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Introduction

� Morphogenesis: development of pattern and form in 
biological organisms

� How does a homogeneous mass of cells spatially 
organize? How is genetic information physically 
translated?

� Cells possibly react to a chemical morphogen
concentration → concept of positional information

� A. Turing (1952): reaction-diffusion theory of 
morphogenesis

� Self-organization of adult stem cells



Turing Instabilities in Reaction-
Diffusion Systems

Part I



� Spatially distributed chemicals/species can react and 
diffuse (RD):

� Turing´s idea: if, in the absence of diffusion, a linearly 
stable homogeneous steady state exists, then spatially 
inhomogeneous patterns can evolve in a diffusion driven 
instability induced by different diffusion velocities

Reaction-Diffusion Systems

∂tA = F(A,B)+DA∆A

∂tB = G(A,B)+DB∆B



Activator-Inhibitor Mechanism

� Gierer and Meinhardt (1972): Theory of biological pattern 
formation based on short-range activation and long-
range inhibition



Simple RD System

� Autocatalytic creation of one species consuming the 
other [Schnakenberg (1979)]:

� Parameters

– Kinetics: a and b

– d = DB / DA

– Spatial domain size: γ

∂tu = γ
(
a− u+ u2v

)
+∆u =: γf(u, v) + ∆u

∂tv = γ
(
b− u2v

)
+ d∆v =: γg(u, v) + d∆v
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Linear Stability Analysis

� Linearization of the homogeneous steady state (u,v):

� Steady state (u,v) is stable, if (Hurwitz theorem)
i. tr(A) = fu + gv < 0

ii. det(A) = fu gv - fv gu > 0

ẇ = γAw with A =

(
∂uf ∂vf

∂ug ∂vg

)
(u0, v0)



Boundary Conditions

� Spatial domain of the RD system:

� Zero flux (Neumann) boundary conditions (BCs):

� These BCs mean no external input, otherwise spatial 
patterns could be a consequence of the BCs

B ⊂ R
n , n = 1, 2, 3

�n · �∇

(
u

v

)
= 0 on ∂B



Solution of the Linearized System

� Linearized RD system:

� Eigenvalue problem for the spatial RD domain:

� Set of spatial eigenfunctions Wk(x) with wavenumber k

ẇ = γAw +D∆w , D =

(
1 0
0 d

)

−∆w − k2w = 0 inB ,

�n · �∇w = 0 on ∂B



Solution of the Linearized System

� Initial conditions (ICs) can be expanded using the spatial 
eigenfunctions:

� The ansatz w(x,t) = ∑k ckWk(x)exp(λt) yields

� Dispersion relation:

w(x, 0) =
∑

k

ckWk(x)

(
λI − γA+Dk2

)
Wk = 0

det
(
λI − γA+Dk2

)
= 0 ⇒ λ = λ±(k

2)



Turing Instability
� The homogeneous steady state (u,v) becomes 

unstable if for some wavenumber k

� With random pertubations as ICs the unstable solution
emerges as

� Idea: Exponentially growing modes become bounded 
by nonlinear terms and a spatially inhomogeneous 
steady state emerges

Re(λ±(k
2)) > 0

w(x, t) ≈
∑

γL<k2<γM

ckWk(x) exp(λ(k
2)t)



Dispersion Relation

� For suitable parameters the 
system exhibits a bifurcation
with increasing d

� Eigenfunctions and -values for 
the 1-d domain B = [0,1] :

� Maximum growing mode is 
expected to determine the 
system’s behavior 0 50 100 150 200
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Mode Selection

� For d > dc different modes become unstable when 
varying γ
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Maximum Growing Mode
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Summary of Part I

� Simple RD systems can generate spatially 
inhomogeneous patterns through a Turing instability

� Good prediction by linear stability analysis in 1D
� Higher dimensions: Are the dispersion relation and the 

eigenfunctions sufficient?
� Morphogenesis: Chemical prepatterns of morphogens 

could be generated by RD systems



Pattern Formation by Vascular 
Mesenchymal Cells

Garfinkel et al.
Proc. Nat. Acad. Sci. 101, 9247 (2004)

Part II



Mesenchymal Stem Cells

� Embryo: Mesenchymal stem cells develop into patterned 
tissues

� Adult diseases (atherosclerosis, aortic valvular stenosis): 
Multipotential vascular mesenchymal cells (VMCs)
differentiate and form bone-like tissue within the artery 
wall → patterns

� Pattern formation mechanisms in these cells



Pattern Formation of Cultured VMCs

≈ 20 daysDay 1



Pattern Formation of Cultured VMCs
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Pattern Formation of Cultured VMCs

� Can pattern formation be described by a reaction-
diffusion model exhibiting a Turing instability?

� Identification of the specific morphogens
� Experimental testing of the model



Activator and Inhibitor

� Pattern formation by local activation and lateral 
inhibition

� Activator-inhibitor systems in 2D are able to generate 
stripe-like patterns [Koch and Meinhardt (1994)]

� Requirements for the activator:
i. known chemoattractant
ii. known morphogen
iii. It has a known inhibitor
iv. It diffuses more slowly than its inhibitor



Activator and Inhibitor

� Activator: bone morphogenetic protein 2 (BMP-2)
– powerful morphogen expressed by VMCs
– known chemoattractant

� Inhibitor: matrix carboxyglutamic acid protein (MGP)
– inhibits BMP-2 effects
– unusually small → fast diffusion

� This protein pair satisfies all four requirements



Reaction-Diffusion Model

� Reaction kinetics are based on known interactions 
between BMP-2 and MGP → activator-inhibitor system

� Spatial domain size γ
� Ratio of diffusion coefficients D = DU/DV                

� External source of the inhibitor S

∂tU = γ

(
U2

(1 + kU2)V
− cU

)
+D∆U

∂tV = γ
(
U2 − eV + S

)
+∆V



Numerical Simulation

� 2D spatial domain with zero-flux boundary conditions
� Initial conditions: small (2%) random pertubations about 

the steady state values U and V



Numerical Simulation

�∇U

Initial distribution

×3

High levels 
of U



Comparison with Experiments

Cultured cells Simulation



Comparison with Experiments

Cultured cells Simulation



Comparison with Experiments

Cultured cells Simulation



From Stripes to Spots

� Model prediction: external source S of inhibitor changes 
stripe to spot patterns (Movie)

� Addition of MGP → Cells organize into spot-like patterns



Stripe Doubling

� The drug warfarin partially blocks MGP → expected 
change of patterns

� Cultured VMCs: refinement of stripe patterns



Stripe Doubling

� Reaction-diffusion models can show mode doubling by 
increasing the spatial domain size (parameter γ)

� Simulation: doubling of γ causes stripe doubling (Movie)



Comparison with Experiments

Cultured cells Simulation



Summary

� Self-organization of multipotential vascular mesenchymal
cells (VMCs) is predicted by a reaction-diffusion model

� Successful identification of the specific morphogens
� Model describes chemical prepattern
� Cells aggregate and differentiate according to this 

prepattern
� Pattern formation of mineralized cells may play a role in 

atherosclerotic vascular calcification


