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Abstract—Recent studies were investigated that report spontaneous oscillations of
cerebral perfusion in the very low-frequency range (0.01-0.04 Hz), emphasising
details of spectral estimation. The effects of different spectral estimation procedures
were compared, using simulated and clinical data. It was shown that data
detrending, as used in many studies, can lead to an artifactual peak in the very
low-frequency region of estimated power spectra, indicating that the peak cannot be
taken as evidence of physiological oscillations. A guantitative, reliable method is
described that can be used to assess very low-frequency oscillations. Using the
method, very low-frequency oscillations were found in ten out of 17 healthy adults
measured with transcranial Doppler (average frequency, 0.021+ 0.007 Hz, mean+

SD), confirming earlier findings based on visual inspection of data.
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1 Introduction

SPECTRAL METHODS based on the mathematical Fourier trans-
formation are a powerful tool for data analysis. Since the advent
of the fast Fourier transform algorithm in the 1960s, such
methods are computationally affordable and have become
increasingly popular in cardio- and cerebrovascular physiology.
In this study, we show that spectral methods have intrinsic
limitations that need to be taken into account when analysing
the spectral properties of cerebral haemodynamics in the very
low-frequency range.

The time-course of cerebral perfusion has been studied with a
variety of techniques, including magnetic resonance imaging,
transcranial Doppler and near infrared spectroscopy. The power
spectrum of cerebral perfusion shows spontaneous oscillations
in a variety of frequency bands

(@) a pronounced peak at the pulse frequency around 1 Hz
(P-waves)

(b) a broad peak at the respiratorial frequency around 0.3 Hz
(R-waves) _

(c) a peak in the so-called ‘low-frequency’ region around
0.1 Hz (M-waves).

The link between spectral features (a) and (h) and heart rate
and respiration is well established (MALLIANI e al., 1994). The
low-frequency M-waves were first observed for arterial blood
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pressure (MAYER, 1876) and have been linked to sympathetic
neural oscillations (PREISS and POLOSA, 1974).

Even slower, very low-frequency oscillations (VLFOs),
with frequencies around 0.03 Hz, were observed in cerebral
perfusion and thus intracranial pressure. These oscillations
were labelled B-waves. as they are assumed to reflect regular
changes in the vasomotor tone of cerebral arterioles and thus
cerebral blood volume, generated by various brain stem nuclei
(LUNDBERG, 1960).

Recent reports of VLFOs have mostly interpreted a peak in the
very low-frequency region of estimated power spectra as
evidence of corresponding physiological oscillations. In many
studies, analysed time series were detrended prior to computation
of the power spectrum. However, data detrending, i.e. the
removal of the mean or of higher-order polynomials, has been
reported to influence estimated power spectra at their low-
frequency end by introducing a spurious peak (HAMMING, 1989).

The purpose of the present study was therefore, first, to
analyse the effect of data detrending on the assessment of
VLFOs and, secondly., to search for VLFOs of cerebral perfusion
in healthy adults, using a robust method.

2 Methods
2.1 Data acquisition

Seventeen healthy adults were studied (27 % 4 years [£SD],
eight women). Cerebral*blood flow velocity (CBFV) in both
middle cerebral arteries (MCAs) was measured using 2 MHz
transcranial Doppler transducers* attached to a headband. Both

*DWL-Multidop-X, Sipplingen, Germany
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MCAs were insonated through the temporal bone window after
identification according to standard criteria (ARNOLDS and VON
REUTERN, 1986). Subjects rested in a supine position in a quiet,
dimly lit room. After establishing stable baseline values, a period
of 8 min, with subjects awake and breathing spontaneously. was
recorded at a sampling rate of 100 Hz.

2.2 Spectral analvsis

Spectral methods are available in a variety of commercial data
analysis software packages, as well as in source code form
(PRESSer al., 1992). Mathematical details can be found in
BROCKWELL and DAVIS (1991).

The power spectrum S (/) of a stationary, zero-mean discrete
process x(t), t € Z, is defined as the expected value of the
squared modulus of the Fourier transform (FT) %(/) of the process

N
X(f) = _‘Tli_)m:,C \/,'IZ_N,Z:\ x(1)exp(—2mifi)

S(f) = (1M1

Real data x(r) are usually measured at discrete times 1, = iAr,
where At is the sampling interval: the sampling frequency
Js =1/At. Only a finite number of data sampled at times tes
=05 oy N — 1, can be made available for analysis. As there is
only a finite amount of information in the finite measurement, we
cannot expect to infer the power spectrum reliably at all
frequencies. Rather, the discrete FT of the measured data

| &
X(f)=—=) x(t;)exp(=2mifi1,) (3)
e :
gives independent estimates only at the frequencies
s,
=== j=0...., N/2 4
J; = A 0 N/ (4)

ie. from f, = 0 to the Nyquist frequency Ty =Inp =15/2,
which 1s the maximum frequency that can be detected using a
sampling interval of Ar. The frequency resolution is
_ 1S i
S NAtT N T ”
where T = NAt is the measurement interval. Thus, the longer
the measurement, the finer the frequency resolution within the
Nyquist interval from 0 to Joivae

From the discrete FT X, the periodogram P, can be calculated
at frequencies f;

PR =IXHIF j=0,..., N/2 (6)

There are two problems that we face if we want to use the
periodogram as an estimate of the power spectrum. The first is
the problem of periodogram variance. A periodogram (6) has a
large variance that does not decrease with increasing numbers of
data. As more data are made available, only the frequency
resolution of the periodogram increases (5), but the variance
stays the same. Thus the periodogram is not a consistent
estimator of the power spectrum. To overcome this defect,
frequency resolution can be traded for variance in a number of
ways.

The second problem of spectral estimation using the periodo-
gram is known as ‘leakage’. Briefly, a finite stretch of data is
mathematically the product of an underlying infinite time-series
and a rectangular window that steps from zero to one and back.
Using the convolution theorem (BROCKWELL and Davis, 1991),
in the FT computed from a finite number of data, power is thus
transferred from peaks to adjacent bins. One remedy for this
problem is data tapering, i.e. multiplying the given data by a
smoothly rising and falling window function.
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Both mentioned problems can be overcome by the popular
Welch method, which is the spectral estimation method used in
most studies reporting VLFOs (GILLER e al, 1999; KUoO er al.
1998; ZHANG et al, 1998; OBRIG et al, 2000). It is
readily available as function PSD of the MATLAB(¢) software
]3ackage+. With this method, N given data points are divided into
segments of length N 4, often a power of two. The segments are
then individually tapered with a window function. and the periodo-
grams for all segments are computed. Finally, the periodograms of
all segments are averaged. Compared with the periodogram, this
method reduces both the problem of leakage (by tapering) and the
variance of the power spectrum estimate (by averaging).
Overlapping segments can further reduce the variance. When N
data points are sampled with sampling frequency f;, the Welch
method gives estimates for the power spectrum at frequencies

_j:O.....N;.—FT/Z (7)

Le. compared with the original periodogram, the frequency
resolution is reduced by a factor of N/N ;4. Note that, with the
Welch method, the frequency resolution only depends on the
sampling frequency fg and on the parameter Npp;. With
increasing numbers of data, the variance of the power spectrum
estimate will be reduced. As an example, with f = 10 Hz and
Nppp = 1024, the frequency resolution is approximately
0.01 Hz. The important point is that the frequency (in Hz) is the
inverse of the length (in seconds) of the segments for which the FT
is computed, independent of the total measurement interval.
Periodogram smoothing is a valuable alternative to the Welch
method (TIMMER ef al., 1996). As the spectrum of almost all
real-life processes is smooth. the variance of the spectrum
estimate can be reliably reduced by smoothing the periodogram.,
c.g. with a triangular window. The smoothed periodogram
nominally has the same frequency resolution as the initial
periodogram, but the effective frequency resolution will be
reduced. The width of the smoothing window must be chosen
s0 as to balance the effects of a short window (little reduction in
variance, small bias and high effective frequency resolution) and
a long window (large reduction in variance, large bias and low
effective frequency resolution); see TIMMER er al. (1996).
Estimated power spectra should always be plotted with a
logarithmically scaled y-axis, as. on a linear scale, the relevant
details of smaller peaks will be lost (TIMMER e7 al., 1996).

2.3 Data detrending

The definition of the power spectrum in the preceding Section
was given with the proviso that the processes have zero mean.
Real data will often not fulfil this condition, but it seems easy 1o
correct for this by subtracting the mean (or *baseline’) of the data.
Moreover, there may be a linear trend in the data. and baseline
fluctuations can also be more erratic. From the perspective of the
ideal measurement that we want to achieve, it is desirable to
remove all baseline shifts by detrending. Generalisations of
linear detrending to higher-order detrending appear promising.

Such higher-order detrending has been used by many groups
thatreport VLFOs (HOSHI et af., 1998; ZHANG ef al., 1998; OBRIG
et al., 2000). Although the aim of correcting for baseline fluctua-
tionsisgertainly areasonable one, the question of the effect of such
data preprocessing on the power spectrum estimate appears to
have been neglected. HAMMING (1989) warns that a spurious peak
at very low frequencies can appear owing to detrending:
Detrending reduces the power ar the lowest frequencies,
‘bending” the estimated spectrum towards zero. The resulting
point of inflection is liable to be interpreted as a peak, even if the

"The MathWorks, Inc., Natick, MA
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input was Gaussian white noise. The spurious peak will generally
appear at the third frequency bin. The corresponding frequency
depends on the resolution of the spectral estimate. In the case of the
Welch method, the peak position thus depends on Nppp (7).
whereas, in the case of periodogram smoothing, the peak position
depends on the length of the time series.

2.4 Assessment of VLFOs -

The power spectrum was computed from 48 000 data points
(8 min at 100 Hz), by the smoothing of the periodogram with a
triangular window with a total width of five bins. No
detrending was wused. The first five frequency bins
(0—0.0083 Hz) were discarded owing to instationarities.
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power spectrum

(Note that this mandates the use of periodogram smoothing,
as, with the reduced frequency resolution of the Welch
method, we would be discarding the frequency region that
we are interested in.) In the remaining VLF range from 0.01 to
0.04 Hz, the following operational criterion was used (TIMMER
et al., 1996): a local maximum was considered a peak and thus
evidence of physiological oscillations if, somewhere to the left
(down to frequency 0) and somewhere to the right (up to
frequency 0.05 Hz), the estimated spectrum was significantly
smaller, i.e. below the 95% confidence interval for the peak.
For the described smoothing, this means that a peak must be
flanked by ‘valleys’ in which the estimated power is less than
18% of the peak value. If several peaks were significant, the
lowest frequency was chosen.
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Estimated spectie for data sets A (measured data) and B (simulated data) in range 0—0.13 Hz. Following spectral estimation methods were

used: (a) raw periodogram; (b) smoothed periodogram (triangular window of total width 3 bins; see Section 2.4); (¢} Welch method,
segment length 8000 bins. no overlupping, no detrending: (d) same as (c). but mean removed from each of six segments; (e) l'l'm’fr’{‘ trend
removed. (f}ﬂ third-order detrending. All spectra are plotted with logarithmically scaled v-axis. (g) same as (f), but plotted with linearly
scaled y-axis (shown for ease of comparison with many published spectra)
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3 Results
3.1 How detrending can lead to artifacts

The effect of detrending on the power spectrum estimate was
assessed for two data sets of length 8 min with a sampling rate
of 100Hz. Set A was the transcranial Doppler recording of a
28-year-old female’s left MCA CBFV, arbitrarily selected from
the data described in Section 2.1.

Set B was a realisation of a process whose power spectrum
mimics two prominent features of the periodograms of the data
sets from which recording A was selected

(1) the periodogram rose steeply towards the lower end of
the spectrum (/" = 0), which is the result of instationa-
rities in the data

(ii) there was a broad peak around 1.1 Hz corresponding to
the heart rate.

Thus we chose the sum of a realisation of so-called 1/ noise
(TIMMER and KONIG, 1995; RAMBALDI and PINAZZA, 1994) and
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of an AR[2] process (BROCKWELL and DAVIS, 1991). The latter
1s defined as

Y(lj) =a X(Tjgl) +az Y(f;72)+b(r,) (8)

where (1)) is Gaussian white noise. The spectrum of the 1/f
noise process is proportional to 1/f/, corresponding to feature
(i), and the spectrum of the 4AR[2] process, which is a damped
stochastic oscillator, shows a broad peak at 1.1 Hz (feature (11)).
Parameters used were fi = 1.2, a; = 1.992, a, = —0.998, and
the simulated sampling frequency was set to 100 Hz, which is the
sampling frequency of the measured data.

The rationale for choosing set B was that with simulated data,
we could be absolutely certain that no VLFOs were present, as
the spectrum of the simulated process is known (BROCKWELL
and DAVIS, 1991). Thus, any peak in the VLF region of the
spectrum  estimated for set B must stem from the spectral
estimation procedure.

Fig. 1 shows the effect of various procedures for spectral
estimation on the frequency range from 0 to 0.15 Hz. In line with
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Fig. 2 Es.timared spectra plotted in range 0-0.15 Hz. (a) Spectrum showing no VLFOs; (b) spectrum showing VLFOs at 0.035 H= (assessed
using criterion of Section 2.4); (c) average of all 17 power spectra of TCD signals from right MCA CBFY, computed with method of
Section 2.4, no detrending (see Fig. 1b); (d) same as (c), but using Welch method with third-order detrending (see Fig. If)
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the mathematical argument mentioned in Section 2.3, a peak in
the first few frequency bins appears owing to detrending. The
effect is stronger, the higher the order of the polynomial that was
subtracted from each data segment in the Welch method: it is
already slightly visible with the mean taken out (Oth order,
Fig. 1d) and with linear detrending (first order, Fig. le), and the
effect is quite striking with third-order detrehding (Fig. 1f) and
even more so on a linear scale (Fig. 1g). In comparison with the
Welch method, the smoothed periodogram (Fig. 1) has a
significantly lower variance than the raw periodogram and is
not affected by detrending artifacts.

3.2 Evidence for VLFOs

All 34 TCD measurements were checked for VLFOs, using
the method described in Section 2.4. We found VLF Os in ten out
of 17 subjects. Five subjects showed VLFOs in both right and
left hemispheres, whereas in five subjects, VLFOs could only be
detected unilaterally. The average frequency of the VLFOs was
0.021 £ 0.007 Hz (mean=+SD).

Fig. 2 presents estimated power spectra showing no VLFQs
(Fig. 2a) and VLFOs at a frequency of 0.035 Hz (Fig. 2b). In
addition, the average power spectrum ofall 17 recordings of right
MCA CBFV is shown, estimated without detrending (Fig. 2¢)
and with third-order detrending (Fig. 2d). Although averaging
smoothes out the VLFOs that are present owing to their different
frequencies ifno detrending is used, third-order detrending leads
to a persistent peak in the VLF region of the estimated spectra.

4 Discussion

Our results give reasons for treating some recently reported
findings of VLFOs with caution. Linear or third-order
detrending prior to spectral analysis has been used by many
groups (OBRIG et al., 2000; KUO eral., 1998: YANG etal., 1995;
GILLER et al, 1999). Our simulation studies reported here
suggest that such spectral estimation procedures do not allow
us to separate physiological oscillations in the very low-
frequency range from detrending artifacts. In fact, some
Figures in the mentioned studies illustrate the effect described
by HAMMING (1989), as a reported VLFO peak appears exactly
at the third frequency bin. We believe that our results also shed
some light on a question posed by DIEHL and BERLIT (1996),
who distinguish two cases of VLFOs or B-waves. We conjecture
that true VLFOs should be visible in the time domain, whereas
VLFOs detectable solely by frequency analysis may arise from
detrending.

Our findings do not, of course, deny the existence of VLFOs
in data analysed with detrending. The methodological point is
rather that, with detrendin g, no positive evidence for VLFOs can
be obtained from data, even if VLFOs are present.

Some studies put the existence of VLFOs beyond any reason-
able doubt, as they are not susceptible to the issues discussed in
this paper. Such studies have either argued exclusively in the
time domain (DORA and KOVACH, 1981), or they have used
spectral estimation procedures carefully (BAZNER ef al, 1995:
NEWELL etal., 1992: ELWELL et al., 1999; Lt et al., 2000). Our
finding of B-waves in ten out of 17 subjects (59%) matches well
with numbers established by visual inspection of measurements:
MAUTNER-HUPPERT et al. (1989) found B-waves in eight out of
ten subjects; DROSTE et al. ( 1994) report B-waves in all subjects
measured overnight and estimate that B-waves are present
35-73% of the time.

We suggest that the method described in Section 2.4 be used
to study VLFOs. Data should not be detrended. Rather, the first
bins of estimated power spectra should be discarded. In this way,
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it is possible to assess VLFOs on a methodologically Jjustified, -
quantitative basis.

5 Conclusions

The spectral properties of cerebral perfusion have been
studied for many years. Although the interpretation of most
parts of the spectrum poses no special problems, the very low-
frequency  region, corresponding  to  frequencies  of
0.01-0.04 Hz, is more difficult to interpret, as details of the
estimation procedure can have a tremendous effect. Both
theoretical considerations and simulation studies support our
conclusion that some reports on very low-frequency oscillations
in cerebral perfusion in humans are based on insufficient
evidence. Data detrending, as performed in many studies, can
lead to a peak in the very low-frequency regime that is
independent of the existence of any physiological oscillations
with corresponding frequencies.

As the popular Welch method is most susceptible to
detrending artifacts, we have proposed an alternative procedure
of spectral estimation based on periodogram smoothing. Using
this method, we formulated a mathematically precise criterion
that can be employed to assess the presence or absence of very
low-frequency oscillations in a given stretch of data. According
to our criterion, we found such oscillations in ten out of 17
healthy young adults whose cerebral blood flow velocity was
recorded using transcranial Doppler, confirming earlier findings
based on visual inspection of the data. Thus we have shown that
a quantitative, methodologically justified procedure based on
periodogram  smoothing can be used to detect very low-
frequency oscillations of cerebral haemodynamics.
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