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Abstract

Cellular biochemical networks have to function in a noisy environment using imperfect com-
ponents. Especially networks involved in gene regulation or signal transduction allow only for
small output tolerances and the underlying network structures can be expected to have evolved
for inherent robustness against perturbations [1]. Here, we combine theoretical and experimental
analysis to investigate an optimal design for the signalling network of bacterial chemotaxis, one
of the most thoroughly studied signalling networks in biology. We experimentally identify inter-
cellular variations in expression levels of chemotaxis proteins as the main source of perturbations
and use computer simulations to quantify the robustness of several hypothetical chemotaxis path-
way topologies to such gene expression noise. We demonstrate that the experimentally established
topology of the chemotaxis network in FEscherichia coli is one of the smallest sufficiently robust
structures, allowing accurate chemotactic response for almost all individuals within a population.
Our results suggest that this pathway has evolved to show an optimal chemotactic performance
while minimising the cost of resources associated with high levels of protein expression. Moreover,
the underlying topological design principles compensating for intercellular variations seem to be

universal among all known or predicted bacterial chemosensory systems [2].
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Errors in signal transduction can lead to wrong development and behavioural decisions,
and result in growth impairment or, in multicellular organisms, to cancer [1]. Therefore
one expects a strong selective pressure towards networks showing intrinsic robustness
against the various sources of inter- and intra-cellular perturbations, such as fluctuations
in protein concentration. Due to limitations in our quantitative understanding of most
signalling networks, only few detailed studies of network robustness are currently available
[3-6]. Ome of the best-studied simple signalling systems is bacterial chemotaxis, which
allows bacteria to navigate in gradients of chemical attractants or repellents. Here,
information about ambient changes in chemo-ligand are transmitted from receptors on
the cell surface to the flagellar motors by a stimulation-dependent phosphorylation of a
diffusible response regulator protein CheY. Most biochemical rate constants and average
concentrations of chemotaxis proteins under standard conditions have been determined [7],
making chemotaxis an excellent system for a quantitative analysis. Another advantage
of the chemotaxis pathway is its relative isolation from other cellular processes, such as
metabolism, which allows treating the pathway as an independent module [8]. In the follow-

ing we analyse design principles of the chemotaxis pathway from an evolutionary perspective.

Chemotaxis pathways can sense relative changes of attractant concentrations as small
as two percent over a dynamic concentration range of five orders of magnitude [9]. Pre-
vious quantitative analysis showed that such a large dynamic range can be explained by
a combination of allosteric signal amplification by receptor clusters [10, 11] and a precise
adaptation mechanism ([3, 12-14]). Precise adaptation is the ability to return to the same
level of pathway activity under conditions of continuous stimulation. Failure of this sys-
tems property would lead to permanent swimming or tumbling behaviour and thus to the
loss of chemotactic ability. In F. coli, sudden addition of attractant leads to an almost in-
stantaneous decline in receptor activity followed by the slow adaptation process. The most
simple topology of a chemotactic signalling network which allows for precise adaptation is a
two-state model proposed by Barkai & Leibler (BL model) [3]. Their model is schematically
drawn in Fig. la. The core property of the model is that receptors sensing chemo-ligands
can be reversibly methylated. A higher level of methylation increases the probability of a
receptor to switch to an active state. Almost perfect adaptation results from a constantly

working methyltransferase (CheR) balanced by a methylesterase (CheB), which works only



on active receptors [15]. Active receptors enhance autophosphorylation activity of CheA,
which in turn phosphorylates CheY.

The BL model can readily explain the robustness of precise adaptation against a wide
range of variations in kinetic parameters and protein concentrations as a consequence of inte-
gral feedback control at the methylation level [3]. However, the quantity under evolutionary
selection is the stationary level of pathway activity, e.g. the concentration of phosphorylated
CheY, which is not robust to such large variations [4]. It is possible to construct other but
larger adaptive topologies having equal input-output characteristic, Figs. 1b-1d. The larger
topologies are not necessarily more robust against perturbations as there exists a trade-off
between the gain in degrees of freedom to design better networks and the increasing amount
of components, which are subject to intercellular variations.

There are multiple sources of such variations, both intracellular and intercellular. The
intracellular variations can arise from stochastic fluctuations of local protein concentrations
within the cell. Although it has been found experimentally that low concentration of CheR
induce fluctuations in the network output on a 100s time scale, they are most likely too
short to show a significant negative effect on the fitness [16]. Spatial variations effecting co-
localisation of reaction partners scale with the size distribution of the individuals and should
therefore be moderate [17]. Thus, the dominating source of perturbations in a bacterial cell
population is intercellular variation of protein concentrations arising from protein synthesis
and decay [18]. Such variations can persist on the generation time scale since there is
no evidence for an active degradation of chemotaxis proteins under standard growth and
assay conditions and the decrease in protein levels mainly results from dilution during cell
division. Robustness against variations in protein concentrations should therefore be subject
to evolutionary selection.

To measure experimentally the amplitude of such intercellular variations in the levels of
chemotaxis proteins, we replaced a native cheY gene in E. coli with cheY fused to a yellow
fluorescent protein (cheY-eyfp) as a translational reporter. The reporter construct is thus
expressed from the native promoter as part of polycistronic mRNA of the meche operon
that also encodes Tar and Tap chemoreceptors, and the cytosolic proteins CheR, CheB,
CheY, and CheZ. The proteins CheA and CheW are expressed as part of another, the
mocha, operon. Expression of both chemotaxis operons and that of another major receptor

Tsr is negatively controlled by an anti-sigma factor FlgM [19, 20]. The protein levels in



the population (Fig. 2a) show large intercellular variation with an apparently asymmetric
distribution (see Ref. [21]). The gene expression noise, n = o/n, where o is the standard
deviation and n is the mean expression, depends on the level of gene transcription, as
shown by deleting the upstream transcription inhibitor, the anti-sigma factor FlgM (Fig.
2a). Such decrease in the gene expression noise with the level of transcription appears to
be general, since it was also observed for several artificial promoters (see Supplementary
Information). Recently, model-based analysis showed that transcription should dominate
gene expression noise between proteins when expressed from the same mRNA transcript
[22, 23]. We confirmed this conclusion by comparing the variation in the levels of CheY and
CheZ expressed as fusions to yellow and cyan fluorescent proteins, YFP and CFP, from the
same promoter in the same order as they are positioned on the chromosome and under their
native ribosome-binding sequences. There is a strong co-variation in the expression levels of
both, defined as extrinsic noise 7;, which arises mainly from fluctuations in transcriptional
activity, and only a moderate independent variation, defined as intrinsic noise 7;,, as a
consequence of stochastic effects in translation (Ref. [18] and Fig. 2b). Intrinsic and extrinsic
noise are related to the total gene expression noise by n? = n2,+n2,. Proteins expressed from
two different chemotaxis operons, mocha and meche, which belong to the same regulon, also
show significant co-variation in gene expression noise (Fig. 2b, inset) but with a 25 percent
increase of intrinsic noise in comparison with proteins expressed from the same operon
(Fig. 2b, main panel).

We further experimentally determined the effect of co-variation in the levels of all sig-
nalling proteins on chemotactic behaviour (Fig. 3). Concerted overexpression of all proteins
up to 6.6-fold above the native level had little effect on the chemotaxis efficiency, as measured
by a chemotaxis-driven spreading of bacteria in an attractant gradient created by nutrient
depletion in soft agar (swarm assay). Thus, CheY-P concentration in the overexpressing cells
must be in the working range of a flagellar motor (see below), and cell swimming pattern
was indeed similar to that of the wild type (data not shown). In addition, we used an in-vivo
assay based on fluorescence resonance energy transfer (FRET) [9] to show that the kinase
activity is elevated 2.1-fold upon a 6.6-fold overexpression of all chemotaxis proteins except
for CheY and CheZ. The assay measures the intracellular concentration of the CheYp-CheZ
complex, for CheY and CheZ expressed as fusions to yellow and cyan fluorescent proteins,

YFP and CFP, respectively (see Methods). Relying on these experimental data, we anal-



ysed mathematically the robustness of the four network topologies drawn in Fig. 1 under
conditions of natural perturbations.

In adapted cells, the level of CheYp can vary only about one third from its optimal value,
since outside this concentration regime the cell either tumbles or swims continuously and
cannot properly respond to stimuli [24]. The chemotatic efficiency of a population therefore
depends on the fraction of bacteria whose CheYp levels are within these limits. In the
computer simulations (see Methods), we used the experimentally determined gene expression
noise (Fig. 2) as an estimate for the minimum intercellular variations for the proteins encoded
by the meche operon. We tested the different hypothetical network topologies, shown in
Fig. 1, for their ability to reproduce the chemotaxis efficiency from swarming experiments
for concerted variations of mean expression levels, Fig. 3. The E. coli topology (Fig. 1c)
reproduces accurately the experimental data, whereas simpler topologies (e.g. Fig. 1a) fail
to match the data. To further quantify the robustness of the different network topologies, we
calculated the fraction of bacteria showing chemotactic response for different strength of gene
expression noise (Fig. 4). The topologies Fig. 1c and Fig. 1d allow for the highest fraction
of cells in the population to respond accurately to changes in chemo-ligand concentrations.
As we have not included all sources of intercellular variations, these results can be seen as
an upper bound of the chemotactic efficiency for a population. The topologies Fig. 1b, 1c,
and 1d are sufficiently robust to compensate for strong transcriptional noise (Fig. 4a) but
tolerate only a moderate increase in intrinsic noise (Fig. 4b).

There are two key features accounting for the higher robustness of the topologies shown
in Fig. 1c, 1d. First, robustness against extrinsic noise requires a balance of phosphatase
and kinase reactions and similar requirements for the methylation process, as shown by
mathematical analysis in Box 1. The conditions for a robust adaptive chemotaxis pathway
is that CheYp demands a phosphatase (CheZ) while CheBp must not have one. Also the
methyltransferase, CheR, has to work at saturation. But from our theoretical analysis and
swarming experiments we can see that this kind of robustness is only valid for concentrations
larger than the wild-type level (Fig. 3a). The strong decrease in the number of chemotactic
bacteria at lower expression levels (Fig. 3a inset) arises because the total CheY concentration
approaches the optimal CheYp value (midpoint of the motor response curve) and thus
violates the homogeneity condition as explained in Box 1. Consequently, the bacterium

switches to permanent swimming behaviour and cannot show a chemotactic response. The



increase in chemotatic performance of the topologies Fig. 1b and 1¢ with the mean expression
level can be explained by an accompanying decline of the gene expression noise (Fig. 2a, and
Ref. [18]) and a significantly higher concentration of CheY than the adapted level CheYp.
The location of the wild-type concentration as shown in Fig. 3a seems to reflect a selective
pressure towards overall low protein concentrations. Such pressure can be explained by a
negative effect of high protein expression on cell growth, and the growth rate of figM strain
in liquid culture was indeed only 0.83 + 0.03 of the wild type.

The second topological feature leading to higher swarming efficiency is the CheB phospho-
rylation resulting in an additional negative feedback loop (Fig. 1¢, 1d). As shown in Box 2,
this second feedback loop compensates partially for deviations from the optimal CheYp
level, e.g. due to intrinsic noise, without changing the input-output characteristics. The
two design principles described above increase the robustness of the network (Fig. lc, 1d)
against intercellular noise and thus lead to an on average higher fitness of the individuals.
Moreover, the essential features for these design principles seem to be present among all
predicted pathway topologies of bacterial chemotaxis which employ receptor methylation
for adaption [2]. In particular, the CheB phosphorylation feedback is universal in all bacte-
ria with known chemotaxis systems and although many bacteria lack CheZ, the function of
CheY phophatase is taken over by another protein of by kinase itself.

To complete our picture for the components involved in the chemotaxis pathway, it can
be further shown for our model that: (i) a methyltransferase (CheR) has to exist, because
auto-methylation of inactive receptors violates robustness against extrinsic noise (see Box 1
and Supplementary Information) although it satisfies the conditions for precise adaptation
[15], (ii) a negative feedback loop, resulting from inactivation of CheR by phophotransfer
from CheA, shows only about half the efficiency for noise compensation of a feedback via
CheB phosphorylation as a consequence of CheR working at saturation and (iii) additional
feedback loops , as introduced in Fig. 1d by dashed lines, do not give significant improvement,
of the chemotaxis efficiency (Fig. 4).

Considering their short generation time and strong competition for the available nutrients
in their natural environments, bacteria are one of the best systems to analyse optimal
design from an evolutionary perspective [14]. Reflecting strong selection, the chemotaxis
pathway in FE. coli appears to be optimised for high sensitivity, fast response, and perfect

adaptation [12-14]. Therefore, one expects also the network structure to be the outcome of



an evolutionary optimisation process in order to increase chemotatic efficiency. And indeed,
as shown in this work, the experimentally established design of the chemotaxis network
in E. coli is a minimal topology providing high robustness to physiological perturbations.
This network design can compensate for strong co-variations in gene expression but the
negative effect of uncorrelated variations on the chemotaxis efficiency can only be attenuated.
Thus, one reason for the organisation of bacterial genes into operons and regulons might
be to minimise these uncorrelated variations in gene expression [23]. Similar correlations in
gene expression noise, as shown in Fig. 2a, have been recently found also in eukaryotes
for genes under identical control [25, 26]. We can therefore expect that analog design
principles, compensating for intercellular variations, will apply to all signalling networks
and gene regulation systems whenever precise regulation of an output signal to a given level

is demanded.



Box 1. Robustness against Variations in Transcriptional Activity

A general deterministic description for the concentrations of the N different phosphory-
lation and methylation states y(t) = {y1(t), ..., yn(t)} of a signalling pathway are given by

the equations
Oyi(t) = Fi(y(t)|x") (1)

(see Supplementary Information for details). The sum over different states, {y;}x, of the
protein with index k is connected to its total concentration by ) (v yi(t) = zT. For the
stationary solution, F;(y(¢)|x”) = 0, to be invariant against co-varying total protein concen-
trations, e.g. due to a A-fold change in transcriptional activity x* = {z](¢),...,z3,(t)} —
{\xT(t),..., \xT,(t)} of the M chemotaxis proteins, we have to demand homogeneity of F'
with respect to x7,

Fy(y()[Ax") = N F(y(t) x") (2)

with pu; = {1,2,..}. For the equations corresponding to the topologies Fig. 1a the homo-
geneity condition can not be satisfied. For topologies Fig. 1b, 1c, 1d we have the case
Fi(y(t)|MxT) ~ AF;(y(t)|x") for A > 1 and therefore these topologies are invariant against
changes in transcriptional activity of signalling proteins at expression levels higher than the
wild type. This finding is confirmed by an over-expression experiment as shown in Fig. 3.
Because the functions F; are linear in A, changes in transcriptional activity correspond to
a rescaling of time ¢ — At. As a result, adaptation times do not change significantly with
increasing A, because the resulting faster reaction rates get partially compensated by the
increased amount of proteins which have to be activated or deactivated.

As shown in the Supplementary Information, the topological consequences of invariance
in A for the chemotaxis pathway are: (i) the methyltransferase protein, CheR, has to work
at saturation, (ii) a phosphatase for CheYp must exist, and (iii) if the methylesterase is
active in phosphorylated form (CheBp), as it is the case for all known bacterial chemotaxis
systems [2], it must not have a phosphatase. Other necessary conditions are to choose the
kinetic constants for the phophotransfer such that the concentrations of CheAp and CheYp
are significantly smaller than their inactive forms. Violation of latter condition leads, e.g.
to the decline of chemotatic efficiency for concentrations of CheY below the wild type level

(Fig. 3a inset).






Box 2. Error Reduction Mechanisms

Errors in the output signal arising from independent variations of protein levels (intrin-
sic noise) and deviations from the optimal rate constants can be partially compensated by
additional negative feedback loops (Fig. 1). In the following, we focus on the gain in ro-
bustness due to activation of the methylesterase, CheB, by phosphotransfer from CheA.
To illustrate the point we simplify the E. coli chemotaxis topology (Fig. 1c) such that any
receptor has only one methylation site and the activity of methylated receptors depend on
the ambient chemo-ligand concentration. Non-methylated receptors remain inactive. Using

Michaelis-Menten kinetics, the steady state equation for the methylation process reads

Ta

0Ty = krR — kgBp ————— =
t4 M R BpKB+TA

0, (3)

with kr and kp the associated rate constants and Kp the Michaelis-Menten constant for
binding of CheBp to the receptors complex (see Ref. [3]). The concentrations of methylated
and active receptors are denoted by T, and Ty, respectively. For the topologies Fig. 1c, 1d
the methylesterase, Bp = Bp(A), is active only in phosphorylated form and thus depends
on the concentration of the phophodonor, CheAp, which is part of the receptor complex.
We have also assumed that the methyltransferase, R = [CheR], works at saturation and
only active receptors can be demethylated. Similar steady state equations can be given for
the phosphorylated protein concentrations Bp = [CheBp], Yp = [CheYp]. The stationary
equation for Ap = [CheAp] is given by

kaTy (AT — Ap) —ky Ap(YT —Yp) =0 (4)

with Yp = ky ApY™ /(ky Ap + Z). The superscript T indicates total protein concentrations
and AT, as part of the receptor complex, is set to 77. In above equation we neglected the
small contribution of the phosphoacceptor CheB as kyYT > ki, BT [9], with ky and k/; the
rates of phosphate transfer from CheAp to CheY and CheB, respectively. As Ap and R
are linked through Eqs. (3) and (4), a small increase in the amount of methyltransferase,

R + AR, results in a change of phosphorylated receptors given by

oBp]~!
AAp = |:Ol + 0 %:| ~vAR (5)

To arrive at Eq. (5) we have performed a linear expansion around fixed values for the

remaining protein concentrations. The linear expansion coefficients «, 3 can be shown

10



to have equal sign (see supplement). The derivative 0Bp/0Ap > 0 manifests the higher
robustness against perturbations of the network topologies Fig. 1c, 1d. This contribution
increases the amount of methylesterase, CheBp, whenever the activity of the receptor
is rising and thus partially compensates with a stronger methyltransferase. This term
is absent in topologies Fig. 1la and 1b, as here CheB is not phophorylated and thus
0Bp/0Ap = 0. Fluctuations in protein levels of CheB, CheY and CheZ are compensated
for in an equivalent way (see Supplementary Information). Variations in the levels
of receptor proteins and CheA are not critical for all topologies. This is because the
concentration of CheAp depends only on the number of active receptors which is precisely
regulated by the adaptation mechanism [27]. From this perspective it is not surprising to
find all cytosolic proteins located on the same operon in order to minimise intrinsic noise

(see Fig. 2b) whereas proteins of the receptor-kinase complex are placed on different operons.
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Methods

Bacterial strains and plasmids. All strains used in this study were derived from a
wild-type chemotaxis strain RP437 using pAMPts homologous recombination system of
allele exchange, described before [28]. Strain VS162 carries a che Y-eyfp fusion construct in
place of a cheY gene on the chromosome and strain LL6 carries cheY-eyfp and cheA-ecfp
fusion constructs in place of cheY and cheA genes on the chromosome. Strains VS102
(flgM) and LL1 (cheY-eyfp flgM) carry in-frame deletions of an anti-sigma factor FlgM
that controls the expression of all chemotaxis and flagellar (class III) genes. Plasmid
pLL16 Amp"” encodes FlgM expressed under control of an isopropyl (3-D-thiogalactoside
(IPTG)-inducible promoter pTrc. Plasmid pVS88 encodes CheY-YFP and CheZ-CFP
fusion proteins transcribed as one polycistronic mRNA form pTrc promoter [29]. For the
FRET experiments, pVS88 was transformed in VS104 (cheY cheZ) or LL4 (cheY cheZ
flgM) strain and expression was induced by 50uM IPTG. For the co-expression experiments,
pVS88 was transformed in RP437 and expression was induced by varying amounts of IPTG.
The level of CheY-YFP expression from a native promoter (VS162) was closely matched by

the expression in absence of IPTG.

Growth conditions. All strains were grown under standard chemotaxis conditions at
34°C in tryptone broth (TB) as described before [28, 29] in presence of varying amounts of
IPTG. Swarm assays were performed at 34°C on TB plates supplemented with 0.3% agar
(Applichem) and indicated concentrations of IPTG.

Quantification of gene expression. Expression of fluorescent reporter proteins
in individual cells was quantified using flow cytometry on a FACScan (BD Biosciences)
equipped with a 488 nm argon laser, or fluorescence imaging on an Axiovert 200 fluorescence
microscope equipped with an ORCA AG CCD camera (Hamamatsu). FACScan data were
analysed using CellQuestTM Pro 4.0.1 software. Imaging data were analysed using ImageJ
software (Wayne Rasband, NIH) to quantify fluorescence of the entire cell. When tested on

the same population, both methods gave essentially identical results.

FRET measurements. FRET assay measures intracellular concentration of the
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CheYp-CheZ complex as a reporter of kinase activity [12]. CheY and CheZ were expressed
as fusions to yellow and cyan fluorescent proteins, YFP and CFP, respectively, and
steady-state level of the complex was derived from changes in CFP and YFP fluorescence
upon stimulation with a saturating level (100uM) of attractant a-methyl-DIL-aspartate.
FRET measurements were performed as described before [9, 29] on a Zeiss Axiovert 200

microscope using a 75 Watt super-quiet Xe-lamp (Hamamatsu) for illumination.

Description of the mathematical model. All simulation where performed using
Matlab from the The MathWorks group. For our simulations we assumed a two-state model
for the receptor complex as proposed in Ref. [3]. The response of the system to chemo-ligand
is described by Michaelis-Menten kinetics, as in Ref. [30]. Response times and amplitudes of
CheYp to a sudden change in chemo-ligand are estimated from experiments and determine
already the kinetic constants for phosphorylation and dephosphorylation of CheY, assuming
an adapted level of one third of the total concentration [4]. The probability of a receptor
complex to switch to an active or inactive state for a given methylation level is taken from
in vivo response measurements to chemo-attractant [9]. The protein concentrations for the
individuals of a population are generated from a random process which reproduces the
experimentally found gene expression noise shown in Fig. 2. The average concentrations
of the chemotaxis proteins are taken from Ref. [7] for the strain RP437 assuming a cell
volume of 1.4fl. To allow for comparison of the different network topologies, we adjust
the kinetic parameters of the methylation process to show minimal variation from the
optimal response behaviour under the experimentally determined gene expression noise.

A detailed description of the mathematical model is given in the Supplementary Information.
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Figure 1:

Four possible network topologies of bacterial chemotaxis showing precise adaptation within
the experimentally found range of ligand concentrations. Links between proteins indicate
activations (arrows) or repressions (bar-ends). Enzymatic reactions are indicated by
arrows pointing on lines. The receptor can either be in an active state (red) or inactive
state (white). The proteins invoved are denoted by A = CheA, R = CheR, B = CheB,
Y = CheY and Z = CheZ, with their corresponding phophorylated forms Ap = CheAp,
Bp = CheBp, and Yp = CheYp. The methylesterase (CheB) works only on active
receptors which results in an integral feedback control. The response regulator CheY is
activated by phosphor-transfer from CheAp. a, minimal model as proposed by Barkai &
Leibler as explained in the main text. b, same as model a but with a phosphatase CheZ
substituting auto-dephosphorylation of CheYp in topology a. c, same as model b but only
the phophorylated form of CheB can build a complex with active receptors. d, same as
topology ¢ with alternative feedback loops drawn as dashed line. The signalling networks a
and b are hypothetical while c and d represent essentially all known and proposed network

topologies for bacterial chemotaxis.

Figure 2:

Gene expression noise of the chemotaxis proteins CheY, CheZ and CheA. a, FACS
measurements of intercellular variations in the level of CheY, expressed as a YFP fusion
from the native chromosomal position. Here, the distribution of wild type cells (red line)
is characterised by mean n = 1 and the standard deviation ¢ = 0.67. For the figM
mutant (black line), where the levels of all chemotaxis proteins are upregulated, we have
mean nry = 6.66 and standard deviation o = 3.17. The gene expression noise of the
FlgM mutant, or/np = 0.47 is thus smaller as the corresponding value for the wild type,
o/n = 0.67. Inset: data as in the main panel but normalised to same maximum intensity
and with YFP fluorescence displayed on logarithmic scale to illustrate that gene expression
noise follows approximately a log-normal distribution. b, Correlation of the expression
of CheY-YFP and CheZ-CFP from a single pTrc promoter in the absence of IPTG and
under control of native ribosome-binding sites. Expression levels were determined using
fluorescence imaging as described in Methods; values for intrinsic and extrinsic noise are

given by 7y, = 0.20 and 7, = 0.44 . Inset: correlation of the expression of CheY-YFP and
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CheA-CFP from the native chromosomal positions, determined as in b, with n;, = 0.26

and 7, = 0.35.

Figure 3:

Effect of the total concentration of signalling proteins on chemotaxis. a, Chemotaxis effi-
ciency of flgM (VS102) cells, expressing varying levels of FlgM from a plasmid. Chemotaxis
efficiency was determined in a trypton-broth soft agar (swarm) assay and normalized to
that of the wild-type (RP437) cells. Relative mean expression of chemotaxis proteins at
each FlgM level was measured as in Fig. 2a, using LL1 strain as a background. Dashed line
is a guide to the eye. Note that the detailed evaluation of the relation between chemotaxis
and protein expression below the wild-type level is complicated by an adverse affect of the
high levels of FlgM on flagella synthesis. Inset: Fraction of chemotactic cells from computer
simulations in a population of 10* individuals under wild type gene expression noise. Black
line: topology Fig. 1c; red line: BL topology Fig. 1a; green line: topology Fig. 1c, but with
a phophatase substiting auto-dephosphorylation of CheBp; blue line: topology Fig. 1c, but
with CheR binding with Michaelis-Menten constant Kz = 3uM to the receptor complex;
orange line: topology Fig. 1b. b, Relative kinase activity in flgM cells. Black bar: kinase
activity in LL4 cells, experimentally determined in a FRET-based assay. Gray bars: kinase
activtiy determined from the mathematical model for differnt network structures. Error

bars indicate standard errors.

Figure 4:

Fraction of chemotactic cells as determind by computer simulations for varying strenght of
gene expression noise and for differnt network topologies; black line: topology Fig. 1c, red
line: BL model Fig. 1a, blue line: topology Fig. 1b, and green line: topology Fig. 1d. a,
Extrinsic noise varying up to 4-fold the wild type strength and intrinsic noise kept at wild
type value, n;,, = 0.2. b, same as a but with varying strength of intrinsic noise and extrinsic

noise fixed to the wild type value 7., = 0.44.
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