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Abstract

Recently, new concepts of type | error control in multiple comparisons have been proposed, in addition to FWE and FDR control. We
introduce these criteria and investigate in simulations how the powers of corresponding test procedures for multiple endpoints depend on
various quantities such as number and correlation of endpoints, percentage of false hypotheses, etc. We applied the different multiple tests to
EEG coherence data. We compared the memory encoding of subsequently recalled and not recalled nouns. The results show that subsequentl
recalled nouns elicited significantly higher coherence than not recalled ones.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction multiple comparisons, (b) to investigate corresponding multi-
ple test procedures regarding their dependence on the dimen-
Modern procedures of EEG analysis yield large sets of sionk, the fraction of false hypotheses and the correlation
high-dimensional parameters, which have to be evaluatedstructure of the data and compare the powers of different
statistically. Letk denote the dimension of the observations. methods, and (c) to demonstrate the use of different multi-
This means there ate components, which are also called ple tests in problems of multiple comparisons of coherence
multiple endpoints. IrHemmelmann et al. (2004ye dealt values obtained from EEG data recorded during the memory
with so-called global tests or multivariate tests which pro- encoding of subsequently recalled or not recalled abstract
vide one joint statement on ddlendpoints. We now consider  nouns (\Veiss et al., 2000
procedures that provide a statement for each endpoint. Many The techniques we discuss are not specific to EEG data;
authors use am-level test for each single component or end- they are equally applicable to the large data in MEG and
point of the observational vector, see &Rgppelsbergerand fMRI.
Petsche (1988However, this practice results in alarge num-
ber of false positive statements (false discoveries, type | er-
rors). There exist several techniques to cope with this general, Methods
drawback in multiple comparisons. Corresponding multiple
tests will be considered in the present paper.
Our paper has the following aims: (a) to introduce both
traditional and recently proposed concepts of error control in

2.1. Multiple tests and type | error control

As explained inSection 1 our observations are vectors
of dimensionk. Assume we have to compare paired sam-

* Corresponding author. Tel.: +49 3641 9 33610; fax: +49 3641 9 33200. Ples or two independent samples. et (xi, ..., X;) and
E-mail addresshemmel@imsid.uni-jena.de (C. Hemmelmann). y = (Y1, ..., Yx) denote the corresponding random vec-
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Table 1

List of methods considered in this paper

Method Abbreviation Requirement
Bonferroni method Bonf

Step-down procedure ¢folm (1979) Holm P\V>0)<a
Step-down procedure droendle (1995) Troe

Step-up procedure @enjamini and Hochberg (1995) BH

Two-stage procedure &enjamini et al. (2001) BKY EQ) <«

Step-down procedure &enjamini and Liu (1999) BL99

Step-down procedure &enjamini and Liu (2001) BLO1

Step-down procedure A d¢forn et al. (in press) PrA, P(V>u) <a(0<u<k)
Step-down procedure B ¢forn et al. (in press) PrB, PQ>y)<a(0<y<1)

tors and fuy,, . .. , iy,) the respective

M) and @y, ...

means. Then, the individual null hypotheses to be tested areHolm (1979)(Holm). Letpg) < ---

Hy:fhxy = Myp, oo Hie @ g, = by, Tests forHy, . ..
are called multiple tests.
It can happen that one of thehypotheses, sai;, is re-

, Hi.

Another simple method is the step-down procedure of
< p) denote the or-
deredp; andH(y), . . ., H(x) the corresponding hypotheses. In
the first stepp(1) is compared with/k. If pi1) > a/k, none of
thek hypotheses will be rejected and the procedure stops. If

jected though it is true. Such an event is called type | error p(1) < a/k, H(y) is rejected. Thepz) is compared withx/(k —

or false discovery. LeR denote the random number of re-
jected hypotheses antthe random number of rejected true
hypotheses, i.e. type | error¥ (< R < k). An interesting
quantity is the fractiorV/R of falsely rejected hypotheses.
As this is not defined foR = 0, we introduce a new random
variableQ whereQ = V/IRif R>0andQ=0if R=0. In
the literatureQ is calledfalse discovery proportiowhereas
the expectatiorE(Q) is calledfalse discovery rat¢FDR).
Different concepts of controlling the proportion or the num-

1). Ifpgy > al(k— 1),Hz), . .., Hx) are accepted. Otherwise
H(2) will be rejected, etc. Clearly, Holm rejects at least all
hypotheses that are rejected by Bonf. This means, Holm is
more powerful.

Bonf and Holm do not take into consideration the correla-
tion between the endpoints. In contrast, the step-down method
of Troendle (1995} Troe) is adaptive to data correlations be-
cause itis a permutation method. Similar to Holm, it is based
on the ordere@-valuesp(1) < - - - < p(x). ChooseB — 1 ran-

ber of false discoveries have been proposed, together withdom permutations of the data vectors consistent with the ex-
corresponding methods which control these rates in multiple perimental design. Denote the univarip{ealues forthe vari-

testing problems. In the next sections, we will present and ablesfromthqih permutation by,l, »

compare the test procedures listedTable 1which satisfy
four different criteria that are defined by the requirements
given in the last column.

2.1.1. Control of the FWE

As already mentioned iBection 1 it is not advisable to
use ana-level test for each of th& hypotheses, i.e. a test
that rejects a true hypothesis with probabilitybecause in
this case the expected number of false discovér{® may
be rather large; in the worst case, it can be as highoas
And the probability FWE =P(V > 0), i.e. the probability of
committing at least one type | error may also be very large,
especially wherk is large. FWE is the abbreviation of the
termfamilywise error rate For multiple comparisons it has

been long recommended to use test procedures that control

the FWE, i.e. that guarantee that FWEx no matter how
many and which hypotheses are trués a prespecified small
probability.

The simplest way to ensure that FWE« is to test all
individual hypothese#ls, ..., H at levela/k. This is the
well-known Bonferroni method (Bonf). Assume we use some
parametric or nonparametric test appropriate-for. . ., Hg,

e.g. thet-test and obtain thp-valuespy, . . ., p;. Then, Bonf
rejectsH; if p; < a/k.

., pyforj= .B-
1, Wherep1 corresponds tél(y), p2 to Hy), etc. Therefore
P ,...,pk are not ordered. Lep; ;. | = mln{pl, ...,pk}

forj = ., B — 1. In the first stepp(l) is compared with
thea- quantlle of theB p-valuesp(y), pmm oo pmml1 If
P is larger than thise-quantile, none of thé& hypotheses
will be rejected and the procedure stopspff) is smaller
than or equal to thig-quantile,H ) is rejected Then omit
all p-values correspondlng ﬂd(l), i.e. p), pl, e, pffl.
Now, let pmm2 = mln{pz, ...,pk} forj=1,...,B - 1
Thenp) is compared with the-quantile of theB p-values
(), p#m’ or s pfﬁ&z. If p2) is larger than thig-quantile,
He), ..., Hy) are accepted and the procedure stops. Other-
wiseH o) will be rejected, etc.

As already mentioned ifiroendle (1995)Troe is identical
with the method ofestfall and Young (1993)Ve will see
that the power of Troe is higher than the power of Holm in
many cases.

Holm and Troe (and BonfiBection 3.3are the only FWE
controlling methods that we consider in this paper. However,
there exist many other ones. A step-up analogue of Holm
was proposed bidochberg (1988)Iit compares th@-values
Py in the reverse order with the same critical bounds, i.e.,
in the first stepp(x) with «, in the second step;_1) with
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a/2,. .., in the last step) with o/k. However, Hochberg's
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Both BH and BKY were derived under the assumption

method is only valid under independence of the test statisticsthat thek test statistics are uncorrelated. Benjamini and
or at least under positive regression dependency which is aYekutieli (2001)and Sarkar (2002)t was shown that the
very general statement of a nonnegative correlation structure,methods are also valid under the weaker assumption of posi-

seeSarkar (1998)In many-one comparisons byorn and
Dunnett (2004jhe powers of Hochberg’s method and Holm
did not essentially differ. Thus, we did notinclude Hochberg’s
procedure in our investigations.

Many FWE controlling methods and techniques were de-
scribed in the monographs Bbchberg and Tamhane (1987)
andWestfall et al. (1999)A further interesting type of FWE
controlling procedures was proposedltauter (1997)Kropf
(2000) and Kropf et al. (2004) This approach uses a data
driven order of the hypotheses.

2.1.2. Control of the FDR

The requirement FWE « is equivalent td®(V=0)> 1 —
a. This means one requires that with large probability no true
hypothesis is rejected no matter how lakgs. In problems
with largek, this requirement appears to be too strict. Thus,
Benjamini and Hochberg (199#)troduced a new criterion
which requires FDR £(Q) = E(V/R| R>0) P(R>0) < «.
For example, FDR< 0.05 roughly means that on average no

more than 5 of 100 significance statements are type | errors.

The control of the FDR in the evaluation of EEG data has
already been proposed Burka et al. (2004)

Benjamini and Hochberg (199%)ere the first who pro-
posed a test procedure (BH) that controls the FDR. Similar
to Holm, itis based on the ordergevaluesp(y) < - - - < p)

obtained with some parametric or nonparametric test appro-

priate forH(), .. ., Hx). However, BH is a step-up procedure.
In the first stepp) is compared withx. If py < «, all hy-
potheses are rejected. pf) > «, H) cannot be rejected.
Thenp_1) is compared withw(k — 1)K If py_1) < a(k

— DK, Hg—1y, ..., Hu are rejected. Ip_1y > a(k—1)Kk,
H(x—1) cannot be rejected, etc.

Let m denote the unknown number of false dagn the
number of true hypotheseBenjamini and Hochberg (1995)
have shown that for their procedure FBR(k — m)/k. Thus,
FDRis smaller thar if m> 0 and decreasing with increasing
m. If mwere known one could increase the power of this step-
up procedure by using = a*-k/(k — m) instead ofx. Based
on this ideaBenjamini et al. (2001yleveloped a two stage
procedure (BKY). In the first stage, BH is applied comparing
P(k)» P(k—1): - - -» Py With the critical constants’-k/k, o'-(k —
1)k, ..., o - 1/kwherex’ =a/(1 +ca). Letr; denote the number
of hypotheses that would be rejectegdis an estimate ofn.
Hence, we replace the denomingtarf the critical constants
by k — r1 and repeat in the second stage BH compaping
P(k—1), P(k—2), - - -» P1) With the critical constanta’-k/(k —
ri), o' (k—1)/K—rg), ..., o/ 1/ —rq).

Note that using BKY it is possible to reject a hypothesis
with ap-value greater tham. In most cases, such an event is
undesirable. Hence, we have modified the rule of rejection;
we reject a hypothesis only if thevalue does not exceed
as well.

tive regression dependency, similarly like the step-up proce-
dure ofHochberg (1988nentioned irSection 2.1.1We will
investigate by simulations whether FBRx holds when the
endpoints are correlated.

Step-down procedures that control the FDR have been
proposed byBenjamini and Liu (1999, 2001BL99, BLO1).
BL99 requires independence of the test statistics or at least
positive regression dependency whereas BLO1 is valid also
under dependency. BL99 compares the ordegpedilues
P) With the critical bounds - [1 — min{lak/(k — i +
1)}]¥/t*=i-1) and BLO1 with the critical bounds min[ak/(k
— i+ 17 (i =1, ..., k). In Horn and Dunnett (2004yas
shown that the power of BLO1 is only slightly lower than
that of BL99. Therefore, we applied only BLO1 to the data in
Section 3.3Moreover, former simulations have shown that
both methods are distinctly inferior to BH and BKY con-
cerning their power, sadorn et al. (2003)Therefore, in this
paper we executed no simulations for BL99 and BLO1.

2.1.3. Control of the number V and relative number V/R
of false discoveries

We remind that FWE control means tHagv > 0) < a.
With largek, it may be sufficient to require th&®(V > u) < «
for some prespecified integar(0 < u < k). This means the
strict requirement that no type | error occurs is lessened now
requiring that no more thamtype | errors occur. For example
with u=2 anda = 0.05, we may require th&V > 2) < 0.05
or equivalenthyP(V < 2) > 0.95, which means that 2 or less
type | errors are accepted with probability 0.9%rn et al.
(in press)roposed a step-down procedure called Procedure
A (PrA,) which ensures th&(V > u) < « for some specified
integeru < k. Computationally, Pr4 can be considered as
an extension of Troe ifi > 0. Foru = 0, it is identical with
Troe. In its first step, Pri automatically reject$d(y), .. .,
H(v). The further steps are more complex than with Troe. For
details sedorn et al. (in press)

Now we remind that FDR control means that FDIE®))
< «. However, this does not prevent th@tattains values
much greater thaa in single cases. For example, it can hap-
pen that BH at levedr = 0.05 rejects 100 hypotheses 20 of
which are true hypotheses, so th4R = 20/100 = 0.2 >
0.05. Thereforeorn et al. (in pressproposed a step-down
procedure called Procedure B (R)Bhat (asymptotically)
guarantees th&®(Q > y) < « for some prespecifieg (0 <
y < 1). For example, witlx = 0.05, PrB 1 guarantees that
Q > 0.1 is possible only with a probabilitg0.05. PrB, is
also an extension of Troe and uses nearly the same computa-
tional techniques as PrA In dependence on the specified
it automatically rejects some hypotheses in the different steps
except in the first step (in contrast to Rp)A For details see
Korn et al. (in press)
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i FWiSa ﬁ

PV>u<a PO>p<a«a FDR< «

v
FDR < aif y< 1/k

Fig. 1. Relations between control of different type | error rates.

Both, PrA, and PrB, are based on the permutation prin-

ciple and thus are adaptive to the correlation structure of the k—1 k-2 1
data. 1 z
k-1 -1 2
k=1, k=t 2
: k k k
2.1.4. Relations k—2 k—1 3
The control of the FWE is the most stringent criterion. It Corrl=| —— —— 1 -
implies the control of the FDR as well as of the numgend k k k
relative numbel/R of false rejections. These implications
are demonstrated Fig. 1 In addition, we derived the relation
FDR<y FWE + (1— y) P(Q > y) for 0 <y < 1. The 1 2 3
. N . ) . i - z o1
corresponding derivations are givenAppendix A X X X

may be typical for longitudinal observations, e.g. time series

_ where neighboring observations have higher correlations than
2.2. Simulated data and real data (EEG data) more distant observations. The matrix

2.2.1. Simulated data Rl R2 Rz

All procedures considered in this paper can be used forthecorr2= | k2 R1 R2
paired samples case and the case of two independent samples.
They all use the-values for the different hypotheses. There- R2 R2 R1
fore, it is not necessary to differentiate between the paired,, i,
samples case and the case of two independent samples. Thus,
we only simulated the paired samples case.d;et x; — V; 1 23 - 2/3
denote the componentwise differences,. . ., k). Thereby 2/3 1 ... 23
inthe paired samples case we have the random difference VeCyq _ and
torsd = (dy, ..., d;) which havek-variate distributions. For - : : :
these vectors, we generated samples fkavariate normal
distributions for special configurations of means and corre- 2/3 23 ... 1
lation coefficients, and executed different multiple tests. The
components ok-variate normally distributed vectorshad
common variance 1, and the meang — u,, = uq, (i =1, -3 -3 - -1/3
....K)werechosensothay, = A(i=1,...,myandug =0 ~1/3 —1/3 ... —1/3
(i=m+1,..., K. This means we consideretfalse ancdk — R
mtrue hypotheses, and the deviations of the false hypotheses
were all into the same direction. The valuenfvas varied

between 1 and. N _ -1/3 -1/3 ... —-1/3

We denote the coefficients of correlation betwegmand
d; by p;j (1 <i <j < k). We considered the casgg; = was used in order to investigate a case where both, positive
0.2, i.e. constant low positive correlation, ang = 0.8,i.e. ~ and low negative correlations occur. o
constant high positive correlation# j). In most practical The number of repeated simulations for any configuration

situations, the correlation coefficients; do not have the ~ Was 60.000 for most procedures, with the exception of the
same value and the same sign. Therefore, we also considere@ermutation methods Troe, PyAand PrB, where only 5.000

the following two types of correlation matrices Corrl and repetitions were done. The number of permutations in each
Corr2. The matrix permutation test was 1.000.
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2.2.2. EEG data

A sample of 23 female German native speakers partici-
pated in the EEG experiment. They auditorily perceived two
unrelated wordlists each containing 25 disyllabic abstract
nouns. Participants had to memorize the nouns and imme-_
diately after the presentation of each list they were asked tog
recall the words previously encoded.

During word encoding EEG was recorded with 19 gold-  o.05 0.05
cup electrodes according to the 10—20 system against the av
eraged signalsjl + A2)/2 of both ear lobe electrodes. Filter
settings were 0.3—35Hz, sampling frequency was 256 Hz. 0 0 S

. . 1 5 10 15 20 25 30 35 40 1 5 10 15 20 25 30 35 40
According to the behavioral results EEG epochs of subse- m (number of false hypotheses) m (number of false hypotheses)
quently recalled and not recalled nouns were selected. One
second epochs beginning with word onset were Fourier trans-Fig. 2. Estimates of the FDR and B{Q > 0.1) for BH (circles) and BKY
formed and averaged cross-power spectra between all possi{"iangles) under Cor(=8,k=40,a = 0.05,4 = 1.5).
ble electrode pairs (171) were computed for each participant. ~ As mentioned irBection 2.1.3the requirement FDR «

As it has been demonstrated, that particularly lower EEG cannot prevent tha¥/R attains large values. Therefore, we
frequencies are associated with dm-effects (differences due toestimated the probabiliti?(Q > 0.1) for BKY and BH, see
memory performancé&ell etal., 2001; Klimesch etal., 1996;  Fig. 2(right side). We state th&(Q > 0.1) for BKY and BH
Weiss and Rappelsberger, 200@djacent spectral values is smaller than 0.2.
were averaged to obtain broad band parameters for the follow-
ing frequency bands: deltal (1-2 Hz), delta (3—-4 Hz), theta 3.2. Power comparisons
(5-7Hz), alphal (8-10Hz), alpha2 (11-12Hz) and betal
(13-18 Hz). The normalization of the cross-power spectra  In multiple comparisons, there exist different concepts of
yielded 171 coherence values per frequency band, conditionpower. We will use terms that originally were used in connec-
(recalled or not recalled) and participant. Coherence valuestion with pairwise multiple comparisons. The probability of
were Fisherztransformed for the current statistical analysis. rejecting atleast one of the false hypotheses is called any-pair
Further details of the experimental setup and methods of EEGpower, and the probability of rejecting all false hypotheses is
analysis can be found Weiss and Rappelsberger (20@0) called all-pairs power, seRamsey (1978)If we consider a
Weiss et al. (2000) single false hypothesis, then the probability of rejecting it is

In the present study our aim was to find out which of called per-pair power, sd&inot and Gabriel (1975Kwong
the 171 pairs of electrodes significantly differ in their means et al. (2002) Liu (1997) and Troendle (2000)preferred in
of coherence values for subsequently recalled versus not retheir power comparisons the average power whids(i® —
called nouns. For this task we needed a multiple test. V)/m, i.e. the expected proportion of false hypotheses that

were rejected. In our simulations, we considered equal dif-
ferencegu,, — u,, = A for all mfalse hypotheses. Then, the

0.15 0.15

0.1

P(Q>0.1)

3. Results per-pair power of each false hypothesis has the same value,
sayp, so thate(R — V) = mpand with itE(R — V)/m=p. This
3.1. Estimation of the FDR and P(Q > 0.1) means that in our considerations the average power is identi-

cal with the per-pair power. We restricted our investigations

As mentioned irSection 2.1.2BH and BKY control the to the per-pair power (average power) and all-pairs power as
FDR under the condition of independence of the test statis- they seem to be most important in practice.
tics or at least of positive regression dependency. In multiple  Our first task was to investigate how the power of our mul-
endpoint problems, it is difficult to determine the correlation tiple test procedures depends on the fractigkof false hy-
between the test statistics. However, it may be possible to es-potheses. We observed that the per-pair power of most method
timate the correlation between the endpoints. (Of course, theexcept PrA increases with increasimg/k seeFigs. 3 and 4
correlation of the test statistics will be related to the corre- However, the all-pairs power curves of most procedures are
lation of the endpoints.) Thus, we investigated how the FDR u-shaped, seEigs. 5 and 6
of BH and BKY depends on the correlation of the endpoints.  Our second task was to investigate how the power of our
Here the FDR for the correlation structure Corr2 was mostin- methods depends on the correlation structure of the data, see
teresting, as there are negative correlation coefficiéings 2 Figs. 3-6 Whenp;; = p for i # j, i.e. when the correlation
(left side) demonstrates for Corr2 that the FDR of BH de- is the same for all pairs of components, the per-pair power
creases with increasimgwhereas the FDR of BKY does not  of BH, BKY and PrA decreases and that of Troe increases
strongly change whem increases. The FDR of both meth-  with increasingo, seeFig. 3 whereas the all-pairs power of
ods is below the nominal level of 0.05. Similar results were all methods increases (only in some cases we state for large
obtained forp = 0.2, = 0.8 and Corrl. m/k a slight power decrease), sEig. 5.
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p=0.8

per-pair power

0.3
1 5 10 15 20 25 30 35 40
m (number of false hypotheses)

—e— BH
—a&— BKY

==@==" Holm
=&-=- Troe
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Y Y Per

Fig. 3. Per-pair powers fgs = 0.2 andp = 0.8 (01 =8,k =40, = 0.05,4 =

1.5).
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Fig. 4. Per-pair powers under Corrl and Com2@8, k= 40,« = 0.05,4 =
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Fig. 5. All-pairs powers fop = 0.2 andp = 0.8 (0= 8,k=40,« = 0.05,4

=15).
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Fig. 6. All-pairs powers under Corrl and Corr2< 8,k =40,a = 0.05,4
=1.5).

Our third task was to investigate how the power of our test
procedures depends on the numibef hypotheses. Here the
most important result is that the per-pair power of BKY and
BH scarcely changes with increasikgseeFig. 7. The all-
pairs power of BKY and BH decreases moderately when the
fraction of false hypotheses is small, and slightly when most
hypotheses are false, sE&. 8 As expected, the per-pair
power and all-pairs power of the FWE controlling methods
Holm and Troe decrease whkincreases, sdeigs. 7 and 8
The powers of Troe, Praand PrB, were not calculated fde
> 40 because of the immense computational effort. We expect
that the per-pair power and all-pairs power of Pravhich
are rather high fom/k = 0.2 andk < 40, will decrease very
strongly with increasingd, so that they will be much lower
for largek than the corresponding power values of BKY and
BH. Figs. 7 and &re forp = 0.8. The results fop = 0.2
which are not shown here are very similar.

When we formally compare the different methods we state
that PrA has the highest per-pair power and all-pairs power

20% false hypotheses 80% false hypotheses
o‘r 1
0.8 0.8
°
£ o6 b"'—‘ g o6
o AN o
o N \\ o
- N -
I 04 N 204
I3 s I3
\5'0.-~~
0.2 e 0.2
0
10 40 70 100 10 40 70 100
k (number of hypotheses) k (number of hypotheses)
—e— BH -®-- Holm " o B5,
—&— BKY =A== Troe - B "o

Fig. 7. Per-pair powers farvk = 0.2 andm/k = 0.8 (h = 8, « = 0.05,A =
1.5,0=0.8).
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1 20% false hypotheses 1 80% false hypotheses FWE controlling methods, Troe is distinctly more powerful
] than Bonf and Holm for most frequency bands. Itis also more
powerful than the FDR controlling procedure BLO1 which is
08 % 08 considerably less powerful than BKY and BH.
® ?
§ 06 § 06
£ 2 4. Discussion
< <
0.4 S 04
= =

We have introduced four criteria for controlling type | er-
rors (three of them may be new for most readers) and derived
the relationships between them, $ég. 1

0.2 0.2

0 0 Control of the FWE means to require that no type | error
1|<0(numb4e0r of hy;zgthesel?o 1,?(numb4e°r of hy;gthesel?o occurs no matter how large the number of hypotheses and
—o— pn o Holm o PIA, the number of rejected hypotheses is. With high-dimensional
—&— BKY -B-- Troe a-. PrB, data, this criterion is too strict. Therefore, the other criteria

were proposed.
Fig. 8. All-pairs powers fonvk = 0.2 andmk = 0.8 (1= 8,a = 0.05,4 = In our opinion, the requiremeM(Q > y) < « provides the
1.5,p=0.8). most reasonable criterion. Unfortunately, with our program

] ] ) the only corresponding procedure (RjBannot be executed

if m/k < 1/4 whereas BKY has the highest per-pair power and yithin an acceptable time of computation whre 30. In
all-pairs power ifm'k > 1/4. This applies fop =0.2and 0.8 hjs case, a compromise may be to stop the calculations when
as well as for Corrl and Corr2, seegs. 3—6 However, the g = 30 and report the 30 corresponding (most significant)

per-pair power and all-pairs power of Pratrongly decrease  gndpoints. Further research is needed to develop powerful
with increasingk, so that BKY becomes the most powerful procedures feasible for largeandR.

method also for small fractioma/k. The requiremenP(V > u) < « is a generalization of the
FWE criterion. It is less strict, but it has similar disadvan-

3.3. Applications of multiple tests to EEG coherence tages. In a practical application it is difficult to decide which

data numberu is appropriate. Moreover, the only corresponding

procedure (Pr4) requires the same computational effort as

The data we now evaluate come from the experiment de- PrB,.
scribed inSection 2.2.2The number of subjects was 23. For As mentioned inSection 2.1.3the requirement FDR =
each subject, a vector of 171 coherence values was obtained(Q) < « does not prevent th& attains large values. This is
under two different conditions. This means we had tokest a general disadvantage of the FDR criterion. Howevigr, 2
=171 null hypotheses. shows that the probabilif§(Q>0.1) is relatively small for the

In all multiple tests, we used the pairetest statistics. The  FDR controlling methods BH and BKY. This means that these
number of significant mean differences at lavel 0.05 with methods provide a good compromise as they do not strongly

Bonf, Holm and Troe, Priand PrA, PrBy o5, PrBo.1, BLO1, violate the requirement of the criterion we favor. Moreover,
BH and BKY are given infable 2 In the second column are  these two methods are computationally very simple and do
also the number of significant results with the paitadst not need a special computer program, in contrast to,PrA

which cannot be recommended as it is not a multiple test. Of and PrB,. In addition, our formal comparisons demonstrated
course, this test provides more significant differences thanthat BKY has a relatively high power. Therefore, this proce-
the multiple tests. Among the multiple tests, most significant dure seems to be most recommendable. However, caution is
differences were found for BKY followed by BH. Amongthe needed when comparing methods that satisfy different crite-

Table 2
Number of significant coherence differences for different tests when comparing the processing of subsequently recalled and not recalled freqosiayal
bands analyzed

t-test FWE< 0.05 P(V>u) < 0.05 P(Q>y) <0.05 FDR< 0.05
Bonf Holm Troe PrA PrA; PrBoos PrBo.1 BLO1 BH BKY

deltal 78 5 6 10 12 25 9 17 7 54 60
delta 64 1 1 7 16 21 7 7 1 44 47
theta 27 4 4 6 7 10 6 6 4 10 10
alphal 14 0 0 0 1 2 0 0 0 0 0
alpha2 44 0 0 3 7 12 1 1 0 12 12
betal 55 5 5 5 11 14 7 7 5 23 25




216 C. Hemmelmann et al. / Journal of Neuroscience Methods 142 (2005) 209-217

ria because one can expect that the strictest criterion leads tAppendix A
the lowest power.
Note that PrA, PrB, and Troe are permutation meth- Here are the derivations for the statements givefign 1
ods. Such methods have the advantage that they consider th&/e have
correlation of data. This seems to be the reason why these
— _ \%4
methods are more powerful fer= 0.8 than forp = 0.2, see FDR= E <—|R > o) P(R > 0)
Figs.3and 5 R

In order to demonstrate the properties of different multi- Vv

ple tests we applied them to EEG coherence data obtained =
while participants memorized abstract nouns subsequently
recalled or not. The major result was that during the phase of 14

word encoding, subsequently recalled nouns elicited higher + D wP (} =w|R > 0)
EEG coherence than not recalled nouns at all electrode pairs
showing significant differences. Thus those words which are
likely to be recalled are associated with an increase of syn-
chronized activity between various brain regions, in particu-
lar left hemispheric sites and between both hemispheres. All
frequency bands analyzed demonstrated significantly higher
coherence for recalled nouns with the exception of the alphal  This means FWE « implies FDR< a. If all hypotheses

band (8-10Hz), which did not show any significant differ- e true we have’ = R. Then FDR: E(V/RR>0)P(R>0) =
ences. The latter finding agrees well with the assumption that P(R>0) = FWE. Thus, in this case FWE and FDR control are
alphal predominantly reflects sensory processing, or gen-gquivalent. (If FWE< « when all hypotheses are true then
eral attentional processeslimesch et al., 1996; Weiss and  {he FWE control is calledveak)

Rappelsberger, 2000and does not reflect differences in As P(V > u) < P(V > 0) foru> 0, FWE< « also implies
memory encoding. In contrast, coherence in the other fre- poy > jy <. B B

quency bands differed considerably for recalled and notre- ~ As p(Q > y) = P(V > yR) < P(V > 0), FWE < « also

called abstract nouns. A similar finding to our study was jmpliesP(Q > y) < a.

reported byFell et al. (2003)studying intracortical record- Furthermore, we have

ings of the temporal lobe during memory encoding of words.

In addition,Besthorn et al. (1994fpund that patients with

Alzheimer's disease, who suffer from a major disturbance of

memory functions, exhibited lower coherence than healthy v

controls in the theta, alpha and beta frequency bands. In our + Z wP <_ = w|R > o)

opinion, the higher synchronization for recalled nouns in var- O<w<y R

ious frequency bands is associated with the participation of

different cognitive operations such as short-time as well as 1%

long-time memory, attention to internal thinking, encoding + Z wP (E = w|R > O) P(R > 0)

and storage of episodic information and semantic associa- w=y

tions occurring during the task, the latter probably being in- 1%

creased during the encoding phase and therefore leading to = {VP <0 <R <yIR> O)

an improved ability to recall the nouns at a later tirkiée(ss

and Rappelsberger, 200Multiple tests demonstrate that +P (Z > VIR > 0)} P(R > 0)= B.

during the encoding phase subsequently recalled nouns are R

embedded within a more complicated network of interactions

between various recording sites than not recalled nouns. If y < 1/k, we haveP(0 <V/R < y | R>0)= 0 becaus®/R
cannot take positive values smaller thak. We then obtain
B=P(V/R>y | R>0)P(R>0)=P(Q>y). Thus,P(Q>y)
< «a implies FDR< «, wheny < 1k.

If0<y<1,wehave

}P(R> 0)

w>0
|4
§P<E>O|R>O)P(R>O)

=P(V>0,R>0)=P(V>0)=FWE

1%
FDR:{O-P(E=O|R>O>
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—I—(l—y)P(% > y|R>O) P(R > 0)
=y—y{l-P(V>0)
—i—(l—y)P(% >y|R>O) P(R > 0)

=yFWE+ (1 -y)P(Q > y),
so that FDR< yFWE+ (1—y) P(Q > y).
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