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Predicting ligand-dependent tumors from multi-dimensional
signaling features
Helge Hass 1,2, Kristina Masson1, Sibylle Wohlgemuth3, Violette Paragas1, John E. Allen1, Mark Sevecka1, Emily Pace1,4, Jens Timmer2,5,
Joerg Stelling3, Gavin MacBeath1, Birgit Schoeberl1 and Andreas Raue 1

Targeted therapies have shown significant patient benefit in about 5–10% of solid tumors that are addicted to a single oncogene.
Here, we explore the idea of ligand addiction as a driver of tumor growth. High ligand levels in tumors have been shown to be
associated with impaired patient survival, but targeted therapies have not yet shown great benefit in unselected patient
populations. Using an approach of applying Bagged Decision Trees (BDT) to high-dimensional signaling features derived from a
computational model, we can predict ligand dependent proliferation across a set of 58 cell lines. This mechanistic, multi-pathway
model that features receptor heterodimerization, was trained on seven cancer cell lines and can predict signaling across two
independent cell lines by adjusting only the receptor expression levels for each cell line. Interestingly, for patient samples the
predicted tumor growth response correlates with high growth factor expression in the tumor microenvironment, which argues for a
co-evolution of both factors in vivo.
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INTRODUCTION
The combination of Herceptin® with chemotherapy demonstrated
a dramatically increased survival benefit for a subset of women
with HER2 amplified advanced breast cancer, which ultimately
led to FDA approval in 1998.1 Since then, targeted cancer
therapies have become an accepted therapeutic modality for
the treatment of cancer and have contributed to a decrease in
cancer related mortality.2 However, the benefit of targeted
therapies to date has been restricted to 5–10% of solid tumors
addicted to oncogenes.3–5 Identifying these relatively rare patients
via predictive diagnostic tests relying on genomic biomarkers has
created Precision Medicine.6–8

Retrospective analyses of several clinical studies of breast,
gastric or lung adenocarcinoma identified increased receptor and/
or growth factor expression as prognostic markers for patients
with poor prognosis, which highlights the role of ligand-induced
signaling as oncogenic drivers.9–12 Here we aim to decipher what
drives ligand-induced proliferation.
We present the first comprehensive proliferation screen across

58 cell lines comparing to which extent the growth factors EGF
(epidermal growth factor), HRG (heregulin), IGF-1 (insulin growth
factor 1) and HGF (hepatocyte growth factor) induce cell
proliferation. We find that about half of the cell lines do not
respond to any of the ligands whereas the other half of the cell
lines respond to a least one ligand. We compare the observed
ligand-induced proliferation with the response to treatment with
antibodies targeting the ErbB receptor family members, a
subfamily of four closely related receptor tyrosine kinases (RTKs):
EGFR (ErbB1), HER2/c-neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4)
as well as the insulin growth factor receptor (IGF-1R) and the
hepatocyte growth factor receptor (Met). Not surprisingly, the

antibodies targeting the respective RTK inhibit ligand-induced
proliferation. The antibodies also inhibited basal proliferation in
some cell lines that do not respond to exogenous ligand addition,
which could be driven by autocrine signaling.
The need has been recognized for computational approaches to

deal with the complexity of signal transduction and its dysregula-
tion in cancer to ultimately understand drug activity.13–17 Large
collections of genetic and genomic data led to efforts to
disentangle the complex mechanisms using machine-learning
algorithms.18–21 It was previously shown that simulated patient-
specific signaling responses derived from mechanistic signaling
models using RNA sequencing data from patient biopsies can be
robust biomarkers that are predictive of patient outcome.22 Here,
we combined machine learning and mechanistic modeling to
predict which cell lines proliferate in the presence of ligand. We
used RNA sequencing data as inputs into a comprehensive
mechanistic model capturing the ErbB, IGF-1R and Met signaling
pathways. Our novel approach uses simulated signaling features
and mutation status of a specific cell line as inputs into a Bagged
Decision Tree, which predicts whether tumor cells proliferate in
the presence of a growth factor. We achieved a substantial gain in
accuracy compared to predictions based on RNA sequencing data
alone by inclusion of simulated signaling features such as the area
under curve of distinct heterodimers and phosphorylated S6 for
in vitro models.
Applying this approach to patient data, the prediction of ligand-

dependent tumor samples based on mRNA data from The Cancer
Genome Atlas (TCGA) revealed that colorectal and lung cancer are
the two indications most responsive to EGF, which agrees with the
approval of EGFR inhibitors in these indications. In addition, the
prediction of responders in patient samples revealed a correlation
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between predicted tumor growth and measured ligand expres-
sion in the tumor microenvironment, which argues for a co-
evolution of ligand production and the ability of the tumor cells to
respond to stimulation.

RESULTS
In vitro proliferation screen
To investigate growth factor-induced proliferation we screened a
panel of 58 cancer cell lines (10 ovarian cancer, 11 breast cancer,
13 lung cancer, 11 gastric cancer, and 23 colorectal cancer cell

lines) for response to the exogenously added ligands EGF, HRG,
HGF, and IGF-1 (Supplementary Fig. 1) that bind to EGFR, ErbB3,
Met, and IGF-1R, respectively. In addition to ligand stimulation,
cells were also treated with ligand blocking antibodies: MM-151,
an oligoclonal therapeutic composed of three monoclonal
antibodies targeting EGFR;23 Seribantumab (MM-121), a mono-
clonal antibody targeting ErbB3;16 MM-131, a bispecific antibody
co-targeting Met and EpCAM;24 and Istiratumab (MM-141), a
bispecific antibody co-targeting IGF-1R and ErbB3.25 Fig. 1a
illustrates the RTKs, their corresponding ligands and the mechan-
ism of action of the ligand blocking antibodies. Proliferation was
quantified in a 3D spheroid formation assay at the 3-day time

Fig. 1 Proliferation screen across 58 cell lines. a Ligand/Receptor and antagonistic antibodies used in the in vitro proliferation screen. b
Results of the proliferation screen across 58 cell lines. Dots mark a significant increase in ligand induced proliferation or decrease in the
presence of ligand plus antibody. The ligand effect is normalized to the medium control, whereas the antibody plus ligand effect is relative to
ligand alone. The two cell lines marked with an arrow, as well as five additional cell lines that were not included in the proliferation screen,
were used to train the computational model to signaling data. c Correlation pattern of ligand and antibody effects across all cell lines. d Linear
correlation of receptor expression to ligand induced proliferation. The proliferation in response to ligand (y-axis) is displayed as log10-fold
change with respect to day 0. The receptor surface levels (x-axis) are absolute measurements of receptors/cell by qFACS on a log10-scale
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point (Fig. 1b) by measuring ATP content as surrogate for cell
number (CellTiter-Glo® assay). Response was classified as positive
if the signal at the 3-day time point was more than 20% above the
respective control, plus being significant at a confidence level α =
0.05 (measured in quadruplicates, Wilcoxon rank-sum test). Per
this screen approximately 45% of cell lines responded to EGF, 55%
of cell lines responded to HRG, 33% of cell lines responded to HGF
and 7% of cell lines responded to IGF-1. The low response rate to
IGF-1 in this proliferation screen may reflect the presence of IGF-1
in the low-serum medium and the modest absolute inhibition
point to the importance of IGF-1 mediated signaling for survival
rather than for proliferation.26 We and others observed a generally
weaker MAPK activation via IGF-1R (see Fig. 3c) compared to the
other growth factors in the screen.27,28 Further, the CellTiter-Glo®
assay relies on metabolic function and hence can be limited as
readout for IGF-1 stimulation.29

Figure 1b shows the response to treatment with ligand in
combination with the respective blocking antibody compared to
the ligand effect alone. Depending on the ligand treatment,
5–17% of cell lines were ligand non-responsive, but the antibodies
inhibited basal proliferation, which is indicative of autocrine driven
proliferation. Even though IGF-1 did not induce a proliferative
response in most cell lines, MM-141 inhibited proliferation in
about 19% of the cell lines indicating that IGF-1 might be present
in low-serum medium.
Investigation of correlations between the ligand and antibody

responses across all cell lines revealed a checkerboard pattern of
significant positive correlations between EGF, HRG, and HGF as
well as anti-correlations of those ligands and their respective
antibody responses (Fig. 1c). This suggests a general trend that
cell lines are either responsive to multiple ligands and their
respective antibodies (right hand side of Fig. 1b), or are generally
non-responsive to any given ligand or antibody (left hand side of
Fig. 1b). For IGF-1/IGF-1R, the only significant correlation was
observed between Istiratumab treatment and Seribantumab
treatment. This can be attributed to both antibodies (co-)
targeting ErbB3 and, therefore, some cell lines respond to both
Istiratumab and Seribantumab independent of an IGF-1 effect
(see, e.g., KYSE-410 cell line in Fig. 1b). The general lack of
correlation patterns for IGF-1/IGF-1R responses as were observed
for the ErbB family and HGF/Met can be explained by the lack of
IGF-1 induced proliferation in this screen.
In the following, we will focus on the question of how ligand

dependence can be predicted. A necessary condition for response
to any given ligand is the presence of its respective receptor. First,
we used a univariate analysis (Fig. 1d) and found that receptor
surface levels measured by qFACS do not correlate significantly
with the respective ligand response. Based on this data, a simple
linear model cannot stratify responsiveness. Next, we investigated
whether a multi-pathway signaling model featuring the complex
receptor interactions as well as the cross-talk between the
mitogen-activated protein (MAP) kinase and the phosphoinositide
3-kinase (PI3K) signaling pathways can be used to predict the
phenotypic response. Specifically, signaling features like the area
under curve (AUC), quasi steady-state and the signal amplitude of
receptor homo- or heterodimers and downstream components
were considered as inputs into a decision tree classification
algorithm.

Multi-pathway computational model
To construct a comprehensive signal transduction model that
could be used to predict proliferation in response to growth
factors for all 58 cell lines, we built on a previously published
model of ErbB receptor signaling.16 We extended the computa-
tional model to include IGF1-R and Met (Fig. 2a) as well as 12
homo and heterodimers for which biological evidence can be
found.30–33 Our analysis considers EGFR, HER2, ErbB3, Met and IGF-

1R homodimers as well as the heterodimers EGFR-HER2, EGFR-
ErbB3, EGFR-Met, HER2-ErbB3, ErbB3-Met, IGF-1R-IGF-1R, EGFR-
IGF-1R, and HER2-IGF-1R. The latter two were later removed from
the computational model without impacting the model perfor-
mance. Figure 2b depicts the structure of the model for the
example of a signaling HER2-ErbB3 heterodimer. The complete
model consists of 62 differential equations and replicates the
model structure shown in Fig. 2b for each of the considered ten
homo- and heterodimers. In short, receptors bind ligand with
published dissociation constants (KD). Bound receptors can form
homo and heterodimers and subsequently undergo endocytosis.
After internalization, the receptor dimers can get either depho-
sphorylated and recycled to the cell surface or they get degraded
in the lysosomes.34,35 Downstream of the receptor, all homo- and
heterodimers except the ErbB3-homodimer, which cannot trans-
phosphorylate due to its lack of intrinsic kinase activity, can
activate the MAP kinase cascade as well as the PI3K/AKT pathway.
ERK and AKT phosphorylation converge in the phosphorylation of
S6K1 and S6. Several known feedback mechanisms between the
pathways 27 were implemented in the computational model.
Mathematical details, executable code to simulate the model and
instructions to replicate our findings are available in the
supplementary materials and on biomodels.org.
The computational model is constructed with the aim to

capture the signaling dynamics of key components of the
signaling pathway including receptor homo- and heterodimeriza-
tion. It is not intended to be a complete compendium of all the
known molecular interactions.33,36,37 Size and complexity of the
computational model were chosen to reflect the available
experimental data, and to facilitate efficient computation. This is
particularly important during model parameter calibration, which
uses parameter estimation algorithms to match the available
experimental data as closely as possible (see Methods section for
details). Mutations were not implemented in the computational
signaling model as they appear to increase the signaling baseline
but not necessarily the signaling dynamics.38 However, the
mutation status for each cell line was used in the machine
learning classification.
For model calibration, phosphoproteomic time course data

from protein microarrays39 for the receptor phosphorylation as
well as for phospho-MEK, phospho-ERK, phospho-AKT, and
phospho-S6 across all seven cancer cell lines (H322M, BxPc-3,
A431, BT-20, ACHN, ADRr, and IGROV-1) were used. Only the two
cell lines H322M and IGFROV-1 were included in the cell line
proliferation screen in Fig. 1. These seven cancer cell lines
represent different cancer indications (lung adenocarcinoma,
pancreatic, epidermoid, breast and ovarian cancer) and were
selected based on the molecular diversity with respect to the
mutation status and differences in receptor expression. A key
challenge for building computational models that can describe
and predict signaling dynamics of different cell lines is to limit the
number of model parameters that are specific to one cell line.40 In
this case, it was possible to restrict all kinetic rate constants to the
same value and to adjust only the receptor expression for
individual cell lines. Due to the analytically calculated basal
activation levels of all homo- and heterodimers as well as of the
downstream components, which were derived from steady-state
constraints,41 the receptor expression impact the signaling
response throughout the model. Therefore, the individual receptor
expression of each cell line enables distinct model responses upon
ligand stimulation. The receptor expression was measured using
quantitative flow-cytometry (qFACS) in combination with RNA
sequencing data (see Methods section). The model can accurately
describe the time course data of seven training cell lines, with
85.7% of the data points within two standard deviations of the
model uncertainty (see Fig. 3 for a selection of the data and Suppl.
Figs. 11–40 for a comprehensive comparison of model simulations
and experimental data).
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Validation of the computational signaling model
Based on the trained model, predictions were generated for two
independent validation cell lines (BT-474 M3, MDA-MB-231) and
compared to the experimental data. The goodness of the
predictions for the validation cell lines was equivalent to the
goodness of fit of the training cell lines (Fig. 3b, Supplementary
Figs. 35–40 for model fits to the available data). These simulation
results validate that receptor expression is sufficient to predict
signaling features of independent cell lines that were not used for
model training. In addition, we generated model predictions that
were based on random receptor surface levels, by taking non-
matching values from randomly selected cell lines used in the cell
viability assay (see Table 3). The decline in goodness of fit was on
average 30% and statistically significant (p = 8.5 * 10−9, see
Supplementary Fig. 2). These results illustrate the importance of
receptor expression and their ratios to capture the distinct
signaling features observed for each cell line.42

To further validate the presented model structure with its
multiple receptor heterodimers, a simplified model lacking any
heterodimerization capabilities was trained to the experimental
data. In this setting, all receptors could signal downstream
through homodimerization, disregarding the non-functional
kinase unit of the ErbB3 receptor. Even with 39 parameters less,
the reduced model had a goodness of fit impediment with
associated p-value < 1.e-15 in the corresponding likelihood-ratio
test, showing the significant improvement of the computational
model by including receptor heterodimerization. Besides, con-
cordance of the basal receptor levels obtained via analytic steady
state equations, reflecting the proposed receptor trafficking, was

assessed through extensive measurements of basal total and
phosphorylation levels in 39 breast cancer cell lines.28 A good
correlation, especially for the ErbB receptor family, was found (see
Supplementary Fig. 3), confirming the calibrated model para-
meters constituting cell-dependent steady states.
To further test the robustness and applicability of the model to

ligands not included in the original training-set, we compared the
predicted receptor activation patterns in response to different
ligands of the EGFR-ligand family, such as Betacellulin (BTC). To
this end, previously published16 time-resolved data of the ADRr
cell line for EGF and BTC with ligand concentration range between
0.1 nM and 10 nM was reanalyzed with the current model (Suppl.
Fig. 4a). Differences in the ligand binding affinities of each
ligand to the EGF receptor as well as different homo- as well as
heterodimerization kinetics were sufficient to describe the
experimental data (Supplementary Figs. 4b, c). BTC induces a
stronger EGFR homodimerization compared to the stronger EGFR-
HER2 heterodimerization induced by EGF (Supplementary Fig. 4d).
These differences in EGFR homo and heterodimerization with
HER2 were previously described.43,44

Importance of receptor homo and heterodimers
Further insights into growth factor signaling and signal processing
by the cancer cells can be gained by analyzing the computational
model and why it can capture the distinct signaling dynamics
across cell lines. This analysis revealed the importance of different
homo and heterodimers in encoding information as a function of
the ligand(s) present. The largest effect of heterodimerization on
signal output is seen within the ErbB family. The interplay

Fig. 2 Structure of computational signaling model. a The receptors EGFR, HER2, ErbB3, Met, and IGF-1R can form several homo and
heterodimers after ligand binding. b In the model, receptors are synthesized and either dimerize spontaneously or bind a ligand to form
homo- and hetero-dimers, which results in trans-phosphorylation of the receptors. Activated receptors signal downstream and are prone for
internalization, which leads to either degradation or dephosphorylation by a phosphatase followed by recycling to the cell surface.
Downstream, the MAPK and PI3K cascade activate S6K1 and ultimately converge in the phosphorylation of S6. The MAPK and PI3K signaling
pathways are interconnected via multiple crosstalk mechanisms

Predicting ligand-dependent tumors
H Hass et al.

4

npj Systems Biology and Applications (2017)  27 Published in partnership with the Systems Biology Institute



Fig. 3 Importance of receptor surface levels for model response, shown for a selection of calibration cell lines. a Cell line dependent signaling
features: Model response to EGF stimulation of two different cell lines resulting in sustained or transient receptor phosphorylation in the BxPc-
3 and IGROV-1 cells. Their respective receptor surface levels are shown on the left. The model fits are represented by the colored lines with
respective uncertainties (67% confidence intervals) as shades. Data points are shown as dots in the same color. b Model fits for the cell line
ACHN stimulated with HGF, EGF and the combination. c Model response to co-stimulation of EGF plus HRG in comparison to the stimulation
with EGF, HRG or IGF-1 alone in H322M cells
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between the receptors explains the slower, more sustained
receptor activation in response to EGF in the BxPc-3 cells, which
are characterized by a high ratio of EGFR to other receptors (Fig.
3a). In contrast to the BxPc-3 cells, the IGROV-1 cells are
characterized by low EGFR expression compared to other
receptors leading to the observed transient and early activation
of EGFR and HER2. For the ACHN cell line, we generated signaling
data in response to EGF, HGF as well as to the combination of EGF
and HGF. The computational model reveals sophisticated feed-
back regulation between the MAPK and PI3K pathways, e.g.,
reduced AKT activation comparing EGF and HGF co-stimulation to
HGF only (Fig. 3b). In Fig. 3c another example is depicted: when
EGF and HRG are present, EGFR and ErbB3 compete for HER2. The
ligand combination results in reduced phopsho-ErbB3 levels due
to a dominant binding of HER2 to EGFR in the presence of EGF
(Fig. 3c). We argue that mechanistic understanding of changes in
receptor stoichiometry based on individual ligands or ligand
mixtures can cause non-obvious signaling responses and is
required to understand the ultimate phenotypic response.
IGF-1 is distinct from the other growth factors in our screen. IGF-

1 displayed a much weaker ability to induce proliferation and
similarly the effect of IGF-1 signaling in co-stimulation experi-
ments is distinct to the HRG/EGF or HGF/EGF co-stimulation

experiments. The time-course data for co-stimulation of IGF-1 with
either EGF or HRG did not show deviations from the respective
stimulation with IGF-1 alone (see Supplementary Fig. 14).
Consequently, the model parameters referring to the hetero-
dimerization of IGF-1R (see heterodimers involving IGF-1R in Fig.
2a) with other receptors could be set to zero without a significant
decline in the goodness of fit.

RNAseq and signaling features are predictive of phenotype
The calibrated mechanistic signaling model can be used to
simulate signaling features for the stimulation with EGF, HRG, HGF
or IGF-1 for all cell lines of the cell viability screen only using their
receptor expression as inputs. To connect signaling features
derived from the computational model to the phenotypic
response observed in the cell proliferation screen, we applied a
machine learning approach. Based on different sets of input
features that were selected based on their prediction ability (see
below), we trained bootstrap-aggregating (bagged) decision trees
(BDTs). BDTs are highly efficient for multivariate analysis and allow
for a comprehensive interpretation of the chosen features.45,46

Therein, a multitude of trees are trained, with each single tree
aiming at discriminating growing from non-growing cells based

Fig. 4 Strategies for predicting ligand-induced phenotypic response. Based on the receptor expression of individual cancer cell lines, either a
univariate or multivariate approach can be used to predict the phenotypic response to ligand stimulation. a Univariate approaches relate the
respective receptor expression to the observed ligand induced proliferation for each of the four ligands separately. b–c Multivariate
approaches such as bagged decision trees (BDTs) relate high-dimensional feature sets to the observed phenotype. b In this case the feature
set consists of the five receptor surface levels as well as information about the respective ligand stimulation and mutation status. c The
calibrated and validated signaling model allows to simulate the expected signaling dynamics for each individual cell line based on its receptor
expression and ligands present. Based on the mechanistic knowledge that the signaling model incorporates, it can expand the initial five-
dimensional feature set to a 12-dimensional feature set. This expanded feature set, together with information about mutation status is now
connected to the observed growth responses by a bagged decision tree
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on the provided feature space. At each node, a tree divides the
data through selected features that yield the best improvement in
signal-to-noise. Combining the ensemble of trees, high-
dimensional and non-linear regions in feature space prone for
cell growth are obtained and can be used for prediction. More
details can be found in the supplementary materials and in
Supplementary Fig. 5.
To investigate the contribution of dynamic signaling features

derived from the computational model on the predictive
performance of the machine learning approach, we considered
two different sets of input features (additional sets are reported in
Supplementary Fig. 6). The first feature set contained the receptor
expression, KRAS and PI3K mutation status and ligand treatment
as binary input (Fig. 4b).47,48 The second feature set did not
contain the receptor expression explicitly but only signaling
features derived from the computational model based on the
receptor expression and the ligand stimulation (Fig. 4c) as well as
the mutation status (see Table 3). The cell line specific signaling
features consist of the AUC of all phosphorylated receptor homo-
and heterodimers in addition to AKT, ERK, and S6 phosphorylation.
Inclusion of the fold-change of these features as well as their quasi
steady-state levels were tested but did not yield substantial
benefits on top of the information given by the area under curve
(see Supplementary Fig. 6). Figure 4 illustrates both multivariate
prediction strategies as well as the univariate analysis shown in
Fig. 1d.
To evaluate the accuracy of BDT predictions, the cell lines were

randomly split 500 times into training and testing sets. For each
ligand, BDT training was performed on the training data for all
available ligands, while efficiency was calculated on the testing
cell lines for the chosen ligand only. By leaving out whole cell lines
as opposed to a fraction of the total data, possible bias due to
correlated responses to different ligands in the same cell line is
avoided. We monitored the fraction of true predictions as a metric
for the prediction accuracy. Both feature sets resulted in a better
prediction of proliferation compared to random data, which
results in 50% true predictions and serves as control (Fig. 5a).
Exceptions were the predictions for IGF-1 and HGF stimulation
using the receptor expression only, where the performance drops
insignificantly below the control. Training on features derived
from the computational model improved the prediction of cell
proliferation significantly compared to control (p-value of <1.e-2,
see Fig. 5b) for the combination of all ligands except IGF-1, while
BDT predictions based on receptor expression alone did not result
in a statistically significant improvement (p-value of 0.15, see Fig.
5b). The respective distributions for single ligand induced
proliferation predictions can be found in Suppl. Fig. 7. The BDT
training was robust with respect to the relative amount of training
and testing data and to the significance threshold upon which a
cell is labeled as proliferating (Supplementary Fig. 8). For IGF-1, the
low number of responders resulted in a low correlation within the
events and a statistical bias of their relative amount in training or
testing data. These circumstances rendered robust prediction
impossible and the IGF-1 data set was excluded, e.g. in the
combination of all ligands (see Fig. 5a).
One of the advantages of mechanistic computational models is

that it is possible to gain insights into cellular signal processing.
Thus, the importance of different model features during BDT
training can be traced back to develop hypotheses about what
ultimately drives proliferation. The training features are ranked by
their impact on data classification, which is measured by the
average gain in signal-to-noise ratio over all trees. As illustrated in
Table 1, the most important features rely on the homo- and
heterodimerization stoichiometry of the ErbB receptor family as
well as on the downstream signaling. A more detailed overview is
given in Fig. 5c, which illustrates the data from the proliferation
screen and the model-derived features that proved important
during training of the BDT (see Table 1). This coincides with prior

biological knowledge that ErbB receptors induce proliferation.13 It
can be observed that EGF, HGF or HRG stimulation induce very
specific homo and heterodimerization patterns of EGFR and EGFR/
HER2 respectively. Moreover, phospho-S6 is an important feature
to predict proliferation in the presence of HRG and HGF, both
mainly activating the PI3K pathway. Its importance might be a
result of the crosstalk between the MAPK and PI3K pathways and
the convergence of both pathways in S6 phosphorylation.49

Moreover, PI3K mutation status and EGFR heterodimerization
patterns help to identify clusters of EGF dependent cell lines. RAS
mutation status and differences in activation of downstream
targets further predict proliferation after HRG and HGF stimulation.
Independent of the KRAS mutation status, HRG induces increased
levels of AKT phosphorylation while inducing the same amount of
S6 phosphorylation as HGF.

Application to patient data
In the previous section, we showed that a mechanistic computa-
tional model in combination with decision tree classification can
predict in vitro proliferation. Next, we applied this novel approach
to patient data. Using the data from the TCGA Research Network
(http://cancergenome.nih.gov/), we use our model to predict if an
individual patient tumor would show a proliferation response if
stimulated by the ligand of interest. The patient data set includes
2909 samples from patients with breast, colorectal, lung, and
ovarian cancer. The input to our model is receptor RNA expression
measured by RNA sequencing for each tumor sample. The
measured RNA expressions between our in vitro cancer cell line
data and the data from patient tumors were on different scales.
Therefore, we normalized the expressions to their respective
means. Subsequently, the expression of EGFR, Her2, ErbB3, Met,
and IGF-1R were used to perform model simulations and to extract
the signaling features needed to predict ligand-dependent tumors
using the previously described BDT algorithm. The number of
ligand-dependent tumors differed within indications and ligand
(EGF, HGF or HRG). The number of predicted ligand responsive
tumors was highest for HRG followed by EGF and lowest for HGF
(Fig. 6a). Lung and colorectal cancer seem to be most responsive
to EGF, which is congruent with the high prevalence of EGFR
mutations and overexpression in these indications.50–52 In Fig. 1b
we observed that ligand induced proliferation is correlated with
treatment response to an antibody targeting the respective
receptor. Therefore, the approvals of EGFR inhibitors in non-small
cell lung cancer (NSCLC) and CRC confirm the predicted
dependence on EGFR signaling.53,54 In contrast, the low depen-
dence of NSCLC on HGF signaling might explain the failure of
Onartuzumab (MetMAb), a Met blocking antibody in a Phase
3 study in NSCLC.55 Similarly, EGFR inhibitors have not yet proven
to result in clinical benefit in breast cancer,56 which is also in
agreement with the predicted low EGF dependence of breast
cancer. The predicted high responsiveness of breast cancer and
lung cancer to HRG seems to agree with the retrospective analysis
of two clinical studies with Seribantumab and the finding that
HRG expression appears to be predictive of patients responding to
therapy.57 Unfortunately, the precision of the predictions cannot
be assessed as no outcome data to treatment with ligand blocking
antibodies is available for the TCGA data set. The predicted ligand-
dependence only considers the molecular makeup of individual
tumors. However, a tumor that is predicted to be ligand-
dependent would respond only if the respective ligands were
also present in sufficient amounts in the tumor microenvironment.
The local concentration of ligands, however, cannot be inferred
from our analysis and it is difficult to match to the in vitro data
that was used for model training. This impacts the predicted
number of ligand-dependent tumors in this data set.
However, apart from the relative number of ligand-dependent

tumors, we observed a significant correlation between ligand
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expression and the predicted response to ligands (Fig. 6b,
additional data in Supplementary Fig. 9). The predicted ligand-
dependent tumor samples from patients with breast and color-
ectal cancer display statistically significant higher (t-test) amounts
of the corresponding ligand compared to the predicted ligand

independent tumors, if we compare the mean expression. This
suggests that tumors that express ligands evolved to be sensitive
to ligands, or vice versa. In our opinion, this is an indirect proof
that the model predictions can be applied to data from patient
tumors and that they could be clinically relevant.

Fig. 5 Prediction of ligand-induced proliferation using BDTs. a Ratio of true predictions after BDT training with simulated signaling features or
receptor expression only, compared to random predictions in the presence of EGF, HRG, IGF or HGF. b For 500 random splits of training and
testing cell lines, the BDT outcome is compared to random growth assessment as histogram and cumulative density function, showing the
significant improvement due to mechanistic modeling. c Data of in-vitro cell viability screen showing proliferation response (green) or no
significant response (red) in different 2D representations of the feature space
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DISCUSSION
The research to understand and therapeutically battle various
cancer types has made significant progress over the last two
decades, decreasing the overall mortality by roughly 2% per year
since 2001.58 Targeted therapy and combinations thereof have
become important areas of drug development with rising FDA
approval rates in the last years.59,60 However, by studying cellular
fate across multiple cell lines and indications, we and others have
learned that complex interactions between receptors as well as
positive and negative feedback regulation between signaling
pathways can diminish drug efficacy. To obtain a deeper

understanding of cell response to exogenous stimuli, phenotypic
responses need to be studied in the context of multiple signaling
pathways as well as mutation status. In this work, we developed a
computational model describing multiple signaling pathways and
show that a BDT algorithm using simulated signaling features can
accurately predict ligand-dependent proliferation in vitro.
The signaling model incorporates the ErbB receptor family as

well as the Met and IGF-1R receptors. Parameters of the model
were estimated based on a variety of time-resolved data from
seven different cell lines including a wide range of ligand
concentrations with comprehensive single ligand and co-
stimulations. The cell lines cover a broad range of ratios of
receptor expression. The ligand concentrations used in the
proliferation screen were in the range of concentrations used for
the signaling experiments. While retaining a good fit to the
experimental data, we could keep all kinetic parameters in the
signaling model constant and just vary the receptor expression to
describe the experimental signaling data for each cell line. It is
important to note that this is not a direct proof that the reaction
rate constants are identical between the cell lines. However, our
model with all rate constants set to the same values, is in line with
the receptor phosphorylation and downstream signaling data. We
do not argue that the model presented here is correct in all of its
aspect, but we could show that the signaling dynamics predicted
by the model are useful for predicting the cellular responses to
ligand stimulation and that this presents an approach that should
be explored further by incorporating clinical patient response

Table 1. Model features ranked by their BDT training efficiency

Feature BDT importance score

pS6 AUC 0.65

EGFR homodimerization 0.56

EGFR-HER2 heterodimerization 0.56

Met-ErbB3 heterodimerization 0.55

pAKT AUC 0.43

pERK AUC 0.37

PI3K mutation status 0.35

RAS mutation status 0.30

Fig. 6 Predicting ligand dependent tumors from the TCGA data set. a Predicted percentage of tumors that would response to ligand
exposure. The predictions were obtained by using the receptor RNA expression measured in breast, colorectal, lung, and ovarian cancers as
inputs to our model. b The measured RNA expression of the ligands in predicted responders (red) vs. non-responders (green). The mean
expression (black horizontal lines) and statistical significance of differences is indicated. The receptor mRNA expression is measured in
transcripts per million and is displayed on a log-2 scale
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data. The computational model not only describes the data for the
seven training cell lines but also predicts the signaling responses
of two additional, independent validation cell lines. We showed
that the goodness of fit is dependent on the absolute receptor
expression and the formation of different homo- and hetero-
dimers. The observed variability in model response was achieved
by differences in internalization, degradation and recycling rates
for different receptor homo- and heterodimers. Saturation of
different downstream model components is sensitive to the
receptor expression. The analytically solved steady states for all
cell lines were important to implement the complex receptor
dimerization properties in the signaling model. Thus, ligand
stimulation results in a complex re-distribution of receptor homo-
or heterodimerization and facilitated distinct downstream activa-
tion patterns. The calculated steady states, especially for the ErbB
receptor family, were found in concordance with measured basal
total and phosphorylation levels of 39 breast cancer cell lines
utilized from.28 The fact that the developed computational model
can accurately describe the signaling responses across multiple
cell lines enables the prediction of signaling dynamics for cell lines
of the proliferation screen that were not used to construct the
computational signaling model.
To predict proliferation in response to ligand stimulation,

we linked simulated signaling features to the data of the cell
proliferation screen using a supervised machine learning
approach. Tree-based classification algorithms are widely used
for machine learning61–63 and carve out regions in feature space
that best distinguish between different data classifications, here
proliferation vs. stasis upon ligand stimulation. BDTs were trained
on the in vitro proliferation screen across 58 cell lines. The
algorithm was trained with either receptor expression and ligand
stimulation conditions as Boolean columns or with signaling
features extracted from the computational model. The signaling
features included the integrated area under curve of all receptor
complexes as well as the phosphorylation of AKT, ERK, and S6.
Both feature sets lead to a better prediction of proliferation
compared to control, where response was predicted based on
random data. However, the signaling features allowed for a more
robust and statistically improved prediction of proliferation. In
addition, the computational model allows us to gain insights into
the underlying processes driving ligand-dependent proliferation.
In all cases homo or heterodimerization of the ErbB receptors was
important. In the case of EGF, the PI3K mutation status mattered in
addition. For HRG and HGF possible RAS mutations together with
AKT and S6 phosphorylation were important features to predict
cell proliferation. However, the importance of features in the tree-
based approach is very sensitive to the utilized data, and
additional measurements are needed to infer the role of MAPK
and PI3K signaling in inducing growth.
Simulated signaling features are advantageous over using

receptor expression directly as input features for two reasons:
First, the dynamic range of receptor activation as well as of the
downstream components is described quantitatively and renders
the model outputs more robust to receptor expressions, which
span multiple orders of magnitude. Second, the interplay between
receptors and the included feedback mechanisms adds a source
of information on top of the receptor expression and ligand
information alone, resulting in a non-linear input transformation
that improves the detection of regions governing proliferation.
To demonstrate the applicability of this novel approach to

patient samples, data from 2909 patients with breast, colorectal,
lung or ovarian cancer were analyzed. For these samples, model
simulations were conducted to extract signaling features required
for BDT prediction of ligand-dependence. Interestingly, we
observed a significant correlation between the measured ligand
expression and the predicted ligand-dependence for breast and
colorectal cancer. This may be a consequence of evolutionary
adaption of these tumor cells due to the growth advantage from

ligand-mediated signaling. Therefore, the presence of ligands in
the tumor micro-environment may be a favorable biomarker for
RTK-directed drug treatment. This rationale together with possible
mutations, which contributed substantially in the BDT training, are
currently being explored in the clinic.57

However, both the prediction of proliferation and the mechan-
istic computational model have limitations. For one, machine
learning in feature-space regions that are not covered by many
cell lines is not efficient as illustrated by IGF-1 in the proliferation
screen data-set. The mechanistic model is limited in its ability to
fully reproduce data in cases of either receptor overexpression
(see Supplementary Fig. 19), which probably transfers to the
presence of activating mutations, as well as in cell lines harboring
PI3K or RAS mutations (see Supplementary Figs. 22, 23, and 37 to
40). We also encountered computational limitations since the
complexity of the mechanistic computational model is on the
verge of what is currently computationally feasible. This said, more
emphasis on model selection, e.g. profile likelihood-based model
reduction64 with additional prior knowledge may allow us to
better bridge between quantitative time-resolved data and large-
scale genomic and phenotypic data. To understand ligand
mixtures and pathway redundancy a greater variety of single
ligands, e.g., FGF and PDGF, or stimulations with ligand mixtures
might aid to more accurately determine model parameters for
receptor dimerization, trafficking and downstream activation in
the future. Further, or model is currently limited to MAPK and PI3K
pathways. Future work, should expand on this approach by
including other signaling pathways, e.g., data from the JAK-STAT
signaling pathway. An expanded model may improve the
accuracy of the predictions as well as additional perturbations
like specific gene knockdown etc. would help to improve the
signaling model.
Ligand-dependence or addiction to growth factors (ligands)

might prove to be far more prevalent than oncogene addiction
given the high ligand prevalence in solid tumors and potentially
as much more complex since multiple ligands are expressed in the
tumor microenvironment. To successfully treat patients with
ligand-dependent tumors with targeted inhibitors (small mole-
cules or monoclonal antibodies) or rational combinations of
targeted inhibitors, a better understanding of ligand-dependence
is crucial, especially given the redundancy of signaling pathways
within a tumor cell and tumor heterogeneity. We argue that the
mechanistic understanding of changes in receptor stoichiometry
based on individual ligands or ligand mixtures result in non-
obvious signaling responses that are relevant to the ultimate
phenotypic response. The work presented here demonstrates that
for targeted therapies to be successful in the clinic the ligand
hierarchy as well as co-dependence need to be understood and
most likely require the measurement of multiple ligands and
respective receptor expression in tumor biopsies. New methodol-
ogies like single cell RNAseq65 may allow us in the future to
characterize the clonal composition of tumors and to determine
which cellular fraction is ligand-dependent and which drug
combination is best suited to eliminate all ligand-dependent
tumor cells.
The presented novel approach of using BDTs in conjunction

with simulated signaling features is the beginning of how complex
mechanistic models and large data sets can be combined to
understand cell-specific complexity but also heterogeneous
tumors better. We demonstrated that mechanistic computational
models of signaling pathways can help bridge between large scale
in vitro observations and clinical hypotheses. In the future,
selected in vivo studies should be used to validate rational
combination regimens. Previous efforts predicting drug sensitivity
based on large and diverse data sets found that gene expression
data proved most valuable, together with exploiting non-linear
relationships and addition of prior knowledge of biological
pathways.18,66,67 Yet, significant improvement in predictions
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proved to be challenging across multiple approaches and data
sets. With the presented approach, mechanistic knowledge can be
easily combined with known datasets from RNA sequencing, copy-
number alterations and mutation information to improve the
prediction of patient-individual drug response and unravel the
interplay between complex signaling and cellular fate.

METHODS
Cell lines and reagents
All cell lines used in the viability screen were purchased from American
Type Culture Collection. In brief, cells were cultured in RPMI 1640 medium
(Life Technologies) supplemented with 10% fetal bovine serum (FBS, Life
Technologies) and 1% penicillin-streptomycin (pen/strep, Life Technolo-
gies) at 37 °C and 5% CO2. Recombinant human heregulin1−β1 (NRG1b)
EGF domain and HGF were obtained from PeproTech, and recombinant
human IGF-1 and EGF were obtained from RD Systems. Seribantumab,
MM-131, Istiratumab and MM-151 was manufactured in-house by the
Merrimack Pharmaceuticals Protein Engineering Department and stored at
4 °C. CellTiter-Glo® was obtained from Promega and reconstituted fresh for
each experiment.

Spheroid formation assay and in vitro screening conditions
To measure cell viability in a three-dimensional spheroid culture, cells were
seeded into 384-well low- binding multi-spheroid culture plates (Scivax,
USA) in the relevant growth medium supplemented with 4% FBS and 1%
pen/strep at a density of 1500 cells/well. To allow for spheroid formation,
plates were incubated for 24 h, after which cells were treated with ligands
(5 nM HRG1, 5 nM EGF, 50 nM IGF-1, 1 nM HGF) and/or inhibitors (1 μM of
Seribantumab, MM-131 and MM-151 and 0.5 μM of Istiratumab) in 4% FBS
containing medium. Following 72 h of incubation, cell viability was
determined by incubation with CellTiterGlo® reagent for 10min and
measuring well luminescence on an Envision (Perkin Elmer) plate reader.

Experimental time-course data and selected cell lines
The available data consists of three different data sets, which include time-
resolved concentration measurements of activated and total receptors as
well as of various phosphorylated downstream targets. The largest data set
comprises nine cell lines with measurements of the EGFR, HER2 and ErbB3
receptors of the ErbB family and the IGF1-receptor, together with the
downstream targets ERK, AKT, S6K1 and S6. Four different ligand
concentrations of EGF, HRG, and IGF-1 ranging from 0.156 to 10 nM are
used and 12 measurement time points up to 240min are taken. In
addition, co-stimulations of the respective ligands are available for two of
the nine cell lines. Out of the nine cell lines, six cell lines are used for model
calibration, the remaining three to validate the model. Cell lines used for
calibration include H322M (non-small cell lung cancer), BxPc-3 (pancreatic
cancer), A431 (epidermoid cancer), BT-20 (breast cancer), ADRr (ovarian
cancer) and IGROV-1 (ovarian cancer). BT474 (breast cancer), MDA-MB-231
(breast cancer) and ACHN (renal cancer) are utilized to validate the model.
Measurements after either EGF or BTC stimulation are available for one

of the calibration cell lines, ADRr, with ligand concentrations between 0.11
and 9.26 nM, and 12 measurement time points up to 240min. These
include phosphorylation of EGFR, HER2, ErbB3, ERK, and AKT. Apart from
that, measurements with HGF and EGF as well as their co-stimulation is
available for ACHN, which is used for validation with respect to HRG and
IGF-1, spanning the same concentrations and measurements up to
120min. Therein, phosphorylated EGFR and Met phosphorylation as well
as phospho-ERK and phospho-AKT are measured. The receptor concentra-
tions in all experiments are measured by ELISA whereas the downstream
components are measured by lysate microarray.

Quantification of receptor expression in cell lines using qFACS
Cells were trypsinized, washed, and stained using fluorescently labeled
antibodies, see list below. Antibodies were labeled as previously described
(16). Receptor numbers were determined by assessing the antibody-
binding capacity of the fluorescently labeled antibody via quantitative
fluorescence-activated cell sorting. Antibody-binding capacity was deter-
mined using Simply CellularQuantumBeads (BangsLabs, Fishers, IN), per
the manufacturer’s instructions. List of antibodies and target receptors
used in qFACS method: Erbitux (EGFR), Trastuzumab (HER2), Anti-human

HER3 Ab generated by Merrimack, A12 IgG (anti-human IGF1-R), Anti-
human Met, Mouse Anti-Human EpCAM-APC (BD Biosciences, Cat# EBA-1).

ELISA and Lysate microarray (reverse phase protein array)
measurements
Matching high density lysate matrices from nine cells lines (BxPc-3, H322M,
ACHN, IGROV-1, A-431, BT-20, ADRr, BT-474-M3, and MDA-MB-231) were
generated for both the ELISA and lysate microarray studies. Lysate matrices
were developed by treating each cell line with EGF, HRG1b1, IGF1,
individually at four different doses (10 nM, 2.5 nM, 0.625 nM, and
0.156 nM), as well as in all two-way combinations of these three ligands
at a single 2.5 nM dose of each ligand (a total of 15 conditions) in 96-well
plates (Corning). Antibodies directed at pAKT (S473), pMEK (S217/S221),
pERK (T202/Y204), p-S6K1 (T389), and pS6 (S235/S236) were obtained from
Cell Signaling Technology. Cells were cultured using standard tissue
culture techniques in RPMI supplemented with 10% FBS and penicillin/
streptomycin. Cells were counted using a hemocytometer and seeded at
10,000 cells/well into 40x 96-well tissue culture plates (Corning). After
24–48 h, once cells had reached approximately 50% confluency, medium
was aspirated and replaced with low- in medium (RPMI supplemented with
0.5% FBS and penicillin/streptomycin) (Gibco). 16–24 h later, 2x ligand
solutions prepared in low-serum medium were added simultaneously to all
96 wells of each plate. Plates were returned to the incubator for the
prescribed incubation times, then placed on ice to stop ligand stimulation.
Medium was aspirated from all wells, cells were washed once with ice-cold
PBS, and then lysed in 30 μL/well of lysis buffer. Twelve time points as well
as an untreated time zero were collected for all conditions (0, 2, 4, 6, 8, 10,
15, 30, 60, 90, 120, and 240min). Lysates were then collected and frozen.
For ELISA lysates, M-PER buffer (ThermoFisher) was supplemented
with protease and phosphatase inhibitors (Roche) and NaCl to a final
concentration of 150mM. For lysate microarrays, lysis buffer was prepared
as previously described.68

Total and phospho ELISAs of EGFR, ErbB2, ErbB3, and IGF-1R were
performed as previously described.69 Protein specific antibodies were used
for capture in all cases, while an anti-phospho tyrosine antibody was used
for detection in all phosphor assays (see Supplementary Table 1). Antibody
screening for this study and well as lysate preparation and printing were
performed as previously described.68,70 Arrays were printed with a 7-point
dilution series for each lysate onto 16-pad slides (GraceBioLabs OnCyte
Avid, Bend, OR) using the Aushon 2170 micro-arraying robot in 2x4 8-pin
mode (Aushon Biosystems, Billerica, MA). Slides were washed in 100mM
Tris-HCl pH 9.0 at RT for several days, followed by 3x 5min PBST, after
which slides were spun dry. ProPlate 16-well slide modules (GraceBioLabs)
were then attached. Arrays were blocked in Odyssey Blocking Buffer (LiCor,
Lincoln, NE) at 4 °C for 1 h, after which blocking solution was replaced with
1:500 primary antibodies (all rabbit, see list below) mixed with 1:1000 anti-
beta-actin antibody (mouse) (Sigma A1978) for 24 h at 4 °C with agitation.
Slides were then washed 3x 5min with PBST, then incubated in secondary
antibodies (1:1000 anti-rabbit-800 and 1:1000 anti-mouse-680 (LiCor) in 5%
BSA/PBST) at 4 °C for 5 h. Arrays were washed briefly in PBST, ProPlate
modules were removed, and whole-slides were washed 3x 5min in PBST.
Slides were then spun dry at room temperature. Slides were scanned on
the LiCor Odyssey scanner at 21 μm resolution and under the “highest”
quality setting in both the 700 and 800 nm channels. Spot intensities were
extracted using the LiCor ImageStudio software with manual spot
alignment.

Mechanistic modeling
Mechanistic models based on ordinary differential equations (ODEs) are
frequently used for the description of biochemical reaction networks. They
are composed of kinetic rate equations and every component x of the
model has a biological counterpart. The time evolution x(t) of the model
concentrations is obtained by integration of the corresponding system of
ODEs

_x t; u; θð Þ ¼ f x; θdð Þ; (1)

depending on initial and kinetic rate parameters comprised in θd. These
are linked to measured concentrations of the involved constituents y(t) by
an observational function

y tið Þ ¼ g x ti ; θdð Þ; θoð Þ þ ϵ tið Þ (2)

with the assumption of Gaussian errors ϵ � Nð0; σÞ that is often achieved
via log transformation. In addition, the observation function includes e.g.
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scaling and offset parameters, summarized in θo. Both observational and
dynamic parameters are comprised in θ. To compare the model response
to measured data at time points ti, the scaled log-likelihood is calculated
via

�2 log Lð Þ ¼ χ2 θð Þ ¼
X

i

yi � g x ti ; θð Þð Þ
σi

� �2

þ const: (3)

Within the maximum likelihood framework, the optimized parameter set θ̂
is estimated through minimization of χ2(θ).
Since analytical solutions of non-linear ODE systems are in general not

available, a numerical integration must be performed. In this work, the
dynamical system and its sensitivities were integrated by the CVODES
integrator of the SUNDIALS suite.71 Therein, an implicit BDF integration
method72 with attached KLU sparse solver was chosen.73 The inner
derivatives of the likelihood needed in gradient-based parameter
estimation were computed via forward sensitivities supplied to the
integration algorithm.74 Numerical optimization was conducted using a
trust-region based, large scale nonlinear optimization algorithm imple-
mented in the MATLAB function LSQNONLIN.75 For the mathematical

modeling and visualization, the open-source and freely available d2d
framework,76 based on MATLAB, was used.

Calculation of receptor surface levels
We established a relationship between receptor levels on the cell surface
measured by qFACS (see Methods section) and receptor mRNA expression
from the Cancer Cell Line Encyclopedia (CCLE) for 124 cancer cell lines.77 A
good correlation between mRNA and protein expression was previously
shown in an independent study.78 By fitting a linear model (see Suppl. Fig.
10) we could calculate receptor surface levels or receptor mRNA expression
also for the cell lines where data was missing (see Table 2, Table 3, and
Supplementary Fig. 41).

Data availability
The signaling model and code for machine learning analysis from this
publication have been deposited to BioModels.org with the identifier
MODEL1708210000. In addition, the computational model including all
proteomic data, the phenotypic data from the in vitro viability screen

Table 2. Receptor surface levels for cell lines used in model calibration and validation estimated from mRNA expression values of the CCLE database

Table 3. Cell lines used for machine learning on an in vitro cell viability screen with their respective mutations and receptor surface levels

Receptor surface levels (in thousand)

Cell line KRAS
mutation

PIK3CA
mutation

EGFR HER2 ErbB3 Met

CCK-81 wt C420R, C472Y 18.2 1325.4 28.1 19.9

GP2D G12D H1047L 4.2 2359.7 35.0 3.0

H508 wt E545K 185.1 63.4 20.1 42.0

H747 G13D Wt 193.1 2281.8 21.6 57.0

HCT116 G13D H1047R 118.2 121.0 21.2 58.1

HCT15 G13D E545K, D549N 290.1 382.8 23.4 40.3

HT115 wt p.R88Q, p.E321D 381.3 44.9 9.3 49.0

KM12 wt Wt 180.3 1852.1 29.2 15.5

LOVO G13D Wt 23.9 105.7 33.8 3.8
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Table 3 continued

Receptor surface levels (in thousand)

Cell line KRAS
mutation

PIK3CA
mutation

EGFR HER2 ErbB3 Met

LS123 G12S Wt 23.5 121.2 31.8 11.5

LS180 G12D H1047R 5.3 2364.7 39.5 3.2

MDST8 wt Wt 47.7 69.7 32.9 34.1

OUMS23 wt Wt 149.2 117.2 32.1 34.3

RCM-1 G12V Wt 98.7 139.9 31.4 41.4

RKO wt H1047R 632.2 84.5 21.3 68.9

SW48 wt G914R 174.5 46.4 16.5 67.7

SW620 G12V Wt 97.3 88.9 23.1 29.4

T84 G13D E542K 117.8 99.7 32.5 36.6

OVCAR-8 wt Wt 61.0 47.8 28.7 34.1

MKN-45 wt Wt 121.6 66.3 30.3 51.1

SNU-5 wt Wt 213.2 55.9 22.6 57.1

H441 G12V Wt 96.8 93.5 28.6 43.4

HCC827 wt Wt 409.4 58.8 7.0 43.4

A549 G12S Wt 102.7 57.3 25.4 19.8

H322M wt Wt 96.8 82.3 29.0 49.1

H358 G12C Wt 21.2 44.1 11.7 18.8

ZR-75-1 wt Wt 543.0 70.0 20.6 24.8

MDA-MB-231 G13D Wt 4.4 34.3 26.4 36.7

BT-474 wt K111N 149.4 55.1 29.6 63.4

HCC1419 wt Wt 80.1 95.0 23.1 26.7

HCC1937 wt Wt 5.2 57.0 8.5 18.0

HCC1954 wt H1047R 182.2 33.6 6.7 395.2

HCC38 wt Wt 188.3 78.6 20.2 76.1

JIMT-1 wt Wt 270.8 1287.4 21.3 56.1

SK-BR-3 wt Wt 167.7 65.6 26.4 302.2

T47D wt H1047R 228.5 2393.0 24.2 25.2

ZR-75-30 wt Wt 116.5 3263.7 32.1 35.5

AGS G12D E453K 287.6 479.3 23.1 246.8

HGC27 wt Wt 138.4 74.1 30.0 34.0

Hs746T wt Wt 374.0 69.0 18.4 297.7

KATO III wt Wt 366.9 42.1 11.1 73.2

KYSE-410 wt Wt 84.0 13.8 9.5 21.4

N87 wt Wt 20.7 2060.9 22.5 38.2

OE19 wt Wt 662.5 34.4 21.0 87.5

OE33 wt Wt 140.6 24.5 8.3 49.7

SNU-16 wt Wt 305.0 69.5 18.0 41.9

H1915 wt Wt 98.6 53.7 18.2 55.0

H2170 wt Wt 165.4 92.7 27.7 158.3

H226 wt Wt 71.3 36.5 7.3 30.6

H23 G12C Wt 5.8 11.4 9.9 16.2

H460 Q61H E545K 634.6 28.6 10.6 53.8

H520 wt Wt 5501.4 55.1 19.3 82.3

H596 wt E545K 276.8 40.7 21.0 58.5

CaOV3 wt Wt 171.1 93.0 12.9 62.3

IGROV-1 wt Wt 19.0 47.9 17.1 30.1

OV90 wt Wt 121.3 45.5 20.1 13.4

OVCAR-3 wt Wt 221.8 55.0 20.7 22.4

TOV-112D Wt Wt 12.9 64.9 9.8 3.2
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together with the RNA sequencing data obtained from the CCLE 77 and the
TCGA Research Network (http://cancergenome.nih.gov/), respectively, have
been deposited within freely available modeling toolbox Data2Dynamics
(http://data2dynamics.org; repository folder Examples/Hass_npjSys-
Bio2017). It includes MATLAB code and documented script files to readily
perform all analysis steps outlined in this publication. The code folder is
also available in the Figshare repository (10.6084/m9.figshare.5331544). In
addition, the mechanistic signaling model was also implemented in the
open-source R package dMod 71 (https://github.com/dkaschek/dMod;
Figshare repository: 10.6084/m9.figshare.5336338). The package contains
the experimental data for all calibration cell lines and allows to simulate
model trajectories.
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