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Cells use complex networks of interacting molecular components
to transfer and process information. These ‘‘computational
devices of living cells’’1 are responsible for many important
cellular processes, including cell-cycle regulation and signal
transduction. H ere we address the issue of the sensitivity of the
networks to variations in their biochemical parameters. W e
propose a mechanism for robust adaptation in simple signal
transduction networks. W e show that this mechanism applies in
particular to bacterial chemotaxis2– 7 . This is demonstrated within
a quantitative model which explains, in a unified way, many
aspects of chemotaxis, including proper responses to chemical
gradients8 – 12. The adaptation property10,13 – 16 is a consequence of
the network’s connectivity and does not require the ‘fine-tuning’
of parameters. W e argue that the key properties of biochemical
networks should be robust in order to ensure their proper
functioning.

Cellular biochemical networks are highly interconnected: a per-
turbation in reaction rates or molecular concentrations may affect
numerous cellular processes. The complexity of biochemical net-
works raises the question of the stability of their functioning. One
possibility is that to achieve an appropriate function, the reaction
rate constants and the enzymatic concentrations of a network need
to be chosen in a very precise manner, and any deviation from the
‘fine-tuned’ values will ruin the network’s performance. Another

possibility is that the key properties of biochemical networks are
robust; that is, they are relatively insensitive to the precise values of
biochemical parameters. Here we explore the issue of robustness of
one of the simplest and best-known signal transduction networks: a
biochemical network responsible for bacterial chemotaxis. Bacteria
such as Escherichia coli are able to sense (temporal) gradients of
chemical ligands in their vicinity2. The movement of a swimming
bacterium is composed of a series of ‘smooth runs’, interrupted by
events of ‘tumbling’, in which a new direction for the next run is
chosen randomly. By modifying the tumbling frequency, a bac-
terium is able to direct its motion either towards attractants or away
from repellents. Awell established feature of chemoxis is its property
of adaptation10,13– 16: the steady-state tumbling frequency in a
homogeneous ligand environment is insensitive to the value of
ligand concentration. This property allows bacteria to maintain
their sensitivity to chemical gradients over a wide range of attractant
or repellent concentrations.

The different proteins that are involved in chemotactic response
have been characterized in great detail, and much is known about
the interactions between them (Fig. 1a). In particular, the receptors
that sense chemotactic ligands are reversibly methylated. Biochem-
ical data indicate that methylation is responsible for the adaptation
property: changes in methylation of the receptor can compensate
for the effect of ligand on tumbling frequency. Theoretical models
proposed in the past assumed that the biochemical parameters are
fine-tuned to preserve the same steady-state behaviour at different
ligand concentrations17,18. W e present an alternative picture in
which adaptation is a robust property of the chemotaxis network
and does not rely on the fine-tuning of parameters.

W e have analysed a simple two-state model of the chemotaxis
network closely related to the one proposed previously2,19. The two-
state model assumes that the receptor complex has two functional
states: active and inactive. The active receptor complex shows a
kinase activity: it phosphorylates the response regulator molecules,
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Figure 1 a, The chemotaxis network. Chemotactic ligands bind to specialized

receptors (MCP) which form stable complexes (E), with the proteins CheA and

CheW. CheA is a kinase that phosphorylates the response regulator, CheY,

whose phosphorylated form (CheYp) binds to the flagellar motor and generates

tumbling. Binding of the ligand to the receptor modifies the tumbling frequency by

changing the kinase activity of CheA. The receptor can also be reversibly

methylated. Methylation enhances the kinases activity and mediates adaptation

to changes in ligand concentration. Two proteins are involved in the adaptation

process: CheR methylates the receptor, CheB demethylates it. A feedback

mechanism is achieved through the CheA-mediated phosphorylation of CheB,

which enhances its demethylation activity. b, Mechanism for robust adaptation. E

is transformed to a modified form, Em, by the enzyme R; enzyme B catalyses the

reverse modification reaction. Em is active with a probability of am(l), which

depends on the input level l. Robust adaptation is achieved when R works at

saturation and B acts only on the active form of Em. Note that the rate of reverse

modification is determined by the system’s output and does not depend directly

on the concentration of Em (vertical bar at the end of the arrow).

Figure 2 Chemotactic response and adaptation. The system activity, A, of a

model system (the reference system described in Methods) which was subject to

a series of step-like changes in the attractant concentration, is plotted as a

function of time. Attractant was repeatedly added to the system and removed

after 20min, with successive concentration steps of l of 1, 3, 5 and 7 mM. Note the

asymmetry to addition compared with removal of ligand, both in the response

magnitude and the adaptation time. The chemotactic drift velocity of this system

is presented in the inset. Inset: the different curves correspond to gradients V̄l ¼ 0,

0.01, 0.025 and 0.05 mM/mm. An average change in receptor occupancy of less

than 1% per second is sufficient to induce a mean drift velocity of the order of

microns per second.



Nature © Macmillan Publishers Ltd 1997

which then bind to the motors and induce tumbling. The receptor
complexes can be either in the active or in the inactive state,
although with probabilities that depend on both their methylation
level and ligand occupancy. The average complex activity can be
considered as the output of the network, whereas its input is the
concentration of the ligand. A quantitative description of the model
consists of a set of coupled differential equations describing inter-
actions between protein components (Box 1).

The two-state model correctly reproduces the main features of
bacterial chemotaxis. When a typical model system is subject to a
step-like change in attractant concentration, l (Fig. 2), it is able to
respond and to adapt to the imposed change. The adaptation is
nearly perfect for all ligand concentrations. The addition (removal)
of attractant causes a transient decrease (increase) in system activity,
and thus of tumbling frequency. We observe a strong asymmetry in

the response to the addition compared with the removal of ligand.
This asymmetry has been observed experimentally14. The chemo-
tactic response of the system has been measured by the average drift
velocity in the presence of a linear gradient of attractant (Fig. 2,
inset). The system is very sensitive: an average change in the receptor
occupancy of ,1% per second is enough to induce a drift velocity of
,1 micron per second.

Figure 3a illustrates the most striking result of the model: we have
found that the system shows almost perfect adaptation for a wide
range of values of the network’s biochemical parameters. Typically,
one can change simultaneously each of the rate constants several-
fold and still obtain, on average, only a few per cent deviation from
perfect adaptation. For instance, over 80 per cent of model systems,
obtained from a perfectly adaptive one by randomly changing all of
its biochemical parameters by a factor of two, still show ,15%
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Box 1 Two-state model of the bacterial chemotactic network

The main component of the two-state model2,19 is the receptor complex,

MCP þ CheA þ CheW (Fig. 1a), considered here as a single entity, E. The

complex is assumed to have two functional states—active and inactive. A

receptor complex in the active state shows a kinase activity of CheA; by

phosphorylating the response regulators, CheY, it sends a tumbling signal to

the motors. The output of the network is thus the average numberof receptors

in the active state, the system activity A. It is assumed that this quantity

determines the tumbling frequency of the bacteria. The transformation

between A and the tumbling frequency depends on the kinetics of CheY

phosphorylation and dephosphorylation, as well as on the interaction of

CheY with the motors, which are not considered explicitly in the present

model.

The receptor complexes are assumed to exist in different forms. Consider

a complex methylated on m sites (m ¼ 1; … M). Such a complex can either be

occupied or unoccupied by the ligand. We denote the concentration of these

complexes by E0
m and Eu

m, respectively. Each form of the receptor complexcan

be in the active state with a probability depending on both its methylation level

and its ligand occupancy. We assume that an occupied receptor complex has

the probability a
0
m of being in the active state; for an unoccupied receptor, this

probability is am. If l is the ligand concentration,B(R) the concentrationof CheB

(CheR), and {Eu
mB} the concentration of the Eu

mCheB complex and so on, the

model reactions can then be illustrated schematically (see figure).

The differential equations describing our model can be written in a

standard way from the figure. For instance, the kinetic equation for Eu
m is

dEu
m

dt
¼ 2 kl lE

u
m þ k

2 lE
0
mþ

1 2 dm;0

� �
2 abamEu

mB þ db Eu
mB

� �
þ kr Eu

m 2 1R
� �� �

þ

1 2 dmM

� �
2 aramEu

mR þ a9r 1 2 am

� �
Eu

mR þ db Eu
mR

� �
þ kb Eu

mþ1B
� �� �

m ¼ 1; … M
� �

The presence of am in the equation is due the fact that CheB demethylates

only the active receptors; we havealso included two different association rate

constants of CheR to the active (ar) and the inactive (a9r) receptors (see below).

djk is the Kronecker’s delta (djk ¼ 1, when j ¼ k, and is zero otherwise). Similar

equations can be written to describe kinetics of {Eu
mB}, {Eu

mR}, E0
m, {E0

mB} and

{E0
mR}, with additional parameters a

0
m defining the probabilities of E0

m to be in

the active state. For fixed am and a
0
m the biochemical parameters of this

system include nine different rate constants (kl ; k
2 l ; ar; a9r; dr; kr; ab; db; kb)

and three enzyme concentrations (total concentrations of CheR, CheB and

receptor complexes).

The present model is by no means the only two-state model of the

chemotactic network that exhibits robust adaptation and proper chemotactic

response. Rather, it is one of the simplest variants that is consistent with the

experimental data on the response and adaptation of wild-type E. coli. The

main assumptions underlying this model are as follows.

X The input to the system is the ligand concentration; rapid binding (and

unbinding) of the ligand to the receptor induces an immediate change in the

activity of the complex. For simplicity, the binding affinity is assumed to be

independent of the receptor’s activity and its degree of methylation. This

assumption can be relaxed without affecting the main conclusions of our

model.

X The methylation and demethylation reaction occur on slower timescales.

A central assumption is that CheB can only demethylate active receptors. In

addition, the demethylation rate constants do not depend explicitly either on

ligand occupancy or on the methylation of the receptor, so that all active

receptors are demethylated at the same rate. In the variant of the model

discussed here, the phosphorylation of CheB is not considered explicitly; in

molecular terms, we assume that the phosphorylated form of CheB, CheBp,

does not move freely in the cell. Rather,. a CheBp molecule can only

demethylate the same receptor that has phosphorylated it. We note, however,

that this assumption can also be readily relaxed (N.B. et al., manuscript in

preparation). Robust adaptation is maintained as long as both CheB and

CheBp demethylate only the active receptors.

X The methylating enzyme, CheR, acts both on active and inactive

receptors. Here we assume that the association rate constant for this

reaction depends only on the activity of the receptor (a9r for inactive, ar for

active), whereas the dissociation rate constant dr and the catalytic rate

constant kr are the same for all forms of the receptor. This assumption can

again be relaxed in various ways. In particular, the accumulated biochemical

data indicate that CheR works at saturation and operates at its maximal

velocity. In this case, the conclusions of ourmodel are not altered, even if dr, a9r

and ar depend on the ligand occupancy and on the methylation level21. M
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deviation from perfect adaptation (Fig. 3a, lower panel). When
varied separately, most of the rate constants may be changed by
several orders of magnitude without inducing a significant devia-
tion from perfect adaptation.

In our model we have assumed Michaelis–Menten kinetics for
simplicity. However, we have found that cooperative effects in the
enzymatic reactions can be added without destroying the robustness
of adaptation. Similarly, robust adaptation is obtained for systems
with different numbers of methylation sites. Multiple methylation
sites are thus not required for robust adaptation, but possibly are for
allowing strong initial responses for a wide range of attractant and
repellent stimuli (N.B. et al., manuscript in preparation).

The adaptation itself, as measured by its precision (Fig. 3a), is
thus a robust property of the chemotactic network. This does not
mean, however, that all the properties are equally insensitive to
variations in the network parameters. For instance, Fig. 3b shows
that the adaptation time, t, which characterizes the dynamics of
relaxation to the steady-state activity, displays substantial variations
in the altered systems. Robustness is thus a characteristic of specific
network properties and not of the network as a whole: whereas some
properties are robust, others can show sensitivity to changes in the
network parameters.

Plots similar to the ones depicted in Fig. 3 can be obtained in
quantitative experiments. A large collection of chemotactic
mutants can be analysed for variations in the biochemical rate
constants of the chemotactic network components. Alternatively,
the rate constants of the enzymes could be systematically modified
or their expression varied. At the same time, their various physio-
logical characteristics can be measured, such as steady-state
tumbling frequency, precision of adaptation, adaption time, and
so on. In this way, the predictions of the model can be quantitatively
checked.

What features of the chemotactic network make the adaptation
property so robust? We propose here a general and simple mechan-
ism for robust adaptation. Let us introduce this mechanism for one
of the simplest networks (Fig. 1b), which can be viewed either as an
‘adaptation module’, or, as a simplifying reduction of a more
complex adaptive network, such as the one presented for bacterial
chemotaxis. Consider an enzyme, E, which is sensitive to an external
signal l, such as a ligand. Each enzyme molecule is at equilibrium
between two functional states: an active state, in which it catalyses a
reaction, and an inactive state, in which it does not. The signal level l

affects the equilibrium between two functional states of the enzyme:
we suppose that a change in l causes a rapid response of the system
by shifting this equilibrium. Thus, l is the input of this signal
transduction system and the concentration of active enzymes (that
is, the system activity, A) can be considered as its output. The
enzyme E can be reversibly modified, for example by addition of
methyl or phosphate groups. The modification of E affects the
probabilities of the active and inactive states, and hence can
compensate for the effect of the ligand. In general, then,
Aðl Þ ¼ aðl ÞE þ amðl ÞEm, where Em and E are the concentrations
of the modified and unmodified enzyme, respectively, and am(l)
and a(l) are the probabilities that the modified and unmodified
enzyme is active. After an initial rapid response of the system to a
change in the input level, l, slower changes in the system activity
proceed according to the kinetics of enzyme modification.

The system is adaptive when its steady-state activity, A
st, is

independent of l. A mechanism for adaptation can be readily
obtained by assuming a fine-tuned dependence of the biochemical
parameters on the signal level, l. This kind of mechanism has been
proposed for an equivalent receptor system17,18. A mechanism for
robust adaptation, on the other hand, can be obtained when the
rates of the modification and the reverse-modification reactions
depend solely on the system activity, A, and not explicitly on the
concentrations Em and E. This system can be viewed as a feed-back
system, in which the output A determines the rates of modification
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Figure 3 Robustness of adaptation. a, The precision of adaptation, P, and b,

adaptation time, t, to a step-like addition of saturating amount of attractant are

plotted as a function of the total parameter variation k, for an ensemble of model

systems (see Methods). The time evolution of the system activity A is depicted in

the inset for the reference system (solid curve) and for an altered model system,

obtained by randomly increasing or decreasing by a factor of two all biochemical

parameters of the reference system (dashed curve). Each point in the top graphs

in a and b corresponds to a different altered system, out of the total number of

6,157. The reference system is denoted by a black diamond; the particular altered

system from the inset is denoted by an open square. Bottom graphs: a, the

probability that P is larger than 0.95; b, the probability that t deviates from the

adaptation time of the reference system (,10min) by less than 5% (solid curve)

and by a factor 5 (dashed curve). c, ‘Individuality’ in the chemotaxis model. The

inverse steady-state activity A
2 1 is plotted as a function of the adaptation time, t.

Each point represents an altered system, obtained from the reference system

(arrow) by varying the concentration of CheR (between 100 to 300 molecules per

cell).
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reactions, which in turn determine the slow changes in A. With such
activity-dependent kinetics, the value of the steady-state activity,
A

st, is independent of the ligand level, therefore the system is
adaptive. Activity-dependent kinetics can be achieved in a variety
of ways. As a simple example, consider a system for which only the
modified enzyme can be active (a ¼ 0); the enzyme R, which
catalyses the modification reaction E → Em, works at saturation,
and the enzyme B, which catalyses the reverse-modification reaction
Em → E, can only bind to active enzymes. In this case, the modifica-
tion rate is constant at all times, whereas the reverse modification
rate is a simple function of the activity

dEm

dt
¼ V

R
max 2 V

B
max

A

Kb þ A
ð1Þ

where V
B
max and V

B
max are the maximal velocities of the modification

and the reverse-modification reactions, respectively, and Kb is
the Michaelis constant for the reverse modification reaction; we
have assumed V

R
max , V

B
max. For simplicity, we have assumed

that the enzymes follow Michaelis–Menten (quasi-steady-state)
kinetics. The functioning of the feedback can now be analysed: the
system activity is continuously compared to a reference stead-state
value

A
st

¼ Kb

V
R
max

VB
max 2 V R

max

:

For A , A
st, the amount of modification increases, leading to an

increase in A; for A . A
st, the modification decreases, leading to a

decrease in A. In this way, the system always returns to its steady-
state value of activity, exhibiting adaptation. Moreover, with these
activity-dependent kinetics, the adaptation properties is insensitive
to the values of system parameters (such as enzyme concentrations),
so adaptation is robust.

Note, however, that the steady-state activity itself, which is not a
robust property of the network, depends on the enzyme concentra-
tions. Thus, the mechanism presented here still provides a way to
control the system activity on long timescales, for example by
changing the expression level of the modifying enzymes while
preserving adaptation itself on shorter timescales.

A quantitative analysis demonstrates that, on methylation time-
scales, the kinetics of the two-state model of chemotaxis can, for a
wide range of parameters, be mathematically ‘reduced’ to the simple
activity-dependent kinetics shown in equation (1) (N.B. et al.,
manuscript in preparation). Robust adaptation thus follows natu-
rally as consequence of the simple mechanism described above. The
deviations from perfect adaptation (Fig. 3) are in fact connected to
departures from the assumptions underlying this mechanism (such
as V

R
max , V

B
max). This simple mechanism suggests that the various

detailed assumptions about the system’s biochemistry can be easily
altered, provided that the activity-dependent kinetics of receptor
modifications is preserved. All variants of the model obtained in this
way still exhibit robust adaptation (N.B. et al., manuscript in
preparation).

Two main observations argue in favour of a robust, rather than a
fine-tuned, adaptation mechanism for chemotaxis. First, the adap-
tation property is observed in a large variety of chemotactic
bacterial populations. It is easier to imagine how a robust mechan-
ism allows bacteria to tolerate genetic polymorphism, which may
change the network’s biochemical parameters. In addition, in
genetically identical bacteria some features of the chemotactic
response, such as the values of adaptation time and of steady-
state tumbling frequency, vary significantly from one bacterium to
another, while the adaptation property itself is preserved20. This
‘individuality’ can be readily explained in the framework of the
present model. The concentrations of some cellular proteins, for
example the methylating enzyme CheR, are very low2, and thus may

be subject to considerable stochastic variations. In consequence,
both adaptation time and steady-state tumbling frequency, which
are not robust properties of the network, should vary significantly.
Moreover, the present model predicts that both these quantities
should show a strong correlation in their variation (Fig. 3c), which
has been observed experimentally20.

How general are the results presented here? In addition to
explaining response and adaptation in chemotaxis, the present
model accounts, in a unifying way, for other taxis behaviour of
bacteria mediated by the same network. Indeed, as the network’s
dynamics is solely determined by the system activity, the system will
respond and adapt to any environmental change that affects this
activity. Mechanisms of robust adaptation similar to the one
introduced above could apply to a wider class of signal transduction
networks. Robustness may be a common feature of many key
cellular properties and could be crucial for the reliable performance
of many biochemical networks. Robust properties of a network will
be preserved even if its components are modified through random
mutations, or are produced in modified quantities. Systems whose
key properties are robust could have an important advantage in
having a larger parameter space in which to evolve and to adjust to
environmental changes.

The degree of robustness in many biochemical networks can be
quantitatively investigated. This can be achieved by characterizing a
behavioural, a physical or biochemical property while varying
systematically the expression level and the rate constants of the
network’s components.

The complexity of biological systems introduce several concep-
tual and practical difficulties, however. Among the most important
is the difficulty of isolating smaller subsystems that could be
analysed separately. For instance, in the present analysis, we have
neglected the existence of different types of receptors and any
crosstalk between them. We have also disregarded the interactions
between the chemotaxis network and other components of the cell.
In addition, the complexity and stochastic variability of biological
networks may preclude their complete molecular description. Rate
constants and concentrations of many enzymes can only be mea-
sured outside their natural cellular environment and many other
network parameters remain unknown. Robustness may provide a
way out of both these quandaries: robust properties do not depend
on the exact values of the network’s biochemical parameters and
should be relatively insensitive to the influence of the other
subsystems. It should then be possible to extract some of the
principles underlying cell function without a full knowledge of
the molecular detail. M
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods

Numerical integration of the kinetics equations defining the two-state model

(see Box 1) was used to investigate its properties. Computer programs in Cþþ

language were executed on an SGI (R4000) workstation using a standard

routine (lsode from LLNL). Typical CPU time for finding a numerical solution

of a model system is of the order of 1 min. A particular model system was

obtained by assigning values to the rate constants and the total enzyme

concentrations. Most of our results were obtained for a reference system

defined by the following biochemical parameters: the equilibrium binding

constant of ligand to receptor is 1 mM and the time constant for the reaction is

1 ms (k1 ¼ 1 ms 2 1 mM 2 1, k 2 1 ¼ 1 ms2 1). CheR methylates both active and

inactive receptors at the same rate, with a Michaelis constant of 1.25 mM, and a

time constant of 10 s (ar ¼ a9r ¼ 80 s 2 1 mM 2 1, dr ¼ 100 s 2 1, kr ¼ 0:1 2 1),

CheB (CheBp) demethylates only active receptors with a Michaelis constant

of 1.25 mM and a time constant of 10 s (ab ¼ 800 s 2 1 mM 2 1, db ¼ 1;000 s 2 1,

kb ¼ 0:1 s 2 1). The number of enzyme molecules per cell are: 10,000 receptor

complexes, 2,000 CheB and 200 CheR (cell volume of 1:4 3 102 15l). The

probabilities that a receptor with m ¼ 1; …4 methylated sites is in its active

state are: a1 ¼ 0:1, a2 ¼ 0:5, a3 ¼ 0:75, a4 ¼ 1 if it is unoccupied, and a0
1 ¼ 0,

a0
2 ¼ 0:1, a0

3 ¼ 0:5, a0
4 ¼ 1 if it is occupied.
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Response and adaptation. In a typical assay, a model system was subject to a

step-like change in attractant concentration. A system in steady-state,

characterized by the system activity Ast, was perturbed by an addition or

removal of attractant. As a result, the system activity changed abruptly and then

relaxed, with the characteristic adaptation time, t, to a new steady-state value

Ast⋅p. Here p measures the precision of adaptation; perfect adaptation corre-

sponds to p ¼ 1 (see inset in Fig. 3a).

Robustness of adaptation. The sensitivity of adaptation precision and

adaptation time to variations in the biochemical constants defining a model

system was investigated. An ensemble of altered systems was obtained from the

reference system by random modifications of its reaction rate constants and

enzymatic concentrations, k0
n. Each alternation of the reference system was

characterized by the total parameter variation, k, which is defined as:

log ðkÞ ¼ S
L
n¼1 j log ðkn=k

0
nÞ j , where kn are the biochemical parameters of the

altered system. The altered system was subject to a step-like addition of

saturating concentrations of attractant (1 mM), and both the precision of

adaptation, p, and the adaptation time, t, were measured. The assay was

repeated for various reference model systems, with different values of bio-

chemical parameters and of am, and different variants of the model. The

robustness of adaptation (Fig. 3) is independent of these choices.

Chemotactic drift velocity. The behaviour of a model system in the presence

of a linear gradient of attractant, =l, was simulated. The movement of the

system was assumed to be composed of a series of smooth runs at a constant

velocity of 20 mm s 2 1, interrupted by tumbling events. The tumbling frequency

was taken to be a sigmoidal function of the system activity (Hill coefficient,

q ¼ 2. Different values of q lead to the same qualitative picture; the sensitivity

increases with q). The trajectories were also subject to a rotation diffusion, with

D ¼ 0:125 rad2 s 2 1 (ref. 9). Attractant concentration was increasing along the x

direction, (with l ¼ 1 mM at x ¼ 0). The chemotactic drift velocity was

estimated by measuring the average x position of a hundred identical simulated

systems as a function of time.
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Cytokines are secreted proteins that regulate important cellular
responses such as proliferation and differentiation1. Key events in
cytokine signal transduction are well defined: cytokines induce
receptor aggregation, leading to activation of members of the JAK
family of cytoplasmic tyrosine kinases. In turn, members of
the STAT family of transcription factors are phosphorylated,
dimerize and increase the transcription of genes with STAT
recognition sites in their promoters1–4. Less is known of how
cytokine signal transduction is switched off. We have cloned a
complementary DNA encoding a protein SOCS-1, containing an
SH2-domain, by its ability to inhibit the macrophage differen-
tiation of M1 cells in response to interleukin-6. Expression of
SOCS-1 inhibited both interleukin-6-induced receptor phos-
phorylation and STAT activation. We have also cloned two rela-
tives of SOCS-1, named SOCS-2 and SOCS-3, which together with
the previously described CIS (ref. 5) form a new family of
proteins. Transcription of all four SOCS genes is increased rapidly
in response to interleukin-6, in vitro and in vivo, suggesting they
may act in a classic negative feedback loop to regulate cytokine
signal transduction.

To identify cDNAs encoding proteins capable of suppressing
cytokine signal transduction, we used an expression cloning
approach. The strategy used the murine monocytic leukaemic M1
cell line that differentiates into mature macrophages and ceases
proliferation in response to various cytokines, including interleu-
kin-6 (IL-6), and in response to the steroid, dexamethasone6,7.
Parental M1 cells were infected with the RUFneo retrovirus, into
which a library of cDNAs from the factor-dependent haemopoietic
cell line FDC-P1 had been inserted8. Retrovirally infected M1 cells
that were unresponsive to IL-6 were selected in semi-solid agar
culture by their ability to generate compact colonies in the presence
of IL-6 and geneticin. One stable IL-6-unresponsive clone, 4A2, was
obtained after examining 104 infected cells (Fig. 1). A 1.4 kilobase
pair (kbp) cDNA insert, which we have named suppressor of
cytokine signalling-1, or SOCS-1, was recovered by polymerase
chain reaction (PCR) from the retrovirus that had integrated into
genomic DNA of 4A2 cells. The SOCS-1 PCR product was used to

Figure 1 Phenotype of IL-6 unresponsive M1 cell clone, 4A2. Colonies of parental

M1 cells (left panel) and clone 4A2 (right panel) cultured in semi-solid agar for 7

days in saline or 100 ngml2 1 IL-6.


