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The propagation by continuous-time quantum walkssCTQWsd on one-dimensional lattices shows structures
in the transition probabilities between different sites reminiscent of quantum carpets. For a system with
periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagonalizing the
transfer matrix and by a Bloch function ansatz. Remarkably, the results obtained for the Bloch function ansatz
can be related to results fromsdiscreted generalized coined quantum walks. Furthermore, we show that here the
first revival time turns out to be larger than for quantum carpets.
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Simple theoretical models have always been very useful
for our understanding of physics. In quantum mechanics,
next to the harmonic oscillator, the particle in a box provides
much insight into the quantum worldse.g.f1gd. Recently, the
problem of a quantum mechanical particle initially character-
ized by a Gaussian wave packet and moving in an infinite
box has been reexaminedf2–4g. Surprisingly, this simple
system shows complex but regular spacetime probability
structures which are now called quantum carpets.

In solid state physics and quantum information theory,
one of the most simple systems is associated with a particle
moving in a regular periodic potential. This can be, for in-
stance, either an electron moving through a crystalf5,6g or a
qubit on an optical lattice or in an optical cavityf7–9g. For
the electron moving through a crystal, the band structure and
eigenfunctions are well known. In principle, the same holds
for the qubit. However, in quantum information theory, the
qubit on a lattice or, more general, on a graph is used to
define the quantum analog of a random walk. As classically,
there is a discretef10g and a continuous-timef11g version.
Unlike in classical physics, these two are not translatable
into each other.

Here we focus on continuous-timesquantumd random
walks. Consider a walk on a graph which is a collection of
connected nodes. Lattices are very simple graphs where the
nodes are connected in a very regular manner. To every
graph there exists a corresponding adjacency or connectivity
matrix A =sAijd, which is a discrete version of the Laplace
operator. The nondiagonal elementsAij equal −1 if nodesi
and j are connected by a bond and 0 otherwise. The diagonal
elementsAii equal the number of bonds which exit from node
i, i.e., Aii equals the functionalityf i of the nodei.

Classically, a continuous-time random walksCTRWd is
governed by the master equationf12,13g

d

dt
pjkstd = o

l

Tjlplkstd, s1d

wherepjkstd is the conditional probability to find the CTRW
at time t at node j when starting at nodek. The transfer
matrix of the walk,T =sTjkd, is related to the adjacency ma-
trix by T =−gA, where we assume the transmission rateg of
all bonds to be equal for simplicity. Formally, this approach

can be generalized to continuous models like the Lorentz gas
f14g. The formal solution of Eq.s1d is

pjkstd = k j ueTtukl. s2d

The quantum-mechanical extension of a CTRW is called
continuous-time quantum walksCTQWd. These are obtained
by identifying the Hamiltonian of the system with thesclas-
sicald transfer operator,H =−T f11,15,16g. Then the basis
vectorsukl associated with the nodesk of the graph span the
whole accessible Hilbert space. In this basis the Schrödinger
equationsSEd reads

i
d

dt
ukl = H ukl, s3d

where we have setm;1 and";1. The time evolution of a
state ukl starting at timet0 is given by ukstdl=Ust ,t0dukl,
where Ust ,t0d=exp(−iHst− t0d) is the quantum mechanical
time evolution operator. Now the transition amplitudea jkstd
from stateukl at time 0 to stateu jl at time t reads

a jkstd = k j ue−iHtukl. s4d

Following from Eq.s3d the a jkstd obey

i
d

dt
a jkstd = o

l

Hjlalkstd. s5d

The main difference between Eq.s2d and Eq. s4d is that
classically o jpjkstd=1, whereas quantum mechanically
o jua jkstdu2=1 holds.

In principle, for the full solution of Eqs.s1d ands5d all the
eigenvaluesand all the eigenvectors ofT =−H sor, equiva-
lently, of Ad are needed. Letln denote thenth eigenvalue of
A andL the corresponding eigenvalue matrix. Furthermore,
let Q denote the matrix constructed from the orthonormal-
ized eigenvectors ofA, so thatA =QLQ−1. Now the classi-
cal probability is given by

pjkstd = k j uQe−tgLQ−1ukl, s6d

whereas the quantum mechanical transition probability is

p jkstd ; ua jkstdu2 = uk j uQe−itgLQ−1uklu2. s7d

The unitary time evolution preventsp jkstd from having a
definite limit for t→`. In order to compare the classical long
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time probability with the quantum mechanical one, one usu-
ally uses the limiting probability distributionf17g

xkj ; lim
T→`

1

T
E

0

T

dt p jkstd. s8d

In the subsequent calculation we restrict ourselves to
CTQWs on regular one-dimensionals1Dd lattices. Then the
adjacency matrixA takes on a very simple form. For a 1D
lattice with periodic boundary conditions, i.e., a circle, every
node has exactly two neighbors. Thus, for a lattice of length
N, with the boundary condition that nodeN+1 is equivalent
to node 1, we have

A = sAijd = 52, i = j ,

− 1, i = j ± 1,

0, elsewhere.
6 s9d

For a lattice with reflecting boundary conditions the adja-
cency matrixA is analogous to Eq.s9d, except thatA11
=ANN=1 andA1N=AN1=0 because the end nodes have only
one neighbor. Solving the eigenvalue problem forA, which
is a real and symmetric matrix is a well-known problem, also
of much interest in polymer physicsf18,19g. A different an-
satz describing the dynamics of a quantum particle in 1D
was given by Wójcik and Dorfman who employ a quantum
multibaker mapf20g.

The structure ofH =gA suggests an analytic treatment.
For a 1D lattice with periodic boundary conditions andg
=1 the Hamiltonian acting on a stateu jl is given by

H u jl = 2u jl − u j − 1l − u j + 1l, s10d

which is the discrete version of the Laplacian −D=−¹2.
Equations10d is the discrete version of the Hamiltonian for a

free particle moving on a lattice. It is well known in solid
state physics that the solutions of the SE for a particle mov-
ing freely in a regular potential are Bloch functionsf5,6g.
Thus, the time independent SE is given by

H uFul = EuuFul, s11d

where the eigenstatesuFul are Bloch states and can be writ-
ten as a linear combination of statesu jl localized at nodesj ,

uFul =
1

ÎN
o
j=1

N

e−iu ju jl. s12d

The projection on the stateu jl than readsFus jd;k j uFul
=e−iu j /ÎN, which is nothing but the Bloch relation
Fus j +1d=e−iuFus jd f5,6g. Now the energy is obtained from
Eqs.s11d and s12d as

Eu = 2 − 2 cosu. s13d

For smallu the energy is given byEu<u2 which resembles
the energy spectrum of a free particle.

With this ansatz we calculate the transition amplitudes
akjstd. The stateu jl is localized at nodej and may be de-
scribed by a Wannier functionf5,6g, i.e., by inverting Eq.
s12d,

u jl =
1

ÎN
o

u

eiu juFul. s14d

Since the statesu jl span the whole accessible Hilbert space,
we have kku jl=dkj and therefore via Eq.s12d also
kFu8 uFul=du8u.

Then the transition amplitude reads

FIG. 1. Plot for a CTQW on a
circle of lengthN=21 of sad the
return probability andsbd the tran-
sition probability to go in timet
from the starting node to the op-
posite node on the circle. Time is
given in units of the inverse trans-
mission rateg−1. The results using
Eq. s7d, long dashed line, and Eq.
s16d, full circles, are compared to
the limit N→`, short dashed line.
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akjstd =
1

N
o
u,u8

kFuue−iuke−iHteiu8 juFu8l =
1

N
o

u

e−iEu te−iusk−jd.

s15d

The periodic boundary condition for a 1D lattice of sizeN
requiresFusN+1d=Fus1d, thusu=2np /N with n integer and
nP g0,Ng. Now Eq. s15d is given by

a jkstd =
e−i2t

N
o
n

ei2t coss2np/Nde−i2pnsk−jd/N. s16d

For smallu, this result is directly related to the results ob-
tained for a quantum particle in a boxf2–4g, because then we
haveEn,n2.

In the limit N→`, Eq. s16d translates to

lim
N→`

akjstd =
e−i2t

2p
E

−p

p

du e−iusk−jdei2t cosu = ik−je−i2tJk−js2td,

s17d

whereJksxd is the Bessel function of the first kindf21g. The
same result has also been obtained with a functional integral
ansatzf22g. From Eq.s17d we also see that the first maxima
of the transition probabilities are related to the maxima of the
Bessel function, since we have limN→` pkjstd=fJk−js2tdg2.
However, for an infinite lattice there is no interference due to
either backscattering at reflecting boundaries or transmission
by periodic boundaries.

For higher dimensional lattices the calculation is analo-
gous. We note that the assumption of periodic boundary con-
ditions is strictly valid only in the limit of very large lattice
sizes where the exact form of the boundary does not matter
f5,6g.

Very recently it has been found by Wójciket al. f23g, that
the return probability for a 1D generalized coined quantum
walk sGCQWd, which is a variant of a discrete quantum
walk, has the functional formpkksttd=fJ0s2tÎDdg2, wheret
andD are variables specified inf23g, which indeed is of the
same form as the return probability calculated from Eq.s17d.
We interpret this as an indication that CTQWs and GCQWs,
although not directly translatable into each other, can lead to
similar results. However, inf23g the return probability is
calculated for a particle on a very large circle such that in-
terference effects are not seen on the short time scales con-
sidered there. By looking ahead at Fig. 1, we see that, in-
deed, on short time scales this is also approximately true in
our case of the CTQW on the finite lattice. Nevertheless,
without going into further detail at this point, we note this
remarkable similarity between CTQWs and GCQWs.

For a CTQW on a 1D circular lattice we calculate the
quantum mechanical transition probabilitiesp jkstd. Figure
1sad shows the return probabilitypkkstd for a CTQW on a
circle of 21 nodes first evaluated in a straightforward way by
diagonalizing the matrixA numerically, then by using the
Bloch function ansatz described above. Both results coin-
cide. For comparison we also have computed the return
probability for the infinitely extended system, see Eq.s17d.
On small time scales all the results coincide. At later times
waves propagating on the finite lattice start to interfere; then

the results diverge and for a finite lattice one observes an
increase in the probability of being at the starting node. This
happens around the timet<N/2.

In Fig. 1sbd the probability to go from a starting node to
the farthest node on the circle, here to go from node 1 to
node 11sor 12d, is plotted. Again the calculations by the
eigenvalue method and by the Bloch function ansatz are in-
distinguishable. As before, also the probabilities for the infi-
nite and for the finite systems differ. The difference is more
pronounced because in timet<N/4 counterpropagating
waves from the starting node interfere at the opposite node.

The probabilities to go from a starting node to all other
nodes in timet on a circle of lengthN=21 is plotted in Fig.
2sleftd. sFor a CTQW on a circle the starting node is arbi-
trary.d For small times, when there is no interference, the
waves propagate freely. After a timet<N/4 the waves in-

FIG. 2. Plot of the probability for a CTQW on a circle of length
N=21 sleftd andN=20 srightd over timet to go from a starting node
to all other nodes. See Fig. 1 for units.

FIG. 3. Limiting probability distributionxkj for a CTQW on a
circle of lengthN=20 scirclesd andN=21 strianglesd.
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terfere but the pattern remains quite regular. The same holds
for N=20, but the structures are more regular; see Fig.
2srightd. This is due to the fact that the number of steps to go
form one node to another is even or odd in both directions
for the even-numbered circle, where it is even in one and odd
in the other direction for the odd-numbered circle.

Figure 3 supports this. The limiting distributionxkj has
two maxima forN=20, one at the starting node 1 and one at
the opposite node 11, reflecting the higher symmetry of the
lattice, whereas there is only one maximum forN=21 at the
starting node 1.

At this point it is instructive to look at very small circles
of N=3 and 4 nodes where the analytic results are still
handy. With Eq.s16d we find for the transition probabilities
for N=3,

pkjstd =5
5

9
+

16

9
cos3 t −

4

3
cost, k = j ,

2

9
−

8

9
cos3 t −

2

3
cost, k Þ j .6 s18d

For N=4 we have

pkjstd = 5cos4 t, k = j ,

sin4 t, k = 2j ,

sin2 t cos2 t, elsewhere,
6 s19d

wherep j jstd andp j ,2jstd are only shifted by a phase factor of
p /2 but equal in magnitude. The limiting probability distri-
butions are forN=3, x11=5/9 andx12=x13=2/9 and forN

FIG. 4. Contour plot of the probability for a CTQW on a circle of lengthN=21 sleftd andN=20 srightd over longer timest than in Fig.
2. Dark regions denote high probabilities. See Fig. 1 for units.
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=4, x11=x13=3/8 andx12=x14=1/8, andthus support the
findings for bigger lattices, e.g., Fig. 3.

The occurrence of the regular structures is reminiscent of
the so-called quantum carpetsf2–4g. These were found in the
interference pattern of a quantum particle, initially prepared
as a Gaussian wave packet, moving in a 1D box. The spread-
ing and self-interference due to reflection of the wave packet
at the walls lead to patterns in the spacetime probability dis-
tribution. Furthermore, after some time, the so-called revival
time, the whole initial wave function gets reconstructed. For
a particle in a box, theses quantum revivals aresalmostd per-
fect and the revival timeT follows from the energyEn
=snp" /Ld2/2m=n22p" /T, whereL is the width of the box
f3g.

For very long times, Fig. 4 shows a contour plot of the
probability for a CTQW on a circle of lengthN=21 sleftd and
N=20 srightd. There is obvious structure in the interference
pattern. Furthermore, there are areas on this quantum carpet
where there is a very high probability, visualized by dark
regions, to find the CTQW at its starting point. Thus, quan-
tum revivals also occur for the discrete lattice. However,
these are not perfect.

The revival timet is given byakjstd=akjs0d. Since the
transition amplitudes are given as a sum over all modesn,
see Eq.s16d, we cannot give a universal revival time which
is independent ofn. Nevertheless, from Eq.s16d we get for
each moden its revival time

tn =
rp

1 − coss2np/Nd
=

rp

2
f1 + cot2snp/Ndg, s20d

where r PN swithout any loss of generality we setr =1d.
From Eq. s20d we find thattn.tn+1 for nP g0,N/2g and

tn,tn+1 for nP gN/2 ,Ng. For certain values ofn, tn will be
of order unity, e.g., forn=N/2 we gettn=p /2. However, for
n!N, Eq. s20d yields tn=N2/2pn2;t0/n2, which is analo-
gous to the particle in the box and wheret0 is a universal
revival time. Thus, the revival timestn have large variations
in value. To make a sensible statement about at least the first
revival time, we need to compare it to the actual time needed
by the CTQW for travelling through the lattice. As men-
tioned earlier, interference effects in the return probability
p1,1std are seen after a timet<N/2. The first revival time
has to be larger than this, because there cannot be any revival
unless the wave reaches its starting node again. Our calcula-
tions suggest that the first revival time will be of ordert0.
From Fig. 4 we see that the firstsincompleted revival occurs
for N=20 at t<70.202/2p and for N=21 at t<75
.212/2p.

In conclusion we have shown that CTQWs on regular 1D
lattices show regular structures in their spacetime transition
probabilities. By employing the Bloch function ansatz we
calculated quantum mechanical transition probabilitiessas a
function of timetd between the different nodes of the lattice.
These results are practically indistinguishable from the ones
obtained by diagonalizing the transfer matrix. We note that
the results obtained via the Bloch function ansatz can be
related to recent results for GCQWs. The spacetime struc-
tures are reminiscent of quantum carpets, but have their first
revival at later times than what is found for quantum carpets.
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