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Abstract

Summary: Mass spectrometry-based proteomics is increasingly employed in biology and medicine. To generate
reliable information from large datasets and ensure comparability of results, it is crucial to implement and stand-
ardize the quality control of the raw data, the data processing steps and the statistical analyses. MSPypeline pro-
vides a platform for importing MaxQuant output tables, generating quality control reports, data preprocessing
including normalization and performing exploratory analyses by statistical inference plots. These standardized
steps assess data quality, provide customizable figures and enable the identification of differentially expressed pro-
teins to reach biologically relevant conclusions.

Availability and implementation: The source code is available under the MIT license at https://github.com/sihem
ing/mspypeline with documentation at https://mspypeline.readthedocs.io. Benchmark mass spectrometry data are

available on ProteomeXchange (PXD025792).
Contact: u.klingmueller@dkfz.de

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Mass spectrometry (MS)-based proteomics is, to date, the most com-
prehensive approach for quantitative profiling of proteins in a great
variety of biological and clinical samples. However, regardless of
sample complexity, unbiased investigation of proteomic alterations
in organisms is intrinsically challenging, requiring the standardiza-
tion of operational procedures in different yet interconnected areas
like biochemistry, MS and bioinformatics. The latter composes a
particular bottleneck as many sequential steps and a multitude of
parameters are required in a bioinformatics workflow that renders
them challenging to document and, as a consequence, limits repro-
ducibility. Even minor changes to an analysis workflow can signifi-
cantly affect the final results.

Ready-to-use tools, such as the MaxQuant-associated Perseus
(Tyanova et al., 2016), can be applied to analyze a wide variety of
proteomic data. However, since the specific software settings are
not stored, it is very difficult to reproduce previously obtained
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results. Furthermore, Perseus does not support the automation of
data quality assessment or the reproducible production of high-
quality figures. Several open-source packages are distributed by the
Bioconductor repository (www.bioconductor.org), aiming to align
and standardize the first steps of proteome data analysis and to pro-
vide statistical functionalities for relative label-free quantification of
proteins. Amongst the most common packages, MSstats (Choi et al.,
2014), MSnbase (Gatto et al., 2021), DEqMS (Zhu et al., 2020) and
obaDIA (Yan et al., 2021) provide statistical models to derive differ-
ential protein abundances and feature graphical interfaces.
However, these available applications do not support the creation of
all-in-one reproducible workflows to analyze quantitative proteome
data. For example, they lack opportunities for the generation of
quality control (QC) reports, for the functional annotation of pro-
teins, or the visualization of pathways/groups of proteins of interest.
For the stand-alone generation of QC reports, several packages are
available at Bioconductor, such as proteoQC and qcmetrics.
Likewise, individual packages can be found that support the
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functional annotation of proteins and differential analysis, e.g.
topGO and clusterProfiler. Therefore, a unified pipeline that enables
the standardized and comprehensive analysis of label-free proteo-
mics data is missing.

To address these issues, here we introduce MSPypeline. This
user-friendly, all-in-one python-based proteomics pipeline integrates
a set of tools, allowing the seemly and standardized preprocessing
and downstream analysis of label-free data acquired in data-
dependent acquisition (DDA) mode. It supports the automatic cre-
ation of QC reports, offers different normalization strategies, the
functional annotation of proteins, and the visualization of proteins
of interest, providing an exciting tool to analyze complex datasets.
Moreover, MSPypeline offers the user the advantage of saving the
exact software versions and parameters, guaranteeing reproducibil-
ity of results regardless of the computing environments.

2 The MSPypeline package

MSPypeline is a programing package written in Python 3 (available
for 3.7 or 3.8) and uses multiple standard packages for scientific
computing (pandas, numpy, sklearn and matplotlib). The recom-
mended installation is via Conda. An intuitive and concise graphical
user interface offers researchers unfamiliar with programing or data
analysis the opportunity to explore and visualize their data inde-
pendently and in a time-effective manner. For advanced users,
MSPypeline has two additional entry points, the python module and
the command line. Currently, the MSPypeline package supports the
analysis of label-free shotgun proteomics data analyzed by the
MaxQuant software, i.e. aggregated protein intensities after feature
detection and quantification of raw MS spectra; however, the intern-
al BaseReader class can be subclassed, allowing other data inputs,
thus making the package as extensible as possible. MSPypeline
builds a tree-structured analysis design (Supplementary Material) to
investigate the data at distinct levels, such as cell lines, treatments or
patients based on the sample names.

Several analysis methods require the determination of whether a
protein can be compared between two groups. In MS data, proteins
are frequently not detected at random in some samples. Yet, to ensure
appropriate data analyses, the protein has to be detected (intensity >0)
in a sufficient number of samples per group. MSPypeline defines the
required number of samples in which the respective protein has to be
detected by a sigmoidal threshold function starting at 100% for up to
three samples and relaxing to 50% for 12 or more samples. Based on
this threshold, there are four potential scenarios of categorizing the
protein: the protein can be compared between groups A and B if it is
detected above the threshold in A and B, it is unique in A if it is above
threshold in A and utterly absent in B, or vice versa, and it is not con-
sidered if it is below threshold in A and B.

By automating the calculation and generation of versatile figures,
MSPypeline performs comprehensive and conclusive data analyses
within minutes. Simultaneously, the advanced user may interact
closer with MSPypeline to perform advanced analysis exploiting the
plethora of customization options recorded to ensure reproducibil-
ity. Although there is a logic flow linking the four different steps of
analysis (Fig. 1), each step can be performed separately, making the
personalization of different analyses possible.

It is worth noting that thresholding is important for the Venn
group diagrams, the relative standard deviation graph, the group
comparison scatter plot and the volcano plot.

The workflow for MSPypeline consists of the following steps:

1. Data import—data are loaded, converted to the required format
and filtered.

2. QC—a comprehensive QC report is generated to investigate
technical and biological parameters at a glance for all samples
included in a given experiment.

3. Data preprocessing—tools to check normalization schemes pro-
duce plots to help to decide among five default normalization
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Fig. 1. Workflow of MSPypeline. MSPypeline features a precisely structured work-
flow that starts with a QC report of the data, followed by the assessment and choice
of data preprocessing operations to finally allow optimal exploratory analyses.

strategies (Table 1) applicable to raw, LFQ (Cox et al., 2014) or
iBAQ (Schwanhausser et al., 2011) intensities.

4. Exploratory analysis—descriptive and/or comparative analyses
are performed on the preprocessed data allowing biologically
relevant conclusions through differential expression analysis and
hypothesis testing (Table 2). Visualization tools make the
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Table 1. Normalization options in MSPypeline

Normalization

Abbreviation

Description

No normalization

Median normalization

Quantile normalization with

missing value handling

Tail robust quantile normalization

Tail robust quantile normalization
with missing value handling

Tail robust median normalization

None

median_norm

quantile_norm_missing_handled

trqn

trqn_missing_handled

trmn

Data are not normalized.

For each sample, the median protein intensity is calculated. The mean of all
sample-wise medians is calculated and subtracted from each sample me-
dian. This correction factor is then subtracted from each protein intensity.

Quantile normalization: for each sample, proteins are ranked after their inten-
sity value. The mean protein intensity per quantile across all samples is cal-
culated and assigned to every protein of each sample. The data are
rearranged to the original order of the intensity values for each sample.

Missing value handling: during normalization, missing values (protein int =0)
are interpolated by sampling from the same distribution as the input distri-
bution. After normalization, missing values are restored.

An offsetting factor is calculated by taking the sample-wise mean and is sub-
tracted from each protein of the respective sample. Quantile normalization
(see above) is applied, and the respective offset value is added back to each
protein of the sample (Brombacher ez al., 2020).

Tail robust quantile normalization (see above) is applied with missing value
handling (see above).

The sample-wise mean protein intensity is calculated and used as an offset to

be subtracted from each protein of the respective sample. Median normal-
ization (see above) is applied, and the respective offset value is added back

to each protein of the sample.

Table 2. Default analysis options in MSPypeline

Analysis Question Type of plot Analysis based on Comparison Additional comments
between

Detection counts How many proteins  Bar diagram showing how Protein counts Groups of the  The total number of detected
were detected how often proteins are detected selected proteins in this group is
frequently in the in the samples of each level indicated.
samples of a group? group.

Number of detected =~ How many proteins ~ Bar diagram showing the Protein counts Groups of the The average number of

proteins were detected in number of detected pro- selected detected proteins per group

each of my samples teins per sample and the level is indicated as a gray

and in total for each  total number of detected

group? proteins per group.
Venn diagrams How large is the inter-

section of detected

Venn diagram showing the
detected proteins for each

proteins of my sam- sample of a group.

ples in each group?

How many proteins

are uniquely detected

in a sample?

Group diagrams How large is the inter- Venn diagrams showing the
section of detected number of detected pro-

teins shared and uniquely

detected in groups of the

same level.

proteins between
different groups?
How many proteins
are uniquely
detected in a group?

Protein counts Samples with-
in a group
of the

selected
level

Protein counts, includ- Groups of the
ing thresholding selected
level

dashed line.

A classic Venn diagram
shows the intersections
with colored circles (<3
samples), and a bar Venn
diagram shows the size of
each intersection as a bar
with a combination matrix
below identifying the inter-
sections (<6 samples).

A classic Venn diagram (<3
samples) and a bar Venn
diagram (<6 samples).
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Table 2. (continued)

Analysis Question Type of plot Analysis based on Comparison Additional comments
between
PCA overview How similar are the Scatter plot showing the first Protein intensities Groups of the Each group of the selected
protein intensity two dimensions of a principal selected level is colored differently.
values of my sam- component analysis (PCA). level

ples? Do samples
cluster together?

Intensity histogram Do my samples show
the same intensity
profile? How does
the intensity profile
of my samples look?
How similar are the

intensity profiles?

What is the relative
standard deviation
(SD) of the samples
of a group?

Relative SD

How well do the over-
all protein inten-
sities of the samples

Scatter replicates

of each group
correlate?

Experiment How well do the over-
comparison all protein inten-
sities of different
groups correlate?

Rank Where do my proteins

of interest rank in
intensity compared
to all other
proteins?

What is the intensity
of my proteins of
interest, and is it

Pathway analysis

significantly differ-
ent in one group
versus the other?
GO analysis Are the proteins of a
group enriched for
the selected GO
terms?

PCA is performed using
intensities of proteins
detected in all samples.

Histogram showing binned
protein intensities per sam-
ple. The samples of a
group are presented in one
graph.

Scatter plot and correlation
heatmap showing the rela-
tive SD of proteins against
the mean intensity of the
corresponding protein.

Scatter plot and correlation
heatmap showing protein
intensities of one sample ver-
sus another sample. Unique
proteins per sample are

shown at the left and bottom

side of the scatter plot.

Scatter plot and correlation
heatmap showing the
group-averaged protein
intensities of one group ver-
sus another group. Unique
proteins per group are
shown at the left and bot-
tom side of the scatter plot.

Rank plot depicting the pro-
tein intensity against the
rank of the protein. The
highest intensity accounts
for rank 0%, the lowest
for rank 100%.

Scatter plot for each protein
of the selected pathway,
showing the protein inten-
sity for all groups of the
selected level.

Bar chart showing the num-
ber of detected proteins
from the selected GO
terms that are found in
each group of the selected
level.

Protein intensities

Protein intensities,
including
thresholding

Protein intensities

Protein intensities,
including

thresholding

Protein intensities

Protein intensities

Protein counts

Samples with-
in a group
of the
selected
level

Samples with-
in a group
of the
selected
level

Samples with-
in a group
of the
selected
level

Groups of the
selected
level

Groups of the
selected
level

Groups of the
selected
level

Groups of the
selected
level

The mean intensity of the
samples of a group is
shown as a gray dashed
line.

Lines drawn in different
shades of blue indicate
10%, 20% and 30% rela-
tive SD. The number of
proteins with a relative SD
below these values is
indicated.

Pearson’s correlation coeffi-
cient 7 is calculated for
each comparison.

Pearson’s correlation coeffi-
cient 72 is calculated for
each comparison.

If a protein is part of a
selected pathways, it is pre-
sented in color. The me-
dian rank and the number
of detected proteins of the
selected pathways are
shown.
P-values are calculated based
on an independent #-test if
protein counts are above

threshold.

P-values shown at the end of
a bar indicate the calcu-
lated significance based on
the one-tailed Fisher exact
test. The total number of
detected proteins of the
selected GO term and the
number of entries in the
GO term list are shown.
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Table 2. (continued)

Analysis Question Type of plot Analysis based on Comparison Additional comments
between
Volcano plot (R) Which proteins are Volcano plot displaying Protein intensities, Groups of the The P-value (focus on
significantly higher -logio(P-value) versus log, including selected affected pathways and
or lower in intensity ~ fold change comparing thresholding level processes) and adjusted

comparing two
groups? Which pro-
teins are detected
only in one group
and not in the
other?

protein intensities of two
groups. Intensities of the
unique proteins are shown
on each side of the plot.

P-value (Benjamini +
Hochberg, focus on regu-
lated proteins) are deter-
mined using the R limma
package. Calculations are

corrected for the intensity—
variance relationship.
Either the 10 most signifi-
cant proteins or the pro-
teins of the selected
pathways are annotated.

exploration of the results possible and include visualization by
bar plots, Venn diagrams, volcano plots showing differentially
regulated and unique proteins, rank plots and principal compo-
nent analysis plots. All resulting plots are saved as PDF files,
alongside CSV files containing the plotted data.

3 Results

To validate and visualize the functionalities of MSPypeline, a label-
free DDA experiment was performed to generate a benchmark data-
set deployed in the documentation for a demonstrative analysis. It
serves as the built-in dataset of the software (Supplementary
Material). The original MS raw data files and the MaxQuant search
result files are available on the ProteomeXchange consortium via
PRIDE (Deutsch et al., 2020) repository (dataset identifier
PXD025792). All input and output files from the benchmark dataset
are wrapped with the MSPypeline release.

By providing automation and standardization of the downstream
steps in the analysis of label-free proteome data, MSPypeline mini-
mizes time-consuming and error-prone manual tasks. Moreover,
new users can get started faster in analyzing proteomics datasets
through the available graphical user interface because it is unneces-
sary to familiarize themselves with a complex analysis environment.
Because MSPypeline offers the possibility of step-wise extensions, an
additional advantage of this package is the possibility to link, in the
future, more building blocks to its core, providing the possibility for
extension while retaining the basic functionalities. Thus,
MSPypeline can be easily adapted to the output of other search
tools, such as Proteome Discoverer (Thermo Fisher Scientific) and
OpenMS (Pfeuffer et al., 2017). Similarly, MSPypeline can be
adapted to analyze label-based data, e.g. stable isotope labeling by
amino acids in cell culture, tandem mass tag or data-independent ac-
quisition datasets.

4 Conclusions

The modular structure of MSPypeline allows it to be readily
extended to meet the needs of future developments of technology.
Standardization and reproducibility are ensured by automatically
logging all analysis settings and saving them to a separate configur-
ation file. Thus, MSPypeline provides a platform that supports users
with their proteomics data analysis by providing insight into data
quality, offering parameter adaptation when needed and generating
custom figures with guaranteed reproducibility. The reliability of

differential expression analysis can be improved, and the testing of
biologically relevant hypotheses is fostered.
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