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Mapping connections in signaling networks with ambiguous
modularity
Daniel Lill1,2, Oleksii S. Rukhlenko 2, Anthony James Mc Elwee2, Eugene Kashdan2,3, Jens Timmer1,4 and Boris N. Kholodenko2,5,6,7

Modular Response Analysis (MRA) is a suite of methods that under certain assumptions permits the precise reconstruction of both
the directions and strengths of connections between network modules from network responses to perturbations. Standard MRA
assumes that modules are insulated, thereby neglecting the existence of inter-modular protein complexes. Such complexes
sequester proteins from different modules and propagate perturbations to the protein abundance of a downstream module
retroactively to an upstream module. MRA-based network reconstruction detects retroactive, sequestration-induced connections
when an enzyme from one module is substantially sequestered by its substrate that belongs to a different module. Moreover,
inferred networks may surprisingly depend on the choice of protein abundances that are experimentally perturbed, and also some
inferred connections might be false. Here, we extend MRA by introducing a combined computational and experimental approach,
which allows for a computational restoration of modular insulation, unmistakable network reconstruction and discrimination
between solely regulatory and sequestration-induced connections for a range of signaling pathways. Although not universal, our
approach extends MRA methods to signaling networks with retroactive interactions between modules arising from enzyme
sequestration effects.
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INTRODUCTION
The reconstruction of connections in signaling networks from
experimental data is a key problem in systems biology. An intrinsic
challenge in capturing direct network connections is that a signal
originating from a component first causes changes in its
immediate targets, but then rapidly propagates through the
entire network, producing widespread (global) changes that mask
direct (local) connections between nodes. Many groups around
the world have suggested approaches to reconstruct direct,
causative connections between molecules.1–6 For signaling and
gene networks, Modular Response Analysis (MRA) was developed
to infer immediate connections (termed local responses) from the
steady state global responses to perturbations.7–11 To reduce the
vast complexity of signaling networks, MRA divides these
networks into modules connected through so-called commu-
nicating species, which affect the species dynamics in other
modules.7,12 Therefore, in a modular framework each network
node can be a single species or a module containing internal
species interacting within this module. To infer connections
between modules, each module is perturbed either alone or
together with other modules, and the steady state responses of all
communicating species are measured.
MRA neglects mass transfer between network modules,

assuming that signaling involves only information transfer.7,13

However, activation or inhibition of signaling proteins commonly
occurs through posttranslational modifications (PTMs) carried out
by enzymatic reactions, such as reactions catalyzed by kinases and

phosphatases. These reactions can create mass transfer between
modules, if a communicating species (e.g., a kinase) from one
module binds to a species from another module, forming a
protein–protein complex. When a considerable fraction of a
communicating protein is sequestered in a complex that contains
species from two different modules, this complex cannot be
neglected. The word retroactivity was coined to describe this
effect.14–17 This has also been referred to as protein sequestration,
for instance, the sequestration of an active kinase by its
substrate.18 Interactions between modules that solely occur as a
result of protein sequestration differ from regulatory interactions
that activate or inhibit proteins through PTMs. We will term the
former as sequestration-induced connections.
When protein moiety conservation includes species from two

modules, a perturbation to only one of the species that form a
complex bridging two modules will affect both modules. As a
result, the modular structure is lost, leading to a breakdown of
inter-modular insulation, which is required by MRA. In this case,
network reconstruction becomes an ill-posed problem,19 and the
inferred network topology might depend on particular perturba-
tions that are used for its reconstruction as was recently shown.20

Because MRA and its statistical derivatives (e.g. the maximum
likelihood and Bayesian MRA) have become broadly applied
network reconstruction methods,4,8–11,21–32 it is necessary to find
out if causative regulatory connections can be precisely inferred in
case of extensive retroactivity interactions between modules.
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Here we explore how inter-modular protein sequestration
affects MRA-based network inference. We show that additional
measurements of perturbation-induced changes in inter-modular
protein complexes can be exploited to accurately infer network
circuitries. An approach is proposed that restores modular
insulation by defining communicating species as weighted sums
of free species and inter-modular complexes. Similarly to the
original work where MRA was developed,7 we use mathematical
models of signaling pathways to simulate network responses to
perturbations, but our approach is solely based on experimental
data of responses to perturbations (such as changes in the
conserved protein abundances) and it is model-independent.
When applicable, this approach allows us to discriminate between
solely regulatory network connections (e.g., mediated by protein
phosphorylation) and enzyme sequestration-induced connections.
We analyze limitations of the proposed MRA extension and cases
when it can be efficiently applied.

RESULTS
MRA requires the condition of insulation for different modules
A signaling network can often be described by ordinary
differential equations,

dzl
dt

¼ _zi ¼ gl z1; ¼ ; zL; pð Þ; l ¼ 1; ¼ ; L (1)

where zl are the concentrations of components, such as genes or
different protein forms, the function gl includes the zl production
and consumption rates, and p is a vector of parameters, such as
stoichiometric coefficients and rate constants. It is assumed that
only linearly independent concentrations are considered in Eq. (1),
and, therefore, the Jacobian matrix has full rank L. Consequently,
the parameter vector p can also contain the total abundances of
different protein forms that are constrained by moiety conserved
cycles.12 We consider steady-state conditions and steady-state
responses to parameter p perturbations.
MRA conceptually partitions the network into N ≤ L modules. A

module contains a group of genes or signaling components,
which together perform one or more identifiable tasks.7 Each
module i can harbor mi (mi ≥ 0) internal species (yik) and contains a
communicating species (xi), which represents the module output.
At a steady state ð _yik ¼ 0Þ, internal species of each module (i) can
be expressed as functions (hik) of the communicating species and
parameters,

yik ¼ hik x1; ¼ ; xN; pð Þ i ¼ 1; ¼ ;N k ¼ 1; ¼ ;mi (2)

Equation (2) allows us to use a smaller set of N algebraic
equations, which governs the steady state behavior of module
outputs (xi), which become nodes of a modular network,

gi h11; ¼ ; hNmN ; x1; ¼ ; xN; pð Þ ¼ fi x1; ¼ ; xN; pð Þ ¼ 0 i ¼ 1; ¼ ;N

(3)

We quantify a direct connection from module j to module i by a
relative change (Δxi/xi) in the activity of communicating species xi
of module i brought about by a change (Δxj/xj) in the output
activity xj of module j, provided that these two modules are
conceptually isolated from the network. This condition implies
that all other modules except these two remain unperturbed (∂xk
= 0, k ≠ i, j), whereas the affected module i is allowed to relax to its
steady state.7,13 Under this condition, the ratio rij ¼ ∂ln xi=∂ln xj
can be found via implicit differentiation of the function fi in Eq. (3).

∂fi ¼
P

k

∂fi
∂xk
∂xk ¼ ∂fi

∂xi
∂xi þ ∂fi

∂xj
∂xj ¼ 0

∂ ln xi ¼ ∂xi
xi

∂lnxj ¼ ∂xj
xj

rij ¼ ∂lnxi
∂lnxj

¼ xj
xi
∂xi
∂xj

¼ � xj
xi

∂fi
∂xj
∂fi
∂xi

; i; j ¼ 1; ¼ ;N

(4)

The coefficients rij are called the connection coefficients or the
local responses and form the connection matrix that determines
the direction and strengths of direct network connections.7,9

These connection coefficients cannot be immediately measured,
because a perturbation to a single module propagates through
the network, and the experimentally observed changes in other
modules might be indirect.
MRA calculates connection coefficients (rij) from steady-state

responses of an entire network to parameter (pj) perturbations.
Experimentally, perturbations use siRNA (affecting protein abun-
dances), inhibitors, drugs and genetic alterations.23–25,29,30,33

Resulting steady-state responses are termed the global response
coefficients (Rij),

7,13

Rij ¼ ∂lnxi
∂pj

����
steady state

; i ¼ 1; ¼ ;N; j ¼ 1; ¼ ;M (5)

MRA has developed an experimental design that determines
network connections (rij) by measuring global responses (Rij).

8,9 A
specific feature of this design is selecting a set of experimental
interventions that do not directly influence the output xi of module
i in order to find network connections (rij) leading to this module i.
Each of these perturbations may directly affect one or many nodes
xk different from xi. Formally, for each xi (i= 1, …, N), we choose
and then perturb N − 1 parameters pj known to have the property
that the function fi in Eq. (3) does not depend upon pj,

∂fi x1; ¼ ; xN; pð Þ
∂pj

¼ 0; j ¼ 1; ¼ ;N � 1 (6)

These N − 1 parameters selected for perturbation will be
termed perturbation parameters. The condition (Eq. 6) that
parameter pj does not directly affect module i, whereas pj can
affect other modules j (j ≠ i) is called the module insulation
condition. Usually biological information to select such a
parameter pj is available, for instance, it can be known that an
inhibitor of a membrane kinase has no direct influence on a
cytoplasmic phosphatase, or the abundance of a certain protein
has no direct influence on unrelated biochemical interactions in a
different module. Differentiating the function fi in Eq. (3) with
respect to pj and using the module insulation condition (6) and
Eqs. (4) and (5), we arrive at MRA equations (Eq. 7),

XN

k¼1

rikRkj ¼ 0; rii ¼ �1; i ¼ 1; ¼ ;N (7)

For every module i, Eq. (7) determines the connection
coefficients rij using the global network responses (Rkj) of each
module (k = 1, …, N) to perturbations of N − 1 parameters pj
(statistical MRA formulations can use less or more than N − 1
perturbations4,23–25). Each of the selected perturbations (para-
meters pj in Eq. 6) cannot directly influence module i, but together
these N− 1 independent perturbations should affect all the other
(N− 1) modules of the network except module i.7,9 Importantly,
the connection coefficients determined by Eq. (7) do not depend
on a particular choice of N − 1 parameters pj, provided that the
module insulation condition (6) is satisfied for each parameter pj, j
= 1, …, N − 1.7 Indeed, connection coefficients are uniquely
determined by a system steady state that does not depend on the
choice of perturbation parameters, see Eq. (4).

Violation of insulation condition by complexes of proteins that
belong to different modules
Module outputs are often represented by signaling enzymes, such
as kinases.4,23,25 Suppose a communicating species of module i,
e.g., a kinase, forms a complex with its substrate that belongs to
another module j. If the concentration of this complex is
comparable with the free concentration of the kinase or its
substrate, the complex concentration cannot be neglected.
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Because protein synthesis and degradation usually occur at much
longer timescale than (de)phosphorylation reactions, the total
concentrations of different protein forms are conserved and, thus,
the protein abundances are parameters of the system. Conse-
quently, at a network steady state, the concentration of a complex
containing proteins from two different modules (i and j) will
depend on the total abundances of both these proteins, which will
be parameters denoted as, pi and pj. If we assign the kinase-
substrate complex to module i that includes the kinase as a
communicating species, then a perturbation to parameter pj (the
total concentration of the substrate) will affect not only module j
but also the free kinase and the complex concentrations, i.e.,
module i (see Supplementary material section 1). Alternatively, if
we assign the complex to module j that includes the kinase
substrate, then a perturbation to parameter pi (the total kinase
concentration) will affect not only module i but also the free
substrate and the complex concentrations, i.e., module j.
Consequently, the choice of perturbation parameters as the total
protein abundances will violate the module insulation condition
(Eq. 6) for one or both of these modules. At the same time,
perturbations of the other parameters, such as rate constants of
enzymatic reactions, might not violate the module insulation
condition.
Sequestration of a kinase (or a phosphatase) from module i by a

substrate from module j means that module j retroactively affects
module i, although module j is only a recipient of a signal from
module i. Proper parameter perturbations that are consistent with
Eq. (6) can reveal both regulatory influences and sequestration-
induced feedbacks. However, the violation of the module
insulation condition might lead to contradictory results of
inferring different network circuitries by using different perturba-
tions, as illustrated below and in Section 1 of Supplementary
material, using a simple example.

Using MRA to map network connections when protein complexes
bridge modules
We first illustrate the challenges arising from the protein
sequestration using paradoxical, at first glance, results of finding
distinct network circuitries while perturbing different parameter
sets. Prabakaran and colleagues20 showed network inference
challenges both experimentally, using an in vitro reconstituted
system of purified recombinant kinases (RAF, MEK, and ERK) and
phosphatases (the serine/threonine phosphatase PP2A and the
tyrosine specific phosphatase PTP), and also theoretically using a
simplified model of the MEK/ERK cascade (Fig. 1), described as
follows. A constant external signal (mimicked by a mutated
constitutively active RAF kinase) phosphorylated MEK on two
serines in the activation loop, yielding active ppMEK (MEK
phosphorylation was considered as one step in the model20).
MEK phosphatase PP2A was not explicitly considered in the
model, and ppMEK dephosphorylation was described by a first
order process. Active ppMEK phosphorylated ERK on the tyrosine
in the activation loop. The other activating site on ERK, threonine,
was mutated to a non-phosphorylatable residue, thus rendering
only phosphorylated ERK (pERK) susceptible to dephosphorylation
by PTP, yielding ERK. The abundances of MEK, ERK, and PTP were
considered constant.20

Accordingly, out of 7 network species, only four of the species
concentrations were linearly independent (Fig. 1). We can select
these species as [ppMEK], [pERK], ppMEK � �ERK½ � and pERK � �PTP½ �
(indicated by the shaded quadrilaterals in Fig. 1), whose dynamics
is governed by Eq. (8). The remaining linearly dependent
concentrations, [MEK], [ERK], and [PTP], are expressed through
moiety-conservation laws using the total protein abundances,

ERKtot, MEKtot, and PTPtot,

d ppMEK½ �=dt ¼ k1 � MEK½ � � k2 � ppMEK½ � � kon3 � ppMEK½ � � ERK½ �
þ koff3 � ppMEK � �ERK½ � þ k4 � ppMEK � �ERK½ �
d ppMEK � �ERK½ �=dt ¼ kon3 � ppMEK½ � � ERK½ �
� koff3 � ppMEK � �ERK½ � � k4 � ppMEK � �ERK½ �

d pERK½ �=dt ¼ k4 � ppMEK � �ERK½ �
� kon5 � pERK½ � � PTP½ � þ koff5 � pERK � �PTP½ �
d pERK � �PTP½ �=dt ¼ kon5 � pERK½ � � PTP½ �
�koff5 � pERK � �PTP½ � � k6 � pERK � �PTP½ �

MEK½ � ¼ MEKtot � ppMEK½ � � ½ppMEK � �ERK �
ERK½ � ¼ ERKtot � ppMEK � �ERK½ � � pERK½ � � ½pERK � �PTP�
PTP½ � ¼ PTPtot � ½pERK � �PTP�

(8)

This model MEK/ERK cascade was divided into two modules
(highlighted in pink and blue colors in Fig. 1). The total
concentration of phosphorylated MEK and ERK (including
protein–protein complexes) were chosen as module outputs -
communicating species x1 and x2,

20

x1 ¼ ½ppMEK � þ ½ppMEK � �ERK �
x2 ¼ ½pERK � þ ½pERK � �PTP� (9)

To infer network interactions, the MEK module was perturbed
by varying the total MEK abundance (MEKtot), and the ERK module
was perturbed by varying either the total ERK abundance (ERKtot)
or the total PTP abundance (PTPtot). Surprisingly, the circuitries of

Fig. 1 Reaction scheme of the MEK/ERK cascade model studied by
Parabakaran et al.20 Reaction rates are described by mass action
kinetics, the appropriate rate constants are indicated at the arrows.
Species of the MEK module are indicated in blue, species of the ERK
module are indicated in red. Communicating species are selected as
the sums of species in shaded parallelograms (Eq. 9)20
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the reconstructed networks were found different for these two
different sets of perturbations.20 Perturbation of ERKtot revealed an
activating influence of ERK on MEK (manifested by positive
connection coefficient r12), while perturbation of PTPtot revealed
an inhibiting influence of ERK on MEK (negative connection
coefficient r12).

20

Whereas the inhibiting influence of ERK on MEK can be
interpreted as the sequestration of active MEK by inactive ERK
within the ppMEK � �ERK complex, the inferred activating influence
of ERK on MEK is clearly a false positive result for this in vitro
reconstituted network. Moreover, this MEK/ERK network has only
one non-zero regulatory connection, a connection from MEK to
ERK (positive connection coefficient r21). These findings by
Prabakaran and colleagues20 become less surprising, if we recall
that assigning the ppMEK � �ERK complex to either MEK module or
ERK module violates the module insulation condition (6). Next, we
demonstrate how the unique circuitry of this network can
unequivocally be inferred, using the same perturbations that led
to the inconsistent topologies determined by Prabakaran and
colleagues.20

A system of equations governing steady state behavior of the
communicating species x1 and x2 (Eq. 9) is derived using Eq. (8).
For purposes of readability, only arguments of the governing
functions (f1 and f2) are presented below. Full expressions
for these equations can be found in Supplementary material
(section 2.1).

f1 ¼ f1 x1; x2;MEKtot; ERKtot; k1; k2; kon3 ; koff3 ; k4
� � ¼ 0

f2 ¼ f2 x1; x2; ERKtot; PTPtot; kon3 ; koff3 ; k4; kon5 ; koff5 ; k6
� � ¼ 0

(10)

Equation (10) shows that both functions f1 and f2 depend on the
ERK abundance. Therefore when the communicating species are
selected according Eq. (9), a perturbation to ERKtot not only
directly affects the ERK module (f2) but also immediately perturbs
the MEK module, because ∂f1/∂ERK

tot ≠ 0, violating Eq. (6).
Likewise, perturbations to the rate constants of the ppMEK-ERK
complex formation/dissociation ðkon3 ; koff3 ; k4Þ also violate Eq. (6),
because the governing functions for both modules depend on
these parameters. At the same time, perturbations of parameters,
which are the rate constants of other reactions (intrinsic to single
modules) ðk1; k2; kon5 ; koff5 ; k6Þ and the PTP abundance (PTPtot), do
not violate the insulation condition (6) for both communicating
species (module outputs) x1 and x2. Perturbations of any two
parameters from this set will allow the inference of the unique,
true network circuitry with an activating connection from MEK to
ERK and sequestration feedback from ERK to MEK (see Supple-
mentary material, section 2).
We can envision the situation when a selected parameter (pj)

might directly affect internal species but does not influence the
module output, i.e. a communicating species (xi). Using Eqs. (2)
and (3), the insulation condition (6) for module i can be
reformulated in terms of the derivatives of its internal species,
yik = hik(x1, …, xN, p), with respect to pj,

∂fi x1; ¼ ; xN; pð Þ
∂pj

¼ ∂gi h11; ¼ ; hNmN ; x1; ¼ ; xN;pð Þ
∂pj

¼
X

m;k

∂gi
∂hmk

� ∂hmk

∂pj
þ ∂gi
∂pj

¼ 0

(11)

Formally, Eq. (11) allows the dependence of some internal
species (yik = hik) on pj provided that the sum of the partial
derivatives in Eq. (11) equals 0. Thus, within the MRA framework a
perturbation to parameter pj can be applicable for inferring
connections (rij) leading to this module i even if internal species of
module i are directly perturbed, but the governing equation fi and,
thus, the communicating species xi are not directly perturbed.
Clearly, the given choice of a communication intermediate (that
determines its governing function) also informs if the selected

parameter violates or does not violate the module insulation
condition (Eqs. 6 and 11).
Because perturbations to the protein abundances, using siRNA

or irreversible covalently-bound inhibitors are commonly used, we
might ask whether alternative choices of the communicating
species (i.e., the module outputs) can ensure that the module
insulation condition holds for both ERK and PTP abundance
perturbations. Assuming that the absolute or relative (see
Supplementary material, sections 2 and 3) changes in the
concentrations of both free ppMEK and the ppMEK-ERK complex
can be individually measured, we introduce a new communicating
species of the MEK module, xa1 that depends on a free non-
negative parameter a, while keeping the same ERK module
output, x2, as follows (cf. Eq. 9),

xa1 ¼ ppMEK½ � þ a � ½ppMEK � �ERK �
x2 ¼ pERK½ � þ pERK � �PTP½ � (12)

This new MEK module output, xa1 , is the weighted sum of the
concentrations of the free active enzyme and the enzyme-
substrate complex, which is multiplied by a free weight parameter
a. If a= 0, xa1 is the free form of active MEK. If a= 1, xa1 is the total
concentration of the phosphorylated MEK forms, the commu-
nicating intermediate selected by Prabakaran and colleagues.20 If
a → ∞, then only the ppMEK-ERK complex acts as a communicat-
ing species.
The rationale behind selecting the new module MEK output xa1

is the following. A perturbation, e.g., an increase in ERKtot leads to
an increase in the free ERK concentration and the ppMEK-ERK
complex, but to a decrease in free ppMEK (sequestered by ERK).
Because xa1 is chosen as a linear combination of ppMEK and
ppMEK-ERK, at some value of the weight parameter a, these
opposite changes of the terms within the communicating species
xa1 will cancel each other out. At this a = aopt value, perturbations
to the ERK abundance will no longer directly affect the module
MEK output xa

opt

1 . The expression for aopt can be obtained by
solving the module insulation condition (Eq. 11), after substituting
pj = ERKtot and the governing function for xa1 given by Eq. (12) (see
Supplementary material, section 2.1 for derivation),

aopt ¼ k1=ðk1 þ k2Þ (13)

Consequently, at a = aopt, we obtain the following dependen-
cies of the governing functions of communicating species xa

opt

1
and x2 on parameters (see Supplementary material, section 2 for
details),

f a
opt

1 ¼ f a
opt

1 xa
opt

1 ; x2;MEKtot; k1; k2
� �

f a
opt

2 ¼ f a
opt

2 xa
opt

1 ; x2; ERKtot; PTPtot; k1; k2; kon3 ; koff3 ; k4; kon5 ; koff5 ; k6
� �

(14)

It follows from Eq. (14), that the insulation condition (Eq. 6) is
satisfied for perturbations to any of the three conserved total
abundances, MEKtot, PTPtot, ERKtot, resulting in a unique MRA-
reconstructed network circuitry. However, perturbations to the
rate constants (k1, k2) now violate Eq. (6) in contrast to the case of
the initially selected communicating species of the MEK module
(Eqs. 9 and 10). At the same time, perturbations to the rate
constants ðkon5 ; koff5 ; k6Þ internal to the ERK module do not
contradict Eq. (6). This is supported by numerical calculations
that solve Eq. (7), - the MRA equations, using simulated network
perturbation responses, Rij, which normally would be obtained
experimentally. The results demonstrate that for the governing
functions defined by Eq. (14), perturbations to any parameters,
MEKtot, ERKtot, PTPtot, kon3 , koff3 , k4, kon5 , koff5 , and k6, do not break up
the module insulation condition, thus resulting in the reconstruc-
tion of the quantitatively identical matrices for the connections
coefficients and the unmistakable network circuitry (see Supple-
mentary material, Eqs. 18 and 19). We will term parameter
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perturbations, which do not violate the insulation condition,
permissible perturbations (see Eqs. 6 and 11).
Interestingly, the choice of xa

opt

1 (when a = aopt) results in the
connection coefficient r12 (which determines the sequestration
feedback and is calculated by solving Eq. 7) equal to zero.
Consequently, by changing the communicating species (module
outputs), regulatory connections in this network can be distin-
guished from solely retroactivity connections induced by protein
sequestration. This is illustrated in Fig. 2a, showing how the
regulatory activating connection from MEK to ERK (coefficient r21,
the red curve) and sequestration feedback connection from ERK to
MEK (coefficient r12, the black curve) vary with the change in the
weight parameter a. Using Eq. (7), these connection coefficients
(Fig. 2a) are obtained following small perturbations of the protein
abundances (MEKtot and ERKtot) and numerical calculations of
perturbation responses for the module outputs that are given by
Eq. (12). The only requirement for the corresponding experimental
set-up is the separate determination of the ppMEK-ERK complex
response and ppMEK response (here these responses are
simulated using a model but they would be obtained experimen-
tally for the normal MRA inference procedure7). Importantly, the
perturbation responses need to be measured experimentally or
simulated computationally only once, whereas the connection
coefficients are calculated for a range of different values of the
weight parameter a, using the MRA equations (Eq. 7). At a = 0
(point 1 on Fig. 2a), the MEK module communicating species is
free active MEK (ppMEK), r21 is positive because ppMEK activates
ERK, whereas r12 is negative, reflecting the sequestration of ppMEK
by ERK. Importantly, with an increase in the weight parameter a >
0, the negative sequestration connection coefficient r12 increases,
assumes 0 at a = aopt (point 2 in Fig. 2a) and then changes its sign,
further increasing with increasing a. In fact, at a = 1, r12 is
surprisingly positive, as found for MEKtot and ERKtot perturbations
by Prabakaran and colleagues20 (Fig. 2a). Both coefficients r21 and
r12 reach positive values when a tends to infinity (point 3 in Fig.
2a).
In Eq. (12), only one module (MEK) output was selected as a

weighted sum of the free active kinase (ppMEK) and the kinase-
substrate complex (ppMEK-ERK). However, in the absence of prior

information about which protein in the complex is an enzyme and
which is a substrate, we can add the concentration of the ppMEK-
ERK complex (scaled by a parameter a) to both module outputs,

xa1 ¼ ppMEK½ � þ a � ½ppMEK � �ERK �
xa2 ¼ pERK½ � þ pERK � �PTP½ � þ a � ½ppMEK � �ERK � (15)

This symmetrical choice of module outputs also allows us to
uniquely infer the network circuitry, eliminating retroactivity
connection coefficient at the same value of the weight parameter
a = aopt given by Eq. (13). Moreover, for the module outputs given
by Eq. (15), the governing functions f a

opt

1 and f a
opt

2 will depend on
the same parameter sets presented in Eq. (14) (although the
expressions for these functions will change, see Supplementary
material, section 2). Therefore similarly as above, perturbations to
any two parameters in the following set, MEKtot, ERKtot, PTPtot, kon3 ,
koff3 , k4, kon5 , koff5 , and k6, will reveal a unique network circuitry (see
Supplementary material, section 2.1). For the choice of module
outputs given in Eq. (15) and perturbations to MEKtot and ERKtot,
Fig. 2b illustrates the dependencies of the connection coefficients
on the parameter a. However, the asymptotic behavior (at large a
values) of the connection coefficients is different. Now both r12
and r21 approach 1, when a → ∞, because the ppMEK-ERK
complex becomes a main output for both MEK and ERK modules
(r12 and r21 equal to 1 merely describes the influence of the
ppMEK-ERK complex on itself).
Summarizing, by measuring the changes in the free active

kinase (ppMEK) and the kinase-substrate complex (ppMEK-ERK)
concentrations separately upon perturbations to any two
protein abundances (MEKtot and ERKtot or MEKtot and PTPtot),
MRA can precisely reconstruct the signaling network analyzed
by Prabakaran and colleagues,20 distinguishing between reg-
ulatory and retroactive connections and avoiding the incon-
sistent topologies.

A model of three-tier cascade with no regulatory feedback
connections
Next, using several examples of activating cascades where inter-
modular protein-protein complexes are formed both upstream

Fig. 2 Dependence of elements of the connection matrix rij on the weight parameter a. The regulatory connection r21 is depicted in red. The
sequestration-induced (aka retroactivity) connection r12 that changes its sign with the increase in the weight parameter a is depicted in blue.
MEK and ERK module outputs were defined by a Eq. (12) or b Eq. (15). In both cases, the total concentrations of MEK and ERK (MEKtot and
ERKtot, respectively) were perturbed. The connection matrices are shown for different weight parameter values, a= 0 (point 1), a = aopt (2), and
a= 5 (point 3). Diagonal elements are always equal to −17
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and downstream of a cascade tier, we show that regulatory
connections can be unmistakably reconstructed while sequestra-
tion connections can be nullified using our method. First, we
considered a cascade without regulatory feedback connections
(Fig. 3a). As above, we used a mass action kinetic model to
simulate steady-state responses of the cascade to perturbations.

The kinetic equations of the model and parameter values are
presented in Supplementary material (Tables 2 and 3).
The waterfall structure (Fig. 3a) of kinase activation cascades is

common for many signal transduction cascades, such as the ERK,
p38, JNK, and PI3K/AKT cascades.34 Proteins in each tier can be in
inactive ([X1], [X2], and [X3]) or active ([pX1], [pX2], and [pX3]) states.

Matrix -1 -0.19 0.01

0.33 -1 -0.49
0.00 0.1 -1

Matrix -1.00 0.19 -0.08

0.16 -1.00 0.25
-0.01 0.41 -1.00

Matrix -1 0.00 0.00

0.23 -1 0.00
0.00 0.28 -1

Matrix -1 -0.13 -0.11

0.79 -1 -0.05

0.00 0.50 -1

Matrix -1 0.12 -0.11

0.58 -1 0.17

0.00 0.64 -1

Matrix -1 0.00 -0.09

0.77 -1 0.00

0.00 0.53 -1

Strong regulatory
feedback
Matrix 

; 

-1.00 0.00 0.00
0.66 -1.00 0.07
0.00 0.33 -1.00

Weak regulatory 
feedback
Matrix -1 0.00 0.00

0.77 -1 0.00
0.00 0.43 -1

A

B

C
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The enzyme forms, pX1 and pX2, activate inactive enzyme forms, X2
and X3, respectively, in a two-step process which involves the
formation of an enzyme-substrate complex followed by phos-
phorylation. The total protein abundances, Xtot

1 , Xtot
2 and Xtot

3 , are
conserved. We divided the cascade into three modules along its
tiers, as shown by different colors in Fig. 3a. As above, we
considered module outputs, in which the enzyme-substrate
complex that bridges two modules was added to a single module
(Eq. 18) or to both neighboring modules (Eq. 19),

xa1 ¼ pX1½ � þ a1 � pX1 � �X2½ �
xa2 ¼ pX2½ � þ a2 � pX2 � �X3½ �
xa3 ¼ pX3½ �

(18)

xa�1 ¼ pX1½ � þ a1 � pX1 � �X2½ �
xa�2 ¼ pX2½ � þ a1 � pX1 � �X2½ � þ a2 � pX2 � �X3½ �
xa�3 ¼ ½pX3� þ a2 � pX2 � �X3½ �

(19)

Similarly to the model presented above (Eq. 8), if the
concentrations of enzyme-substrate complexes cannot be
neglected, the choice of the parameters to be perturbed can
affect the inferred network circuitry. A standard selection of model
outputs corresponds to weight parameters ai equal to zero, if only
free phosphorylated enzyme forms are considered, or to 1, if the
total phosphorylated forms are measured and analyzed. Using this
standard selection for all three networks and making perturba-
tions to each of the total protein abundances, we calculated
matrices of connection coefficients, rij, which showed non-zero
feedback connections from each downstream module to its
upstream module (see two reconstructed connection matrices for
weight parameters ai = 0 and ai = 1 and the module outputs in
Eq. (18) in the right panel of Fig. 3a). However, we do not know
whether these connections correspond to regulatory or solely
protein sequestration-induced feedbacks. Moreover, recon-
structed network circuitries might differ for differently selected
sets of perturbation parameters.
To elucidate the nature of inferred connections, we calculated

the dependences of the connection coefficients on positive values
of weight parameters ai for two sets of module outputs (Eqs. 18
and 19). We found that the connection coefficients, r12, r23 and r13,
changed their signs with the ai changes, that suggested
sequestration connection, whereas connections r21 and r32 did
not change the sign, indicating regulatory feedforward activation
connections. For both choices of module outputs, the same
~a ¼~aopt values yielded zero values for suggested sequestration
connections coefficients, r12, r23, and r13 (see Supplementary
material, Eqs. 23 and 24). Also, for both choices of communicating
species (Eqs. 18 and 19) we found that at ~a ¼~aopt , the network
was uniquely reconstructed using perturbations to wide range of
perturbation parameters that included all three total protein
abundances (Xtot

1 , Xtot
2 , and Xtot

3 ) and numerous kinetic constants
(see Supplementary material, section 4). Recapping, at~a ¼~aopt the
connections coefficients that have changed their sign with
changing ~a become zero, and the connection matrix rij becomes
invariant to a wide range of applied perturbations.

The results shown in Fig. 3 were obtained numerically, because
the equations that govern the steady state behavior of commu-
nicating species do not allow for an analytical solution in this case.
However, as in the previous example, in which the governing
equations (Eq. 14) were solved analytically and numerically, our
calculations suggested that nonzero connections, r12, r23 and r13,
inferred for the standard selection of model outputs, were solely
induced by protein sequestration (retroactivity). Importantly, at
the~aopt values of the weights ai, the invariance of the connection
matrix rij with respect to different perturbations was brought
about by a restoration of the modular insulation condition (Eq. 6).
In summary, these result suggest that if the connection

coefficients rij have different signs for different values of weight
parameters ai, and these rij are nullified at certain values, aopti , then
these aopti values restore the modular insulation condition (Eq. 6)
for a wide range of perturbations. Consequently, the resulting
connection matrix (r) becomes invariant with respect to the choice
of permissible perturbations. The exact set of permissible
perturbations at ~a ¼~aopt , however, may differ, depending on
the choice of communicating species.

A model of three-tier cascade with positive and negative
regulatory feedback connections
Signaling cascades considered above did not have regulatory
feedback loops. To explore how the regulatory feedbacks can be
distinguished from retroactivity, i.e., solely sequestration induced
feedbacks, we next analyzed models of three-tier enzymatic
cascades with both types of feedback connections. First, we
considered cascades with regulatory feedback loops connecting
modules, which are not linked by immediate feedforward
connections within a waterfall cascade structure. A reaction
scheme in Fig. 3b presents a signaling cascade with tiers 1 and
2 that activate their immediate downstream tiers 2 and 3,
respectively, and regulatory feedback from tier 3 to tier 1, which
can be negative or positive.
For simplicity, we first used a standard Michaelis-Menten

description of the regulatory feedback.35 Assuming non-
competitive activation or inhibition of the reaction of X1
phosphorylation by an active form (pX3) of tier 3 enzyme,
the reaction rate was multiplied by the following multiplier,
(1 + u1[pX3]/k9)/(1 + [pX3]/k9).

36 We can readily see that regulatory
feedback from module 3 to module 1 is positive, if u1 > 1, and it is
negative, if 0 < u1 < 1.
We defined the communicating species using Eq. (18), in which

an enzyme-substrate complex that bridges two modules is added
to a single module output, or using Eq. (19) where these
complexes are added to both neighboring modules. Similarly as
above, for either selection of communicating species we found
that the connection coefficients, r12 and r23, changed their sign at
certain values ai ¼ aopti , while the connection coefficients, r21, r32,
and r13, did not (Fig. 3b, right panel). The same aopti values yielded
zero values for the connections r12 and r23 for both choices of
module outputs (see Supplementary material, section 5.1). We
conclude that the inferred connections, r12 and r23, are merely
retroactive and are induced solely by protein sequestration, while

Fig. 3 Reconstruction of connection matrices for three-tier cascades. Cascade modules are indicated by different colors and separated by bold
horizontal lines for illustrative purposes. Dashed parallelograms indicate substances that are included into module outputs (Eq. 18). For
network reconstruction, the total protein abundances, Xtot

1 , Xtot
2 , and Xtot

3 , were perturbed. a Left panel: Scheme of a 3-tier cascade without
regulatory feedback loops. Right: Reconstructed matrices of connections coefficients (rij) for different weight parameters ai (including aopti ).
b Left: Scheme of a 3-tier cascade with a regulatory feedback from module 3 to module 1. Right: reconstructed connection matrices rij for
different weights ai. c Left: scheme of a 3-tier cascade with a regulatory feedback from module 3 to module 2, which are also connected
through feedforward activation of module 3 by module 2, creating a sequestration feedback. Right: reconstructed connection matrices rij for
different strengths (u2) of the positive regulatory feedback and optimal weights aopti . For all right panels, the matrix elements that correspond
to retroactive (i.e. sequestration) connections are depicted in red
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the interactions described by connection coefficients, r21, r32, and
r13, are regulatory connections. Thus, in case of a regulatory
feedback connection between modules, which are not linked by
immediate feedforward connections, our approach correctly
distinguishes between regulatory and sequestration connections.
Sets of permissible parameters for unique network reconstruction
include both the total protein abundances and numerous kinetic
constants (see Supplementary material, section 5.1).
More complex regulatory feedback mechanisms are found for a

three-tiered RAF/MEK/ERK cascade, which is evolutionary con-
served in eukaryotic cells. Active ERK (module 3) binds to active
CRAF and BRAF monomers (module 1) and inhibits their kinase
activities by phosphorylation of inhibitory sites.37,38 A complete
mechanistic description considers homo- and hetero CRAF and
BRAF dimers and includes numerous reaction steps.39 Using a
simplified mechanistic description of this regulatory feedback,
Supplementary material (section 5) shows that selecting commu-
nicating species as weighted sums of the free phosphorylated
proteins and inter-modular protein complexes, precise discrimina-
tion between sequestration and regulatory feedbacks and unique
network reconstruction can also be achieved.
We next considered a regulatory feedback loop between two

cascade tiers that are connected through immediate feedforward
activation (Fig. 3c). Here module 2 activates module 3, whereas
module 3 output routes back into module 2, as a regulatory
feedback loop. Because module 3 can also retroactively affect
module 2 through sequestration, we can ask how effects of
sequestration compete with regulatory feedback. To simplify the
analysis, we again used a standard Michaelis-Menten description
of the regulatory feedback. Assuming that an active form (pX3) of
the tier 3 enzyme activates or inhibits the formation of the
productive complex pX1 � �X2½ � in a non-competitive manner, the
reaction rate of X2 activation was multiplied by the following
multiplier, (1 + u2[pX3]/k10)/(1 + [pX3]/k10).

36 This regulatory
feedback is positive, if u2 > 1, and it is negative, if 0 < u2 < 1.
As above, we defined communicating species by Eqs. (18) and

(19) and monitored the signs of connection coefficients rij when
changing the weight parameters ai. The signs of connection
coefficients depend on the signs of the global response
coefficients (Eq. 7), which in turn depend on the changes in
the concentrations of free active enzymes and enzyme-
substrate complexes (components of communicating species)
caused by parameter perturbations. Instructively, upon pertur-
bations to the protein abundance ðXtot

3 Þ of module 3, regulatory
and sequestration connections affected the concentrations
pX2 � �X3½ � and [pX2] in different ways. When Xtot

3 is perturbed,
regulatory feedback loops decreased or increased both these
concentrations together, whereas sequestration (i.e., retro-
active) connections changed pX2 � �X3½ � and [pX2] in opposite
directions. For example, if Xtot

3 decreases, negative regulatory
feedback increases and positive regulatory feedback decreases
both pX2 � �X3½ � and [pX2], whereas sequestration effects
decrease pX2 � �X3½ � and increase [pX2].
As a result, when both regulatory feedback loop and

sequestration feedback connection are present, following
perturbations to Xtot

3 , the concentrations pX2 � �X3½ � and [pX2]
change either in concert or in opposite ways, depending on the
relative strengths of these two feedback interactions. If a
regulatory feedback dominates (when u2 is greater than a
certain threshold value), both pX2 � �X3½ � and [pX2] move in the
same direction. In this case, the coefficients r12 and r13 change
their sign at certain values ai ¼ aopti , suggesting solely seques-
tration connections (Fig. 3c, right panel). However, the
coefficients, r21, r32, and r23, do not change their signs, indicating
regulatory feedforward activation connections (r21 and r32) and
positive regulatory feedback from module 3 to module 2 (r23). In
other words, at ai ¼ aopti the connection matrix rij displays
zero values for r12 and r13 and non-zero values for r21, r32, and r23

(Fig. 3c, the connection matrix for a strong regulatory feedback,
u2 = 50.5).
However, when sequestration effects dominate (when u2is

smaller than a threshold value), the concentrations pX2 � �X3½ � and
[pX2] change in opposite directions upon perturbations to Xtot

3 .
Then, the connection coefficient r23 also changes the sign
(together with the other sequestration connections, r12 and r13)
at the ai ¼ aopti values, whereas the connection coefficients, r21
and r32, remain non-zero (Fig. 3c, the connection matrix for a weak
regulatory feedback, u2 = 1.75).
Supplementary Table 11 illustrates similar results for a negative

regulatory feedback. When this feedback dominates, the coeffi-
cient r23 does not change the sign for different weight parameters
ai, suggesting a regulatory feedback, whereas the connections
that appear as a result of solely enzyme sequestrations (r12 and
r13) change their signs. However, when a negative regulatory
feedback is weak and enzyme sequestration dominates, the
sequestration feedback forces the coefficient r23 to change its sign
with changes in the weights ai.

DISCUSSION
A computational method, termed Modular Response Analysis
(MRA), allows reconstructing direct causative connections in
intracellular signaling networks from measured responses of an
entire network to systematic perturbations.7,28 However, MRA, as
any method for solving reverse engineering problems, suffers
from several limitations. One weak point is the instability of
solutions with respect to noise in the input data.9 Fortunately,
numerous statistical re-formulations of MRA, including Maximum
likelihood (ML), Monte Carlo-ML and Bayesian variants of
MRA4,23–25,27,29,30 have successfully addressed this problem for
practical applications of MRA to noisy and incomplete data (as a
recent review see ref. 31).
The other limitation of MRA is related to enzyme sequestrations

in protein modification reactions (also known as retroactivity or
inter-modular mass transfer).7,15,16,40 This problem of mass transfer
has been known for a long time and also discussed in the original
MRA paper,7 yet it still challenges signaling network reconstruc-
tion.41–43 Recently, Prabakaran and colleagues have highlighted
this challenge for MRA by inferring surprisingly different network
circuitries, depending on which protein abundances in the
network were perturbed.20

In the present work, we conclude that findings of different
network circuitries using distinct sets of perturbations are
explained by the violation of the modular insulation condition
(see Eqs. 6 and 11). This key MRA condition is commonly violated
when the concentrations of inter-modular complexes are of the
same order of magnitude as the conserved abundance of a
protein participating in an inter-modular complex (which is
formed, for instance, by an enzyme from one module and its
substrate from the other module). Experimentally, the concentra-
tion of the inter-modular complex and the conserved abundance
of a protein in this complex can be compared using co-
immunoprecipitation of an enzyme and its substrate and
comparing the western blot intensity with the intensity for
enzyme or substrate concentration in the leftover lysate, using the
same blot. The modular insulation condition7 did not hold in the
experiments of Prabakaran and colleagues due to considerable
sequestration of active MEK (ppMEK) by its substrate ERK, which
belongs to a module downstream of the MEK module.20 Because
enzyme sequestration and resulting retroactivity is often observed
in cell signaling networks, it is imperative to extend MRA-based
reconstruction methods to networks with protein complexes
bridging different modules.
Here we show that additional measurements allow us to

computationally restore the modular insulation condition for a
range of network topologies, including those used in the
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experiments of Prabakaran and colleagues.20 This permits a
unique network reconstruction for different selections of applied
perturbations, including all conserved protein abundances and a
range of kinetic constants. A key to our approach is an alternative
definition of communicating species (solely for computational
network reconstruction purposes), as weighted combinations of
free active enzymes and enzyme-substrate complexes that bridge
different network modules. Provided that global responses to
perturbations of free active enzymes and enzyme-substrate
complexes can be separately measured, we have computationally
reconstructed connection coefficients (rij) of direct, causative
interactions between network modules for different values of
weights (ai). We considered kinase cascades (ubiquitous for cell
signaling) and first reconstructed cascades with no regulatory
feedback loops and cascades where regulatory feedback loops
connect modules that are not linked by immediate feedforward
connections. We demonstrated that sequestration-induced con-
nections (i.e. retroactivity) are distinguished from regulatory
connections by computationally determining the weight para-
meter values (termed aopti ) that simultaneously nullify all
sequestration-induced connections. We also showed that at these
aopti values the modular insulation condition (Eq. 6) is restored.
Thus, for these network circuitries, we were able to uniquely
reconstruct networks and reveal the mechanistic nature of direct,
causative connections.
Current biochemical techniques allow us to measure the

concentrations of both free active enzymes and inter-modular
protein complexes. For instance, co-immunoprecipitation of an
enzyme and its substrate from the other module will determine
the concentration of an inter-modular protein complex, whereas
immunoprecipitation using an antibody against phosphorylated
enzyme will determine the active enzyme concentration. Impor-
tantly, only the relative concentration changes are detected using
Western blotting, but our approach performs equally well when
the input data are relative changes in the concentration of
proteins and protein complexes. This is explained by the fact that
both global responses and local connection coefficients can be
determined in terms of either absolute changes7,28 or relative
changes, defined by the logarithmic derivatives in Eqs. (4) and (5).7

Therefore, the perturbation-induced global responses of module
outputs can be readily analyzed in terms of the relative changes in
the concentrations of proteins and protein complexes (see
Supplementary material, section 3).
When cascade modules are connected by both regulatory and

sequestration feedbacks, MRA infers a dominant feedback. In
particular, a regulatory feedback will manifest itself if its strength
exceeds a certain threshold, whereas for weaker feedback
strengths only a sequestration feedback will be revealed. For
different and more complex network topologies this approach
may also have a limited applicability, requiring more prior
information. For instance, for inhibitory cascades additional
knowledge about which of two proteins in an inter-modular
complex is an enzyme and which is a substrate is required (see
Supplementary material, section 6). Importantly, this knowledge
can be obtained from consensus phosphorylation sequences for
many kinases and enzyme-substrate databases.44–48 For signaling
networks where a module operates as a hub activating several
downstream modules (see Supplementary material, sections 7 and
8), our approach is capable of inferring retroactivity feedback
loops. However, for these networks, not all sequestration-induced
connections can be nullified at a single set of ai ¼ aopti , because
they change their signs at the alternative weight coefficient sets.
As a result, the inferred connections can differ for alternative
perturbations. Sections 7 and 8 in Supplementary material
demonstrate that for different sets of perturbation parameters,
sequestration connections exhibit the greatest variability. There-
fore, minimization of the sum of squares of sequestration-induced
connections minimizes the discrepancy between the inferred

connection matrices, improving the network inference quality.
Importantly, all inferred regulatory connections are qualitatively
similar, when the sum of squares of the sequestration-induced
connection coefficients is minimized (see Supplementary material,
sections 7 and 8). Because a network reconstruction process can
be concurrently impaired by both protein sequestration effects
and noise, we have also checked that the use of the new
communicating species (module outputs) suggested by our
approach does not significantly decrease accuracy and precision
of MRA-based network reconstruction49 (see Supplementary
material, section 9).
Crosstalk between pathways often operates as feedforward and

feedback regulatory loops mediated by protein (de)phosphoryla-
tion.50 Yet, these regulatory interactions are not the only biological
mechanisms of pathway crosstalk. Protein sequestration in
competing protein-protein interactions is a key mechanism that
regulates crosstalk between the Hippo and RAS/RAF/MEK/ERK
pathways.51,52 In this and similar cases, our approach correctly
identifies sequestration connections, which also play regulatory
roles. Yet, similarly as for a hub network topology, sequestration-
induced connections cannot be nullified at a single set of weight
parameters, ai ¼ aopti . Consequently, the selection of module
outputs, which we have computationally explored, does not
restore the modular insulation condition.
In summary, our approach significantly extends MRA-based

methods to cover a range signaling networks with considerable
reactivity interactions between modules. At the cost of additional
measurements, this approach computationally restores the
modular insulation condition and permits unmistakable network
reconstruction for a range of signaling motifs and experimental
perturbations.

METHODS
All numerical simulations were carried out in R53 using the package
dMod54 and its dependencies and custom functions. The magnitude of
parameter perturbations used in calculations was 10% expect in the
calculations that explored noise in the data (Section 9 in Supplementary
material), where the perturbation magnitude was 50%. Plots were
generated with the package ggplot255 which is part of the collection of
packages called tidyverse. The scripts (file “Code.tar.gz”) are available as
supplementary information for numerical results in the main text.
Analytical calculations were partly done using Mathematica56 and Sage57

software packages.
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