
International Journal of Bifurcation and Chaos, Vol. 8, No. 7 (1998) 1505–1516
c© World Scientific Publishing Company

MODELING NOISY TIME SERIES:
PHYSIOLOGICAL TREMOR

J. TIMMER∗

Fakultät für Physik, Hermann-Herder Str. 3,
79104 Freiburg, Germany

Zentrum für Datenanalyse und Modellbildung,
Eckerstr. 1, 79104 Freiburg, Germany

Received June 24, 1997; Revised February 18, 1998

Empirical time series often contain observational noise. We investigate the effect of this noise
on the estimated parameters of models fitted to the data. For data of physiological tremor,
i.e. a small amplitude oscillation of the outstretched hand of healthy subjects, we compare the
results for a linear model that explicitly includes additional observational noise to one that
ignores this noise. We discuss problems and possible solutions for nonlinear deterministic as
well as nonlinear stochastic processes. Especially we discuss the state space model applica-
ble for modeling noisy stochastic systems and Bock’s algorithm capable for modeling noisy
deterministic systems.

1. Introduction

One of the aims in time series analysis of com-
plex systems is to find a dynamical model for the
data [Crutchfield & McNamara, 1987]. A well fit-
ting model might yield insight into the underlying
process. But also if prediction is the main goal,
e.g. in order to discriminate chaos from stochastic-
ity [Sugihara & May, 1990; Casdagli, 1991], or if
fitted models are used to determine dynamical in-
variants of the system [Kadtke et al., 1993; Aguirre
& Billings, 1995], an optimal estimation of the pa-
rameters is desirable. Our own interest was stimu-
lated by modeling physiological time series in order
to gain insight into the underlying systems.

The dynamical models can be (time-
continuous) differential or (time-discrete) difference
equations. Methods to estimate parameters in
differential equations can be subdivided accord-
ing to whether they require an estimation of the
derivatives from the data [Cremers & Hübler, 1987;

Gouesbet, 1991] or not [Bock, 1983; Edsberg &
Wedin, 1995]. Difference equations allow a great va-
riety of different approaches to be used to model the
mapping from past values to the present one. These
range from parametric ones [Giona et al., 1991;
Aguirre & Billings, 1995] via neural nets [Lapedes
& Farber, 1987; Weigend et al., 1990; Principe
et al., 1992], radial basis functions [Casdagli, 1989;
Poggio & Girosi, 1990] and nonparametric models
[Tjostheim & Auestad, 1994] to local linear models
[Casdagli, 1991].

For all these methods a significant amount of
observational noise can be a severe problem. Es-
pecially for difference equations the functional re-
lation between past and present values will be un-
derestimated if observational noise is not included
in the model. In the first part of this paper we ex-
emplify this for data of physiological human hand
tremor. These data contain up to 50% observa-
tional noise. Inspired by the physics of the process,
linear stochastic autoregressive (AR) processes have
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already been suggested in 1973 to model these data
[Randall, 1973]. In [Gantert et al., 1992] these data
were analyzed by a linear state space model which
takes the observational noise into account. For one
data set we compare these two approaches in detail.
In the second part of this paper we discuss problems
introduced by observational noise and possible solu-
tions for nonlinear deterministic as well as nonlinear
stochastic processes.

2. Modeling Physiological Tremor

The outstretched hand of a healthy subject ex-
hibits a small amplitude oscillation called physio-
logic tremor [Deuschl et al., 1996]. The movement
of the hand can be measured by piezoresistive ac-
celerometers attached at the hand. Simultaneously
the flexor and extensor muscle activity is recorded.
The spectra of the muscle activity data are often flat
in physiological tremor reflecting an uncorrelated
activity of motoneurons [Timmer et al., 1998a]. For
an analysis of physiological tremor data in which
the muscle activity is correlated and included in the
modeling, see [Timmer et al., 1998b].

Figure 1 displays a 2 s section of the whole 35 s
measurement which is sampled with 300 Hz. The
time series consists of 10240 data points covering
approximately 250 periods of the oscillation. The
data are normalized to zero mean and unit vari-
ance. Figure 2 displays the periodogram, i.e. the
absolute value of the Fourier transform squared.
For the treatment of special problems of estimat-
ing the spectrum from the periodogram for tremor
time series, see [Timmer et al., 1996]. The peri-
odogram shows on the one hand the high amount of

Fig. 1. A 2 s section of human physiological hand tremor
data.

Fig. 2. Periodogram of the physiological tremor data set.

observational noise in these data. Roughly estimat-
ing the variance of the signal by summing up the
periodogram in the range from 2.5 to 12.5 Hz, and
that of the noise from the remaining frequencies re-
sults in a signal-to-noise ratio of 0.93 in relative
amplitudes. On the other hand the periodogram
shows one broad peak around a frequency of 7.5 Hz.
This peak is usually explained as a resonance phe-
nomenon [Stiles, 1980]. The outstretched hand is a
damped oscillator which is excited by the uncorre-
lated muscle activity. Usually no higher harmonics
show up in the periodogram indicating that the pro-
cess is linear.

The autoregressive (AR) processes invented by
Yule [1927] are expected to fit such data well. An
AR process of order p is given by:

x(t) =
p∑
i=1

ai x(t− i) + ε(t) , (1)

where ε(t) denotes an uncorrelated Gaussian dis-
tributed random variable with mean zero and vari-
ance σ2. Such a process can be interpreted, de-
pending on the chosen parameters, as a combination
of relaxators and damped oscillators [Honerkamp,
1993]. For example, an AR process of order 2 that
corresponds to a damped oscillator with character-
istic period T and relaxation time τ given by:

a1 = 2 cos

(
2π

T

)
exp(−1/τ) (2)

a2 = − exp(−2/τ) . (3)

The spectrum is given by:

S(ω) =
σ2

|1− a1e−iω − a2e−2iω|2 . (4)

AR processes can be generalized to the autore-
gressive moving average (ARMA[p, q]) processes by
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including past q driving noise terms in the dynam-
ics. For theoretical reasons ARMA[p, p− 1] should
be preferred to AR[p] processes for modeling of
sampled continuous-time processes [Phadke & Wu,
1974]. Experience shows that differences in the re-
sults are small.

A more substantial generalization is the linear
state space model (LSSM) [Honerkamp, 1993] which
enables the explicit modeling of observational noise
η(t) that contributes to the measured y(t):

~x(t) = A~x(t− 1) + ~ε (t), ~ε (t) ∈ N (0, Q) (5)

y(t) = C ~x(t) + η(t), η(t) ∈ N (0, R) . (6)

Equation (5) describes the linear dynamics. Equa-
tion (6) maps the dynamics to the observation in-
cluding the observational noise η(t). Another ad-
vantage of the LSSM is its capability to model
superpositions of linear processes. This is not pos-
sible for AR or ARMA processes. The spectrum of
a LSSM is given by:

S(ω)=C(1−Ae−iω)−1Q((1−Aeiω)−1)TCT+R .

(7)

The superscript T denotes transposition. Spectra of
AR or ARMA processes are special cases of Eq. (7).

While parameter estimation in AR models
e.g. by the Burg or Durbin–Levinson algorithm is
well established, parameter estimation in the LSSM
is more cumbersome, see [Honerkamp, 1993] for
a detailed description. Usually the Expectation–
Maximization (EM) algorithm is applied [Dempster
et al., 1977; Shumway & Stoffer, 1982]. The EM–
algorithm is a general iterative procedure to esti-
mate parameters for models in which not all vari-
ables are observable, here ~x(t). Denoting the joint
density of ~x(t) and y(t) given the parameters Θ by
p(x, y|Θ) and the density of ~x(t) given the data y(t)
and the parameters Θ by p(x|y, Θ) the quantity:

L(Θ, Θi) = 〈ln(p(x, y|Θ))〉p(x|y,Θi) (8)

is calculated in the ith Expectation step. In the
Maximization step, L(Θ, Θi) is maximized with re-
spect to Θ yielding Θi+1.

In the case of the LSSM, this means that start-
ing from some initial values for the parameters
A, Q, C, R the hidden dynamic variable ~x(t) is es-
timated by the Kalman filter [Kalman, 1960] in the
expectation step. Denoting the estimator of a quan-
tity z(t) based on the data y(1), . . . , y(t′) by zt|t′ ,

the covariance matrix of the estimated ~x(t) by Ωt|t′
and the variance of the prediction errors (y(t)−yt|t′)
by ∆t|t′ the Kalman Filter reads:

Ωt|t−1 = AΩt−1|t−1A
T + Q (9)

∆t|t−1 = CΩt|t−1C
T +R (10)

K = Ωt|t−1C
T∆−1

t|t−1 (11)

Ωt|t = (1−KC)Ωt|t−1 (12)

~xt|t−1 = A~xt−1|t−1 (13)

yt|t−1 = C~xt|t−1 (14)

~xt|t = ~xt|t−1 +K(y(t)− yt|t−1) . (15)

Since the model is Gaussian and linear, the density
p(x|y, Θ) is completely specified by ~xt|t and their
covariances Ωt|t. Note, that the covariances Ωt|t
only depend on the model parameters, not on the
data. An improvement of the estimated quantities
by the so-called smoothing filter and the lengthly
equations for the parameter update of A, Q, C, R
in the Maximization step are given in [Honerkamp,
1993]. This procedure is iterated until some conver-
gence criterion is fulfilled.

There are different criteria to estimate the fit-
ness of a dynamical model.

• Whiteness of the prediction errors. The model
should explain all correlations in the data yield-
ing uncorrelated prediction errors. By the
Kolmogorov–Smirnov test [Press et al., 1992] it
can be tested whether the periodogram of the
prediction residuals is consistent with white noise
[Brockwell & Davis, 1987].
• A knee in the variance of the prediction errors for

ascending model order indicates the correct order.
Criteria like AIC [Akaike, 1973], BIC [Schwartz,
1978], MDL [Rissane, 1978] can be used to take
into account the different number of parameters
in the compared models. The application of these
criteria is not without problems [Aguirre, 1994].
If the model class is not correct, these criteria will
choose “some” order.
• The distribution of some feature can be derived

from numerous realizations of the model and the
compatibility of the value of the feature calcu-
lated from the data with this distribution can be
examined, see e.g. [Witt et al., 1994].
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In the case of linear modeling there are two
more criteria.

• Since the parameters in linear models are related
to relaxation times of the corresponding oscilla-
tors and relaxators, negligible relaxation times in-
dicate a too large model order.
• According to Eq. (7) the spectra of linear pro-

cesses can be calculated from the parameters of
the estimated models. Since the spectrum is the
expectation of the periodogram, a comparison
of the spectrum to the periodogram of the data
serves as a qualitative criterion.

We now present the results of the analysis of
the data shown in Fig. 1. We do not give the es-
timated parameters here since they are rather un-
informative. Instead, Table 1 displays the resulting
periods and relaxation times. These characteristic
times can be calculated for any model order by for-
mulas analogous to Eqs. (2) and (3) [Honerkamp,
1993]. For an estimated oscillator a relaxation time
smaller than the period of the oscillation indicates
that this oscillator is insignificant. Pure relaxators
with a relaxation time of a few time steps are also to
be regarded as negligible. For the LSSM, a model
order of two with a period of approximately 40 time
steps, corresponding to a frequency of 7.5 Hz, and
a relaxation time of 91 time steps is clearly iden-
tified. For the AR models no significant structure
is detected. Table 1 also gives the probability of

the residuals to be consistent with white noise. For
the LSSM, models with an order larger than one
yield prediction residuals which are consistent with
white noise. The residuals of the AR processes are
not consistent with white noise for all model orders
investigated.

Figure 3 displays the variance of the prediction
error in dependence on the model order. The graph
for the LSSM exhibits a clear-cut knee at an or-
der of 2 whereas the graph of the AR model does
not allow for a clear-cut decision. The graph satu-
rates around order 5 and decreases slowly for larger
orders. We fitted AR models up to order 50 and
applied the AIC. Even for these unrealistically high
orders the function AIC(p) decreases.

Figure 4 shows a quantile–quantile–plot with
respect to a Gaussian distribution of the normal-
ized prediction residuals for the LSSM of order two
and the expected straight line. Only ten of the
10240 points deviate from the straight line indicat-
ing Gaussianty of the prediction residuals.

All these results indicate that the LSSM of or-
der two describes the data adequately. Figure 5
displays the low frequency part of the spectrum es-
timated from the parameters of the fitted LSSM of
order two and the periodogram of the data. This
confirms the above results.

In terms of physics and physiology these re-
sults show that the physiological tremor is a linear
damped oscillation driven by uncorrelated muscle

Table 1. Relaxation times and periods of the fitted AR and LSS models of ascending order
for the physiological tremor data. “prob. WN” denotes the probability of the residuals to
be consistent with white noise.

Model Order AR Model LSS Model

Relaxation Prob. Relaxation Prob.
Time Period WN Time Period WN

1 1.2 - 0 7.9 - 0

2 2.9 - 0 91.9 39.9 0.24

1.0 - - -

3 4.8 - 10−8 91.9 39.9 0.27

1.3 6.5 0.2 -

4 6.6 - 10−7 91.9 39.9 0.23

1.6 4.3 9.0 8.3

1.4 - - -

5 7.5 - 10−8 91.9 39.9 0.24

1.5 4.3 9.4 8.4

1.2 11.9 0.6 -
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Fig. 3. Residual variance of the fitted AR (+) and LSS (3)
models in dependence on the model order.

Fig. 4. Quantile–quantile plot of the normalized prediction
residuals of the second order LSSM with respect to a Gaus-
sian distribution. The straight line gives the expected behav-
ior in the case of Gaussianity.

Fig. 5. Periodogram of the data (dotted) and spectrum of
the fitted second order linear state space model (solid).

activity. The parameters of the model describe the
mechanical properties of the muscle-hand system,
i.e. its mass, stiffness and damping.

3. Modeling Noisy Time Series

The behavior of the AR model in the previous sec-
tion, i.e. not recovering the correct model order,
is caused by the observational noise. Whereas the
LSSM includes the observational noise explicitly in
the model, the AR model assumes the data to be
free from observational noise. We use a simple first
order process to demonstrate the consequences. In
an AR[1] model

x(t) = ax(t− 1) + ε(t) (16)

the parameter a can be estimated without bias by:

â =

∑
x(t− 1)x(t)∑

x(t− 1)x(t− 1)
. (17)

If the dynamics is covered by observational noise:

y(t) = x(t) + η(t), η(t) ∼ N (0, R) , (18)

the expected value of â estimated analogously to
Eq. (17) from y(t) is

〈â〉 =
〈y(t− 1)y(t)〉
〈y(t− 1)y(t− 1)〉 = a

1

1 +
R

〈x(t)2〉

. (19)

Thus, the parameter a is underestimated. The de-
gree of the underestimation depends on the signal-
to-noise ratio. This effect is known from linear
regression theory where it is called the “Error-in-
variables”–problem [Fuller, 1987] and was first men-
tioned in the context of time series in [Kostelich,
1992]. For the data analyzed in the previous sec-
tion the variance of the signal nearly equals the
variance of the noise. Thus, an underestimation
of a by a factor of two is expected. Indeed, even
for the mis-specified first-order models, the param-
eter estimated from the LSSM is 0.882 and that for
the AR[1] model is 0.443. Note, that in the case of
second-order models the misestimation of the pa-
rameters for the AR[2] models leads to a detection
of two relaxators, whereas the LSSM recognizes the
oscillator, see Table 1. Thus the AR model leads to
a wrong interpretation.

The underestimation of the functional relation
between past and present values in the case that
observational noise is not taken into account carries
over to more general models. Assuming stationar-
ity of the underlying process systems can be linear
or nonlinear, respectively deterministic or stochas-
tic. Our approach to discriminate deterministic
from stochastic systems, i.e. the presence of dy-
namical noise, is rather practical. For example,
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in the data analyzed in the previous section it is
imaginable to model the muscle activity by a de-
terministic system, including a model for the brain
and the spinal tract. This would result in a very
high-dimensional dynamical system whose output is
equally well captured by white noise. Thus, when-
ever a huge amount of influences enters the system
significantly a stochastic description might be rec-
ommended. But also if there exists no shadowing
trajectory for a realization of a deterministic sys-
tem, the use of stochastic models might be indicated
[Dawson et al., 1994].

The dynamics can be described by differential
equations or by maps. In the following we discuss
possible treatments of observational noise in the dif-
ferent cases. If present the dynamical noise is as-
sumed to be Gaussian and additive. By the latter
assumption we exclude models which are able to de-
scribe fluctuations in the parameters, e.g. bilinear
models [Subba Rao & Gabr, 1984].

3.1. Linear deterministic case

The linear deterministic case is easy to treat since
the solutions of the dynamical equations are explic-
itly known and can be fitted to the noisy data. Pa-
rameters of continuous- and discrete-time model-
ing are connected by equations like Eqs. (2) and
(3). An application to physiological data is given in
[Groothuis et al., 1991].

3.2. Linear stochastic case

The linear stochastic case is solved by the state
space model discussed above. Due to the linear-
ity and Gaussianity of the model there is a direct
connection between the parameters from discrete-
time and those from the continuous-time models.
Parameter estimation for the continuous-time case
is presented in [Singer, 1993]. An application of the
state space model to astrophysical data is given in
[König & Timmer, 1997].

3.3. Nonlinear deterministic case

The effect of observational noise is different for
fitting differential and difference equations to the
data.

For modeling data by differential equations
two approaches can be distinguished depending on
whether time derivatives of the process are esti-
mated from the data or not. Since estimating
derivatives from the data amplifies the noise, the
former method as applied in [Cremers & Hübler,

1987; Breeden & Hübler, 1990; Eisenhammer et al.,
1991; Gouesber, 1991; Gouesbet & Maquet, 1992;
Irving & Dewson, 1997] is vulnerable to significant
amounts of observational noise as demonstrated in
[Irving & Dewson, 1997].

To fit differential equations to noisy determin-
istic data without estimating derivatives from the
data, at least two different approaches exist. In
the initial value approach one chooses some initial
parameters in the model and an initial value for
the trajectory, integrates the differential equation
and tries to minimize the prediction error by some
minimization algorithm [Edsberg & Wedin, 1995].
Without many precautions, this procedure has been
shown to be unstable, i.e. yielding divergent trajec-
tories, and is susceptible to stopping in a local min-
imum [Richter et al., 1992; Timmer et al., 1998c].
A more sophisticated algorithm was developed by
Bock [1981, 1983]. His elegant multiple shooting ap-
proach starts with a discontinuous trajectory which
stays close to the data. The continuity of the un-
derlying trajectory enters into the algorithm by a
constraint in the cost function. This constraint is
nonlinear in the parameters but enters the optimiz-
ing strategy only in a linearized way. Therefore,
the trajectory is allowed to be discontinuous at the
beginning of the iteration but is forced to become
continuous in the end.

We illustrate the behavior of Bock’s algorithm
by the restricted Lotka–Volterra system which has
been used to compare different fitting procedures
[Bock, 1987; Varah, 1982; Tjoa & Biegler, 1991;
Edsberg & Wedin, 1995]:

ẋ1 = k1x1 − k2x1x2 (20)

ẋ2 = k2x1x2 − k3x2 (21)

with the parameters k1 = 1.0, k2 = 1.5 and k3 = 2.0
and initial values x1(0) = 0.3, x2(0) = 0.8. The
system is integrated by the routine BSSTEP from
[Press et al., 1992] for 20 s and sampled with
∆t = 0.2 s. The standard deviation of the data
is 1.09. Observational noise with standard devi-
ation of 0.5 was added to the signal. To fit the
parameters, only the first component was used. All
starting points for the second component were set to
0.5. Initial values for the parameter estimates were
k̂1 = 0.5, k̂2 = 0.75 and k̂3 = 1.0. Thirty starting
points were used for the initially discontinuous trial
trajectory. Figure 6 shows the initial situation (A),
the third iteration (B) and the converged solution
(C) after 16 iterations of the algorithm. The true
trajectory is reproduced well. With respect to the
confidence regions, the estimated parameters are
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Fig. 6. Convergence of Bock’s algorithm for the noisy Lotka-
Volterra system. A: Initial situation. B: After the third iter-
ation. C: After convergence, dashed line: true trajectory.

compatible with the true parameters: k̂1 = 1.01 ±
0.14, k̂2 = 1.53 ± 0.34 and k̂3 = 2.02 ± 0.45.

Simulation studies comparing both algorithms
show that Bock’s algorithm is more stable and
converges to the global minimum for a larger set
of initial guesses for the parameters than the ini-
tial value approach [Richter et al., 1992; Timmer

et al., 1998c]. Note, that for both approaches it is
not necessary to reconstruct the dynamics by delay-
embedding [Takens, 1981] avoiding all problems re-
lated to choosing the delay time [Kugiumtzis, 1996].

In a simulation study Bock’s algorithm has
been successfully applied to model noisy chaotic
data from dissipative as well as conservative sys-
tems [Baake et al., 1992; Kallrath et al., 1993]. Ap-
plications of this method to chemical and physio-
logical data are reported in [Bock, 1981; Baake &
Schlöder, 1992; Melzer et al., 1998]. The basic idea
of Bock’s algorithm, i.e. taking advantage of the
fact that the process under investigation has pro-
duced a continuous trajectory, carries over to mod-
eling noisy deterministic systems by maps. Never-
theless this idea has not attracted much attention
and modeling data by maps is generally treated as
a regression not as a dynamical problem.

Stimulated by [Crutchfield & McNamara, 1987]
a large number of different approaches have been
suggested to model nonlinear dynamics by maps.
They are distinguished by the type of basis func-
tion used to approximate the nonlinear functional
relationship between past values and the present
one. Amongst others, polynomials [Giona et al.,
1991], sigmoidals [Lapedes & Farber, 1987; Weigend
et al., 1990; Principe et al., 1992], radial basis func-
tions [Poggio & Girosi, 1990] and local linear models
[Casdagli, 1991] have been suggested. Analogous to
the AR model discussed above all these methods are
subject to the “Error-in-variables”–problem. For
the tremor data and the AR model of order two
in Sec. 2 above, this problem led to a detection of
two relaxators instead of an oscillator. In [Kadtke
et al., 1993] it was reported that observational noise
covering chaotic data led to a detection of a peri-
odic process. That might be caused by the same
phenomenon of underestimated parameters.

The generalization of the theory of “Error-in-
variables” from nonlinear regression, see [Carroll
et al., 1995] for a recent review, to modeling of
noisy nonlinear deterministic time series by maps
and an application to empirical data are presented
in [Jaeger & Kantz, 1996].

3.4. Nonlinear stochastic case

For the nonlinear stochastic case, including a possi-
ble nonlinear mapping g(.) of the state vector ~x(t)
to the observation y(t):

~̇x(t) = ~f(~x(t)) + ~ε(t), ~ε(t) ∈ N (0, Q) (22)
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y(t) = g(~x(t)) + η(t), η(t) ∈ N (0, R) , (23)

a generalization of the Kalman filter Eqs. (9)–(15)
appears to be the solution. Therefore, for the
discrete-time version, the matrices A and C are
replaced by linear approximations of ~f(~x(t)) and
g(~x(t)) [Gelb, 1989; Mendel, 1995]:

A =
∂ ~f

∂~x

∣∣∣∣∣
~x=~xt−1|t−1

(24)

C =
∂g

∂~x

∣∣∣∣∣
~x=~xt|t−1

. (25)

This solution is, in general, not valid for two rea-
sons. First, as mentioned in Sec. 2, the variance
Ωt|t of the predicted state variable ~xt|t depends only
on the model, i.e. not on the amount of data, and
might be so large that the linearization is not valid.
Thus, the distribution of ~xt|t becomes nonGaussian
and the first- and second-order description is not
sufficient. Second, the noise will become nonGaus-
sian in time-discrete nonlinear models. This results
from the theory of integrating stochastic differential
equations, see [Kloeden et al., 1991] for a recent re-
view. One main result of this theory is that unlike
deterministic differential equations, stochastic ones
cannot be integrated by arbitrary high order meth-
ods, e.g. by integrating the deterministic part by a
Runge–Kutta method of fourth order and adding
some noise to the resulting value. Due to compli-
cated stochastic integrals in the Taylor expansion
for higher order integration schemes, only first- or
second-order methods are feasible. Therefore, usu-
ally, the process has to be integrated on a much
smaller time scale than it is observed. This turns
the effective noise on the time scale of the observa-
tion nonGaussian. Due to this effect, methods like
those proposed in [Borland & Haken, 1992a, 1992b]
are applicable in special cases only.

The nonGaussianity prevents a maximum likeli-
hood estimation of the parameters. A least squares
approach yields biased estimates [Harvey, 1994]. In
general, for nonGaussian distributions all higher
moments have to be taken into account. A trun-
cated expansion in moments was suggested in [Gelb,
1989], the application of the Gibbs sampler using
a mixture of normals to approximate the distribu-
tions was introduced in [Carlin et al., 1992]. To
our knowledge no application of these methods to
empirical data have been reported.

All the map-based methods mentioned in
Sec. 3.3 can be applied to nonlinear stochastic sys-
tems by allowing for a residual error in the predic-
tion. Here, the above mentioned nonGaussianity is
also a problem since commonly applied least squares
fitting is no longer the maximum likelihood.

An application of the “Error-in-variables”–
theory to this double stochastic situation is not
straightforward. To apply this theory, the ratio of
the variance of the noise of past values to that of the
present value must be known. The noise covering
the past values is simply the observational noise,
but the noise on the present value is, in contrast to
pure regression, the sum of the observational and
the dynamical noise. Since spectra of most (ob-
servational noise free) processes decay for high fre-
quencies [Sigeti & Horsthemke, 1987; Sigeti, 1995],
the variance of the observational noise can be es-
timated from this region. But the variance of the
dynamical noise is usually obtained after fitting the
model since minimizing this variance is the optimiz-
ing criterion.

The severity of the effects of the problems dis-
cussed depends on the system, i.e. the type of the
nonlinearity and the variances of dynamical and ob-
servational noise. We demonstrate this by briefly
reporting the results of modeling a time series of
Parkinsonian tremor. This type of tremor is be-
lieved to be a nonlinear process [Gantert et al.,
1992; Timmer et al., 1993]. The time series was
recorded under the same conditions as the phys-
iological tremor data analyzed in Sec. 2. Fortu-
nately, the observational noise in these data is neg-
ligibly small. Using a large variety of ansatzes for
the right-hand side of the differential equation, we
did not succeed in fitting a nonlinear determinis-
tic differential equation by Bock’s algorithm to the
data. Therefore, we assumed that the process is
stochastic and tried global polynomials that are or-
thogonal with respect to the measure given by the
data. These polynomials were discussed in the con-
text of regression theory by Forsythe [1957]. He also
introduced a recursive algorithm to determine the
polynomials and their coefficients; in [Giona et al.,
1991; Brown, 1993; Aguirre & Billings, 1995] they
were made popular for the analysis of time series.
As discussed in [Aguirre & Billings, 1995] the sig-
nificance of each single polynomial can be judged
independently from the other polynomials.

Using models of polynomial order 4 and an em-
bedding delay τ of 10 time steps we fitted models
of ascending autoregression order to the data. We
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Fig. 7. Variance of the prediction errors for fourth-order
polynomial models of ascending autoregression order.

Fig. 8. Kolmogorov–Smirnov test statistic D for the consis-
tency of the prediction errors with white noise of fourth-order
polynomial models of ascending autoregression order. The
5% significance level is marked.

Fig. 9. Spectrum estimated from the original data (solid
line) and from a realization of the fitted model (dotted line).

found a model of regression order 3 containing 16
significant parameters which describes the data ad-
equately. The fitness was judged by a clear-cut knee
in the residual variance (Fig. 7), the whiteness of the

residuals (Fig. 8) and a comparison of the spectra of
the empirical data and data realized from the model
(Fig. 9). Note, that in Fig. 9 also the small peak
near 13.5 Hz which is only due to aliasing because
of the effective downsampling by choosing τ = 10,
is reproduced by the model.

Unfortunately we did not succeed in assigning
a physiologic meaning to the fitted parameters.

4. Discussion

The project “Equations of Motion from a Data Se-
ries” [Crutchfield & McNamara, 1987] has attracted
much attention. Our own interest was to obtain
models for physiological data like EEG or tremor.
The hope was to learn something about the under-
lying systems from the fitted models. In the first
part of this paper we gave an example where this
idea could be fulfilled and the parameter of the fit-
ted model could be interpreted in terms of physics
and physiology. This was facilitated by the fact
that the well-understood theory of linear systems
was applicable.

In the general case of nonlinear deterministic
or even nonlinear stochastic systems it appears to
be much harder to obtain such a result. This is on
the one hand caused by the fact that the treatment
of observational noise is not solved in general. On
the other hand without much knowledge about the
system under investigation, it is hard to decide on
a certain interpretable ansatz for the parameteriza-
tion of the nonlinear dynamics.

Often an interpretable model is not the goal of
modeling, e.g. if the aim is only for the prediction
of stock market data or the temporal evolution of
the prediction error as for discriminating determin-
istic from stochastic behavior. But here also ob-
servational noise is a problem, since the functional
relationship will be underestimated if it is modeled
by maps. A model taking this noise into account
would lead to a better model and a smaller predic-
tion error.

Results for fitted differential equations might
be compared to known systems in order to un-
derstand the underlying mechanisms. For maps,
this seems to be much more difficult, especially
when sigmoidals, radial basis functions or local lin-
ear models are used as basis functions. But even
if global polynomials are used an assignment of
a physical meaning to the parameters is difficult
since a single parameter in the underlying differen-
tial equation shows up in the coefficients of more
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than one basis function. Furthermore, the model
structure depends on the sampling time.

For many methods applied to model time se-
ries, observational noise causes problems since these
methods treat the data as in regression. For de-
terministic systems Bock’s algorithm provides an
elegant alternative which explores the additional
information that the process under investigation
produced a continuous trajectory.

There is growing evidence that many physiolog-
ical processes are neither linear stochastic processes
since surrogate data testing rejects this hypothesis
nor nonlinear deterministic processes since low di-
mensional attractors cannot be established. There-
fore, we believe that methods to model (noisy) non-
linear stochastic processes are worth being studied
in more detail.

Data availability

The tremor data and the simulated data of the
Lotka-Volterra system are accessible at:
http://phym1.physik.uni-freiburg.de

/∼jeti/tremordata/
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