing number of data points for a given process leads to an increasing 
width of the peak measured in units of frequency bins. Therefore, the asymptotic 
behavior of the procedure can be judged by regarding the results of the simulation 
studies in reversed order than presented. This indicates a decreasing overestimation 
of the confidence interval with increasing number of data. 
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