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Spacetime structures of continuous-time quantum walks
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The propagation by continuous-time quantum w&lR$QWS on one-dimensional lattices shows structures
in the transition probabilities between different sites reminiscent of quantum carpets. For a system with
periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagonalizing the
transfer matrix and by a Bloch function ansatz. Remarkably, the results obtained for the Bloch function ansatz
can be related to results frofdiscrete generalized coined quantum walks. Furthermore, we show that here the
first revival time turns out to be larger than for quantum carpets.
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Simple theoretical models have always been very usefutan be generalized to continuous models like the Lorentz gas
for our understanding of physics. In gquantum mechanics[14]. The formal solution of Eq(1) is
next to the harmonic oscillator, the particle in a box provides Tt
much insight into the quantum worle.g.[1]). Recently, the Pi(t) = (jle"k). (2)
problem of a quantum mechanical particle initially character- The quantum-mechanical extension of a CTRW is called
ized by a Gaussian wave packet and moving in an infinitgontinuous-time quantum wallCTQW). These are obtained
box has been reexamind@-4]. Surprisingly, this simple py identifying the Hamiltonian of the system with tkielas-
system shows complex but regular spacetime probabilitgjca) transfer operatorH=-T [11,15,16. Then the basis
structures which are now called quantum carpets. vectors|k) associated with the nodésof the graph span the

In solid state physics and quantum information theory,yhole accessible Hilbert space. In this basis the Schrédinger
one of the most simple systems is associated with a particlgquation(SE) reads

moving in a regular periodic potential. This can be, for in-

stance, either an electron moving through a cry&d#| or a

qubit on an optical lattice or in an optical cavity—9]. For

the electron moving through a crystal, the band structure and B B . .

eigenfunctions are well known. In principle, the same holdsVhere we have seh=1 and# =1. The time evolution of a

for the qubit. However, in quantum information theory, the State [K) starting at timet, is given by [k(t))=U(t,to)|K),

qubit on a lattice or, more general, on a graph is used t§'here U(t,to) =exp-iH(t-ty)) is the quantum mechanical

define the quantum analog of a random walk. As classicallytime evolution operator. Now the transition amplitudg(t)

there is a discreté10] and a continuous-timgl1] version. from statelk) at time 0 to statéj) at timet reads

Unlike in classical physics, these two are not translatable -

into each other. i () = jle" (1. “@
Here we focus on continuous-tim@uantum random  Following from Eq.(3) the ay(t) obey

walks. Consider a walk on a graph which is a collection of q

connected nodes. Latnges are very simple graphs where the i— (1) = > Hj al®). (5)

nodes are connected in a very regular manner. To every dt |

graph there exists a corresponding adjacency or connectivit¥ . )

matrix A=(4;), which is a discrete version of the Laplace he main difference between E() and Eq.(4) is that

operator. The nondiagonal elemerts equal -1 if nodes cIaSS|caI2Iy Zp()=1, whereas quantum mechanically

andj are connected by a bond and 0 otherwise. The diagon§1|“1k(t)_| =1 holds. _

elements; equal the number of bonds which exit from node !N principle, for the full solution of Eqs(1) and(5) all the

d,
o =HIK, (3)

i, i.e., A; equals the functionality; of the nodei. eigenvaluesand all the eigenvectors of =-H _(or, equiva-
Classically, a continuous-time random wa@TRW) is lently, of A) are needed. Let,, denote thenth eigenvalue of
governed by the master equatifi®,13 A and A the corresponding eigenvalue matrix. Furthermore,

let Q denote the matrix constructed from the orthonormal-
ized eigenvectors oA, so thatA=QAQ™. Now the classi-

dgtpjk(t) => Tipu(®), (1)  cal probability is given by
| . _ _
pi(t) =(j|Qe AQ7YK), (6)
wherepy(t) is the conditional probability to find the CTRW whereas the quantum mechanical transition probability is
at timet at nodej when starting at nod&. The transfer Y — L (012 = 1/ A amityA A =Ll [2
matrix of the walk,T=(Tj), is related to the adjacency ma- (D) = lag(]* = [1Qe™ QK. )

trix by T=-yA, where we assume the transmission ratef The unitary time evolution prevents;(t) from having a
all bonds to be equal for simplicity. Formally, this approachdefinite limit fort— oc. In order to compare the classical long
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FIG. 1. Plot for a CTQW on a
circle of lengthN=21 of (a) the
return probability andb) the tran-
sition probability to go in timet
from the starting node to the op-

(b) 0.2 T T T T T T T posite node on the circle. Time is
L J given in units of the inverse trans-
49 mission ratey . The results using
0151 / \ 7] Eq. (7), long dashed line, and Eq.
= B b - . (16), full circles, are compared to
= 0ak f \\ ‘f - the limit N— o, short dashed line.
I N\
i /II, \\\ ‘ /.\ I \\ J‘ T
0.05} AR T A “y 4 ¢ |
L /,l ‘\ ‘f \\‘ J\\\\ S L} /\ R R " ]
0 vooess” | NL NS NS N NAN NS
0 5 10 15 20
time t

time probability with the quantum mechanical one, one usufree particle moving on a lattice. It is well known in solid

ally uses the limiting probability distributioftL7] state physics that the solutions of the SE for a particle mov-
T ing freely in a regular potential are Bloch functiof,6].
Xig = lim }f dt (1), 8) Thus, the time independent SE is given by
T—o 0
H|®p) = E(Dy), (11)

In the subsequent calculation we restrict ourselves to
CTQWs on regular one-dimensiondlD) lattices. Then the Where the eigenstaté®,) are Bloch states and can be writ-
adjacency matriA takes on a very simple form. For a 1D ten as a linear combination of statg¢slocalized at nodes,
lattice with periodic boundary conditions, i.e., a circle, every N
node has exactly two neighbors. Thus, for a lattice of length _ iz iy
N, with the boundary condition that nodie+ 1 is equivalent [P = \N,_le i) (12)
to node 1, we have =
The projection on the stat§) than reads®,(j)=(j|®y)

2, i = -, —ipi [ . . . .
f J =e/\N, which is nothing but the Bloch relation
A=(Aj=1-1, i=j*1, 9 @, +1)=eD,(]) [5,6]. Now the energy is obtained from
0, elsewhere. Egs.(11) and(12) as
For a lattice with reflecting boundary conditions the adja- E,=2 -2 cosh. (13)

cency matrixA is analogous to Eq(9), except thatA;;

=Aun=1 andA;y=A\;=0 because the end nodes have onlyFor small@ the energy is given b¥,~ ¢ which resembles
one neighbor. Solving the eigenvalue problem Agrwhich  the energy spectrum of a free particle.

is a real and symmetric matrix is a well-known problem, also  With this ansatz we calculate the transition amplitudes
of much interest in polymer physi¢48,19. A different an- a(t). The statelj) is localized at nodg and may be de-

satz describing the dynamics of a quantum particle in 1Dscribed by a Wannier functiofb,6], i.e., by inverting Eq.
was given by Wojcik and Dorfman who employ a quantum(12),

multibaker mag20].
The structure ofH =yA suggests an analytic treatment. i _iz 0\
For a 1D lattice with periodic boundary conditions ampd )= N= e%dy). (14)

=1 the Hamiltonian acting on a stdfe is given by
N ol A\ [ Since the statel§) span the whole accessible Hilbert space,
HIp=2p)-lj-D-li+D, 10 e have (k|j)>=6; and therefore via Eq.(12) also
which is the discrete version of the Laplaciad=-V2 — (®y|P)=5p .
Equation(10) is the discrete version of the Hamiltonian fora  Then the transition amplitude reads
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1 ) . 1 ) o
a(t) = NE (D e e Nl d,) = NE e Egtgiok)
0,0’ 0

(15) wr11(t)

The periodic boundary condition for a 1D lattice of site " 513
requiresP (N+1)=® (1), thusé=2n=/N with nintegerand .
ne ]0,N]. Now Eq.(15) is given by 0.4 2
—i2t 5.2
o t) = 22 g2t cos2nm/N) gizmn(k—j)/N (16) 0
N
n s 12 time ¢
For small ¢, this result is directly related to the results ob- node k 6

tained for a quantum particle in a bf2-4], because then we  (q) 18

haveE,~n?.
In the limit N— o, Eq. (16) translates to
-2t
lim akj(t) - _f do g i0(k-)gi2t cos b — ik_je_iZth_j(Zt),
N—c0 27T -

17)

whereJy(x) is the Bessel function of the first kiff@1]. The
same result has also been obtained with a functional integra
ansatZ22]. From Eq.(17) we also see that the first maxima
of the transition probabilities are related to the maxima of the
Bessel function, since we have §m., ij(t):[Jk_j(zt)]z.
However, for an infinite lattice there is no interference due to
either backscattering at reflecting boundaries or transmissior®)
by periodic boundaries.

For higher dimensional lattices the calculation is analo-
gous. We note that the assumption of periodic boundary co
ditions is strictly valid only in the limit of very large lattice

sizes where the exact form of the boundary does not matigfe resyits diverge and for a finite lattice one observes an

[5.6]. ) . increase in the probability of being at the starting node. This
Very recently it has been found by Wojaét al. [23], that happens around the timte= N/2.

the return probabil_ity f_or a 1D _generalized_ coined quantum | Fig. 1(b) the probability to go from a starting node to
walk (GCQW), which is a variant of a d,gcrczate quantum he farthest node on the circle, here to go from node 1 to
walk, has the functional fornp(t7)=[Jo(2t\D)]5, wherer  ho4e 11(or 12), is plotted. Again the calculations by the
andD are variables specified {i23], which indeed is of the  gjgenvalue method and by the Bloch function ansatz are in-
same form as the return probability calculated from &9).  gistinguishable. As before, also the probabilities for the infi-
We interpret this as an indication that CTQWs and GCQWShjte and for the finite systems differ. The difference is more
although not directly translatable into each other, can lead tgronounced because in time=N/4 counterpropagating
similar results. However, i23] the return probability is \yaves from the starting node interfere at the opposite node.
calculated for a particle on a very large circle such that in-  The probabilities to go from a starting node to all other
terference effects are not seen on the short time scales Copgdes in timet on a circle of lengtiN=21 is plotted in Fig.
sidered there. By looking ahead at Fig. 1, we see that, iny(jeft). (For a CTQW on a circle the starting node is arbi-
deed, on short time scales this is also approximately true ifyary) For small times, when there is no interference, the

our case of the CTQW on the finite lattice. Nevertheless,yayes propagate freely. After a timie=N/4 the waves in-
without going into further detail at this point, we note this

remarkable similarity between CTQWs and GCQWSs.
For a CTQW on a 1D circular lattice we calculate the  0.09
guantum mechanical transition probabilities,(t). Figure 0.08
1(a) shows the return probabilityr,(t) for a CTQW on a  .Foo07
circle of 21 nodes first evaluated in a straightforward way by  0.06
diagonalizing the matridA numerically, then by using the 0.05
Bloch function ansatz described above. Both results coin- 4,
cide. For comparison we also have computed the return
probability for the infinitely extended system, see ELj).
On small time scales all the results coincide. At later times FIG. 3. Limiting probability distributiony,; for a CTQW on a
waves propagating on the finite lattice start to interfere; therircle of lengthN=20 (circles andN=21 (triangles.
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FIG. 2. Plot of the probability for a CTQW on a circle of length
\=21 (left) andN=20 (right) over timet to go from a starting node
o all other nodes. See Fig. 1 for units.
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FIG. 4. Contour plot of the probability for a CTQW on a circle of length 21 (left) andN=20 (right) over longer timeg than in Fig.
2. Dark regions denote high probabilities. See Fig. 1 for units.

terfere but the pattern remains quite regular. The same holds 5 16 )
for N=20, but the structures are more regular; see Fig. ) cos’t— 3 cost. k=],
2(right). This is due to the fact that the number of steps to go mi(t) = (18)
. . N 2 8 2 .
form one node to another is even or odd in both directions ~-—cost-—-cost, k#j.
for the even-numbered circle, where it is even in one and odd 9 9 3
in the other direction for the odd-numbered circle. For N=4 h
Figure 3 supports this. The limiting distributiop; has " °' "+ W€ Nave
two maxima forN=20, one at the starting node 1 and one at s
. ) ; cos't, k=j,
the opposite node 11, reflecting the higher symmetry of the . )
lattice, whereas there is only one maximum fbr 21 at the m(t) = sir't, k=2j, (19
starting node 1. siftcost, elsewhere.

At this point it is instructive to look at very small circles
of N=3 and 4 nodes where the analytic results are stilwhere;;(t) and; 5(t) are only shifted by a phase factor of
handy. With Eq.(16) we find for the transition probabilities /2 but equal in magnitude. The limiting probability distri-
for N=3, butions are foiN=3, x11=5/9 andy;,=x13=2/9 and forN
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=4, x11=x13=3/8 and y1,=x14=1/8, andthus support the

findings for bigger lattices, e.g., Fig. 3.

PHYSICAL REVIEW E 71, 036128(2005

7, < 71 fOr ne JN/2,N]. For certain values afi, 7,, will be
of order unity, e.g., fon=N/2 we getr,,=#/2. However, for

The occurrence of the regular structures is reminiscent oh<N, Eq. (20) yields 7,=N2/2mn?= 7,/n?, which is analo-

the so-called quantum carp¢®s-4]. These were found in the

interference pattern of a quantum particle, initially prepare
as a Gaussian wave packet, moving in a 1D box. The spread-
ing and self-interference due to reflection of the wave packe
at the walls lead to patterns in the spacetime probability dis
tribution. Furthermore, after some time, the so-called revival

CEOUS to the particle in the box and whetgis a universal

evival time. Thus, the revival timesg, have large variations
value. To make a sensible statement about at least the first
revival time, we need to compare it to the actual time needed

py the CTQW for travelling through the lattice. As men-

time, the whole initial wave function gets reconstructed. Forioned earlier, interference effects in the return probability

a particle in a box, theses quantum revivals (@lenos} per-
fect and the revival timeT follows from the energyE,

=(nmhiL)2/2m=n?27%/T, whereL is the width of the box

[3].

ay 4(t) are seen after a time=N/2. The first revival time

has to be larger than this, because there cannot be any revival
unless the wave reaches its starting node again. Our calcula-
tions suggest that the first revival time will be of ordgyt

For very long times, Fig. 4 shows a contour plot of the From Fig. 4 we see that the firéhcomplete revival occurs

probability for a CTQW on a circle of lengtN=21 (left) and

for N=20 at t=70>20%/27 and for N=21 at t=75

N=20 (right). There is obvious structure in the interference>212/2m

pattern. Furthermore, there are areas on this quantum carpet
where there is a very high probability, visualized by darkIat
regions, to find the CTQW at its starting point. Thus, quan-
tum revivals also occur for the discrete lattice. However

these are not perfect.
The revival timer is given by q;(7)=q;(0). Since the

transition amplitudes are given as a sum over all mages
see Eq(16), we cannot give a universal revival time which

is independent oh. Nevertheless, from Eq16) we get for
each mode its revival time

rm = r_7-r[1 + cof(nm/N)],

__ 20
71— cogonmiN) 2 (20

wherer e N (without any loss of generality we set1).
From Eg.(20) we find that7,> 7,,; for ne J0,N/2] and

In conclusion we have shown that CTQWSs on regular 1D
tices show regular structures in their spacetime transition
probabilities. By employing the Bloch function ansatz we

‘calculated quantum mechanical transition probabilifes a

function of timet) between the different nodes of the lattice.

These results are practically indistinguishable from the ones
obtained by diagonalizing the transfer matrix. We note that
the results obtained via the Bloch function ansatz can be
related to recent results for GCQWSs. The spacetime struc-
tures are reminiscent of quantum carpets, but have their first
revival at later times than what is found for quantum carpets.
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