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Abstract

Recently, new concepts of type I error control in multiple comparisons have been proposed, in addition to FWE and FDR control. We
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ntroduce these criteria and investigate in simulations how the powers of corresponding test procedures for multiple endpoints
arious quantities such as number and correlation of endpoints, percentage of false hypotheses, etc. We applied the different mu
EG coherence data. We compared the memory encoding of subsequently recalled and not recalled nouns. The results show that

ecalled nouns elicited significantly higher coherence than not recalled ones.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Modern procedures of EEG analysis yield large sets of
igh-dimensional parameters, which have to be evaluated
tatistically. Letk denote the dimension of the observations.
his means there arek components, which are also called
ultiple endpoints. InHemmelmann et al. (2004)we dealt
ith so-called global tests or multivariate tests which pro-
ide one joint statement on allkendpoints. We now consider
rocedures that provide a statement for each endpoint. Many
uthors use anα-level test for each single component or end-
oint of the observational vector, see e.g.Rappelsberger and
etsche (1988). However, this practice results in a large num-
er of false positive statements (false discoveries, type I er-
ors). There exist several techniques to cope with this general
rawback in multiple comparisons. Corresponding multiple

ests will be considered in the present paper.
Our paper has the following aims: (a) to introduce both

raditional and recently proposed concepts of error control in

∗ Corresponding author. Tel.: +49 3641 9 33610; fax: +49 3641 9 33200.

multiple comparisons, (b) to investigate corresponding m
ple test procedures regarding their dependence on the d
sion k, the fraction of false hypotheses and the correla
structure of the data and compare the powers of diffe
methods, and (c) to demonstrate the use of different m
ple tests in problems of multiple comparisons of cohere
values obtained from EEG data recorded during the me
encoding of subsequently recalled or not recalled abs
nouns (Weiss et al., 2000).

The techniques we discuss are not specific to EEG
they are equally applicable to the large data in MEG
fMRI.

2. Methods

2.1. Multiple tests and type I error control

As explained inSection 1, our observations are vecto
of dimensionk. Assume we have to compare paired s
ples or two independent samples. Letx = (x1, . . ., xk ) and
E-mail address:hemmel@imsid.uni-jena.de (C. Hemmelmann). y = (y1, . . ., yk ) denote the corresponding random vec-
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Table 1
List of methods considered in this paper

Method Abbreviation Requirement

Bonferroni method Bonf
Step-down procedure ofHolm (1979) Holm P(V > 0) ≤ α

Step-down procedure ofTroendle (1995) Troe

Step-up procedure ofBenjamini and Hochberg (1995) BH
Two-stage procedure ofBenjamini et al. (2001) BKY E(Q) ≤ α

Step-down procedure ofBenjamini and Liu (1999) BL99
Step-down procedure ofBenjamini and Liu (2001) BL01

Step-down procedure A ofKorn et al. (in press) PrAu P(V > u) ≤ α (0 ≤ u < k)

Step-down procedure B ofKorn et al. (in press) PrB� P(Q > γ) ≤ α (0 < γ < 1)

tors and (µx1, . . . , µxk
) and (µy1, . . . , µyk

) the respective
means. Then, the individual null hypotheses to be tested are
H1 : µx1 = µy1, . . . , Hk : µxk

= µyk
. Tests forH1, . . . , Hk

are called multiple tests.
It can happen that one of thek hypotheses, sayHi , is re-

jected though it is true. Such an event is called type I error
or false discovery. LetR denote the random number of re-
jected hypotheses andV the random number of rejected true
hypotheses, i.e. type I errors (V ≤ R ≤ k). An interesting
quantity is the fractionV/R of falsely rejected hypotheses.
As this is not defined forR= 0, we introduce a new random
variableQ whereQ = V/R if R > 0 andQ = 0 if R = 0. In
the literature,Q is calledfalse discovery proportionwhereas
the expectationE(Q) is called false discovery rate(FDR).
Different concepts of controlling the proportion or the num-
ber of false discoveries have been proposed, together with
corresponding methods which control these rates in multiple
testing problems. In the next sections, we will present and
compare the test procedures listed inTable 1which satisfy
four different criteria that are defined by the requirements
given in the last column.

2.1.1. Control of the FWE
As already mentioned inSection 1, it is not advisable to

use anα-level test for each of thek hypotheses, i.e. a test
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Another simple method is the step-down procedure of
Holm (1979)(Holm). Let p(1) ≤ · · · ≤ p(k ) denote the or-
deredpi andH(1), . . .,H(k ) the corresponding hypotheses. In
the first step,p(1) is compared withα/k. If p(1) > α/k, none of
thek hypotheses will be rejected and the procedure stops. If
p(1) ≤ α/k,H(1) is rejected. Thenp(2) is compared withα/(k−
1). If p(2 ) > α/(k− 1),H(2), . . .,H(k ) are accepted. Otherwise
H(2) will be rejected, etc. Clearly, Holm rejects at least all
hypotheses that are rejected by Bonf. This means, Holm is
more powerful.

Bonf and Holm do not take into consideration the correla-
tion between the endpoints. In contrast, the step-down method
of Troendle (1995)(Troe) is adaptive to data correlations be-
cause it is a permutation method. Similar to Holm, it is based
on the orderedp-valuesp(1) ≤ · · · ≤ p(k ). ChooseB− 1 ran-
dom permutations of the data vectors consistent with the ex-
perimental design. Denote the univariatep-values for the vari-
ables from thejth permutation bypj

1, . . . , p
j

k for j = 1,. . .,B−
1, wherepj

1 corresponds toH(1), p
j

2 to H(2), etc. Therefore,

p
j

1, . . . , p
j

k are not ordered. Letpj

min,1 = min{pj

1, . . . , p
j

k}
for j = 1, . . ., B − 1. In the first step,p(1) is compared with
theα-quantile of theB p-valuesp(1), p1

min, 1, . . . , pB−1
min ,1. If

p(1) is larger than thisα-quantile, none of thek hypotheses
will be rejected and the procedure stops. Ifp(1) is smaller
than or equal to thisα-quantile,H(1) is rejected. Then omit
a
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hat rejects a true hypothesis with probabilityα, because i
his case the expected number of false discoveriesE(V) may
e rather large; in the worst case, it can be as high akα.
nd the probability FWE =P(V > 0), i.e. the probability o
ommitting at least one type I error may also be very la
specially whenk is large. FWE is the abbreviation of t

erm familywise error rate. For multiple comparisons it h
een long recommended to use test procedures that c

he FWE, i.e. that guarantee that FWE≤ α no matter how
any and which hypotheses are true.α is a prespecified sma
robability.

The simplest way to ensure that FWE≤ α is to test al
ndividual hypothesesH1, . . ., Hk at levelα/k. This is the
ell-known Bonferroni method (Bonf). Assume we use so
arametric or nonparametric test appropriate forH1, . . .,Hk ,
.g. thet-test and obtain thep-valuesp1, . . ., pk . Then, Bon
ejectsHi if pi ≤ α/k.
l

ll p-values corresponding toH(1), i.e. p(1), p1
1, . . . , pB−1

1 .

ow, let p
j

min,2 = min{pj

2, . . . , p
j

k} for j = 1, . . ., B − 1.
henp(2) is compared with theα-quantile of theB p-values

(2), p1
min, 2, . . . , pB−1

min, 2. If p(2) is larger than thisα-quantile
(2), . . ., H(k ) are accepted and the procedure stops. O
iseH(2) will be rejected, etc.
As already mentioned inTroendle (1995), Troe is identica

ith the method ofWestfall and Young (1993). We will see
hat the power of Troe is higher than the power of Holm
any cases.
Holm and Troe (and Bonf inSection 3.3) are the only FWE

ontrolling methods that we consider in this paper. Howe
here exist many other ones. A step-up analogue of H
as proposed byHochberg (1988). It compares thep-values

(i ) in the reverse order with the same critical bounds,
n the first stepp(k ) with α, in the second stepp(k−1) with
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α/2, . . ., in the last stepp(1) with α/k. However, Hochberg’s
method is only valid under independence of the test statistics
or at least under positive regression dependency which is a
very general statement of a nonnegative correlation structure,
seeSarkar (1998). In many-one comparisons byHorn and
Dunnett (2004)the powers of Hochberg’s method and Holm
did not essentially differ. Thus, we did not include Hochberg’s
procedure in our investigations.

Many FWE controlling methods and techniques were de-
scribed in the monographs ofHochberg and Tamhane (1987)
andWestfall et al. (1999). A further interesting type of FWE
controlling procedures was proposed byLäuter (1997),Kropf
(2000)andKropf et al. (2004). This approach uses a data
driven order of the hypotheses.

2.1.2. Control of the FDR
The requirement FWE≤ α is equivalent toP(V= 0)≥ 1−

α. This means one requires that with large probability no true
hypothesis is rejected no matter how largek is. In problems
with largek, this requirement appears to be too strict. Thus,
Benjamini and Hochberg (1995)introduced a new criterion
which requires FDR =E(Q) = E(V/R | R> 0)P(R> 0) ≤ α.
For example, FDR≤ 0.05 roughly means that on average no
more than 5 of 100 significance statements are type I errors.

The control of the FDR in the evaluation of EEG data has
a
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Both BH and BKY were derived under the assumption
that thek test statistics are uncorrelated. InBenjamini and
Yekutieli (2001)and Sarkar (2002)it was shown that the
methods are also valid under the weaker assumption of posi-
tive regression dependency, similarly like the step-up proce-
dure ofHochberg (1988)mentioned inSection 2.1.1. We will
investigate by simulations whether FDR≤ α holds when the
endpoints are correlated.

Step-down procedures that control the FDR have been
proposed byBenjamini and Liu (1999, 2001)(BL99, BL01).
BL99 requires independence of the test statistics or at least
positive regression dependency whereas BL01 is valid also
under dependency. BL99 compares the orderedp-values
p(i ) with the critical bounds 1− [1 − min{1,αk/(k − i +
1)}]1/(k−i−1) and BL01 with the critical bounds min[1,αk/(k
− i + 1)2] (i =1, . . ., k). In Horn and Dunnett (2004)was
shown that the power of BL01 is only slightly lower than
that of BL99. Therefore, we applied only BL01 to the data in
Section 3.3. Moreover, former simulations have shown that
both methods are distinctly inferior to BH and BKY con-
cerning their power, seeHorn et al. (2003). Therefore, in this
paper we executed no simulations for BL99 and BL01.

2.1.3. Control of the number V and relative number V/R
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lready been proposed byDurka et al. (2004).
Benjamini and Hochberg (1995)were the first who pro

osed a test procedure (BH) that controls the FDR. Sim
o Holm, it is based on the orderedp-valuesp(1) ≤ · · · ≤ p(k )
btained with some parametric or nonparametric test ap
riate forH(1), . . .,H(k ). However, BH is a step-up procedu

n the first step,p(k ) is compared withα. If p(k ) ≤ α, all hy-
otheses are rejected. Ifp(k ) > α, H(k ) cannot be rejecte
henp(k−1) is compared withα(k − 1)/k. If p(k−1) ≤ α(k
1)/k, H(k−1), . . ., H(1) are rejected. Ifp(k−1) > α(k−1)/k,

(k−1) cannot be rejected, etc.
Let m denote the unknown number of false andk–m the

umber of true hypotheses.Benjamini and Hochberg (199
ave shown that for their procedure FDR≤ α(k−m)/k. Thus,
DR is smaller thanα if m> 0 and decreasing with increas
. If mwere known one could increase the power of this s
p procedure by usingα′ = α∗·k/(k−m) instead ofα. Based
n this idea,Benjamini et al. (2001)developed a two stag
rocedure (BKY). In the first stage, BH is applied compa
(k ),p(k−1), . . .,p(1) with the critical constantsα′·k/k, α′·(k−
)/k, . . .,α′·1/kwhereα′ =α/(1 +α). Letr1 denote the numbe
f hypotheses that would be rejected.r1 is an estimate ofm.
ence, we replace the denominatorkof the critical constant
y k− r1 and repeat in the second stage BH comparingp(k ),
(k−1), p(k−2), . . ., p(1) with the critical constantsα′·k/(k −
1), α′(k− 1)/(k− r1), . . ., α′·1/(k− r1).

Note that using BKY it is possible to reject a hypothe
ith ap-value greater thanα. In most cases, such an even
ndesirable. Hence, we have modified the rule of rejec
e reject a hypothesis only if thep-value does not exceedα
s well.
f false discoveries
We remind that FWE control means thatP(V > 0) ≤ α.

ith largek, it may be sufficient to require thatP(V> u) ≤ α

or some prespecified integeru (0 ≤ u < k). This means th
trict requirement that no type I error occurs is lessened
equiring that no more thanu type I errors occur. For examp
ith u= 2 andα = 0.05, we may require thatP(V> 2)≤ 0.05
r equivalentlyP(V≤ 2) ≥ 0.95, which means that 2 or le

ype I errors are accepted with probability 0.95.Korn et al.
in press)proposed a step-down procedure called Proce
(PrAu ) which ensures thatP(V> u) ≤ α for some specifie

ntegeru < k. Computationally, PrAu can be considered
n extension of Troe ifu > 0. Foru = 0, it is identical with
roe. In its first step, PrAu automatically rejectsH(1), . . .,
(u). The further steps are more complex than with Troe
etails seeKorn et al. (in press).

Now we remind that FDR control means that FDR =E(Q)
α. However, this does not prevent thatQ attains value

uch greater thanα in single cases. For example, it can h
en that BH at levelα = 0.05 rejects 100 hypotheses 20
hich are true hypotheses, so thatV/R = 20/100 = 0.2 >
.05. Therefore,Korn et al. (in press)proposed a step-dow
rocedure called Procedure B (PrB�) that (asymptotically
uarantees thatP(Q > γ) ≤ α for some prespecifiedγ (0 <
< 1). For example, withα = 0.05, PrB0.1 guarantees th
> 0.1 is possible only with a probability≤0.05. PrB� is

lso an extension of Troe and uses nearly the same com
ional techniques as PrAu . In dependence on the specifieγ
t automatically rejects some hypotheses in the different s
xcept in the first step (in contrast to PrAu ). For details se
orn et al. (in press).
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Fig. 1. Relations between control of different type I error rates.

Both, PrAu and PrB� are based on the permutation prin-
ciple and thus are adaptive to the correlation structure of the
data.

2.1.4. Relations
The control of the FWE is the most stringent criterion. It

implies the control of the FDR as well as of the numberVand
relative numberV/R of false rejections. These implications
are demonstrated inFig. 1. In addition, we derived the relation
FDR ≤ γ FWE + (1 − γ) P(Q > γ) for 0 < γ < 1. The
corresponding derivations are given inAppendix A.

2.2. Simulated data and real data (EEG data)

2.2.1. Simulated data
All procedures considered in this paper can be used for the

paired samples case and the case of two independent samples.
They all use thep-values for the different hypotheses. There-
fore, it is not necessary to differentiate between the paired
samples case and the case of two independent samples. Thus,
we only simulated the paired samples case. Letdi = xi − yi
denote the componentwise differences (i = 1, . . ., k). Thereby
in the paired samples case we have the random difference vec-
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may be typical for longitudinal observations, e.g. time series
where neighboring observations have higher correlations than
more distant observations. The matrix

Corr2=




R1 R2 R2

R2 R1 R2

R2 R2 R1




with

R


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1 2/3 · · · 2/3

2/3 1 · · · 2/3


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R
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w f the
p 0
r each
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orsd = (d1, . . ., dk ) which havek-variate distributions. Fo
hese vectors, we generated samples fromk-variate norma
istributions for special configurations of means and co

ation coefficients, and executed different multiple tests.
omponents ofk-variate normally distributed vectorsd had
ommon variance 1, and the meansµxi − µyi = µdi (i = 1,
. .,k) were chosen so thatµdi = ∆ (i = 1,. . .,m) andµdi = 0
i =m+ 1, . . ., k). This means we consideredm false andk−

true hypotheses, and the deviations of the false hypot
ere all into the same direction. The value ofmwas varied
etween 1 andk.

We denote the coefficients of correlation betweendi and
j by ρij (1 ≤ i ≤ j ≤ k). We considered the casesρij =
.2, i.e. constant low positive correlation, andρij = 0.8, i.e
onstant high positive correlation (i �= j). In most practica
ituations, the correlation coefficientsρij do not have th
ame value and the same sign. Therefore, we also cons
he following two types of correlation matrices Corr1 a
orr2. The matrix
1 =  ...
... · · · ...

2/3 2/3 · · · 1


and

2 =




−1/3 −1/3 · · · −1/3

−1/3 −1/3 · · · −1/3

...
... · · · ...

−1/3 −1/3 · · · −1/3




as used in order to investigate a case where both, po
nd low negative correlations occur.

The number of repeated simulations for any configura
as 60.000 for most procedures, with the exception o
ermutation methods Troe, PrAu and PrB� where only 5.00
epetitions were done. The number of permutations in
ermutation test was 1.000.
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2.2.2. EEG data
A sample of 23 female German native speakers partici-

pated in the EEG experiment. They auditorily perceived two
unrelated wordlists each containing 25 disyllabic abstract
nouns. Participants had to memorize the nouns and imme-
diately after the presentation of each list they were asked to
recall the words previously encoded.

During word encoding EEG was recorded with 19 gold-
cup electrodes according to the 10–20 system against the av-
eraged signals (A1 +A2)/2 of both ear lobe electrodes. Filter
settings were 0.3–35 Hz, sampling frequency was 256 Hz.
According to the behavioral results EEG epochs of subse-
quently recalled and not recalled nouns were selected. One
second epochs beginning with word onset were Fourier trans-
formed and averaged cross-power spectra between all possi-
ble electrode pairs (171) were computed for each participant.

As it has been demonstrated, that particularly lower EEG
frequencies are associated with dm-effects (differences due to
memory performance;Fell et al., 2001; Klimesch et al., 1996;
Weiss and Rappelsberger, 2000), adjacent spectral values
were averaged to obtain broad band parameters for the follow-
ing frequency bands: delta1 (1–2 Hz), delta (3–4 Hz), theta
(5–7 Hz), alpha1 (8–10 Hz), alpha2 (11–12 Hz) and beta1
(13–18 Hz). The normalization of the cross-power spectra
yielded 171 coherence values per frequency band, condition
( lues
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Fig. 2. Estimates of the FDR and ofP(Q > 0.1) for BH (circles) and BKY
(triangles) under Corr2 (n = 8,k = 40,α = 0.05,∆ = 1.5).

As mentioned inSection 2.1.3, the requirement FDR≤ α

cannot prevent thatV/R attains large values. Therefore, we
estimated the probabilityP(Q > 0.1) for BKY and BH, see
Fig. 2(right side). We state thatP(Q> 0.1) for BKY and BH
is smaller than 0.2.

3.2. Power comparisons

In multiple comparisons, there exist different concepts of
power. We will use terms that originally were used in connec-
tion with pairwise multiple comparisons. The probability of
rejecting at least one of the false hypotheses is called any-pair
power, and the probability of rejecting all false hypotheses is
called all-pairs power, seeRamsey (1978). If we consider a
single false hypothesis, then the probability of rejecting it is
called per-pair power, seeEinot and Gabriel (1975). Kwong
et al. (2002), Liu (1997) andTroendle (2000)preferred in
their power comparisons the average power which isE(R−
V)/m, i.e. the expected proportion of false hypotheses that
were rejected. In our simulations, we considered equal dif-
ferencesµxi − µyi = ∆ for allm false hypotheses. Then, the
per-pair power of each false hypothesis has the same value,
sayp, so thatE(R−V) =mpand with itE(R−V)/m= p. This
means that in our considerations the average power is identi-
cal with the per-pair power. We restricted our investigations
t er as
t

ul-
t
p ethod
e
H s are
u

f our
m a, see
F n
i wer
o ses
w of
a large
m

recalled or not recalled) and participant. Coherence va
ere Fisher-z-transformed for the current statistical analy
urther details of the experimental setup and methods of
nalysis can be found inWeiss and Rappelsberger (2000)and
eiss et al. (2000).
In the present study our aim was to find out which

he 171 pairs of electrodes significantly differ in their me
f coherence values for subsequently recalled versus n
alled nouns. For this task we needed a multiple test.

. Results

.1. Estimation of the FDR and P(Q > 0.1)

As mentioned inSection 2.1.2, BH and BKY control the
DR under the condition of independence of the test s

ics or at least of positive regression dependency. In mu
ndpoint problems, it is difficult to determine the correla
etween the test statistics. However, it may be possible

imate the correlation between the endpoints. (Of course
orrelation of the test statistics will be related to the co

ation of the endpoints.) Thus, we investigated how the F
f BH and BKY depends on the correlation of the endpo
ere the FDR for the correlation structure Corr2 was mos

eresting, as there are negative correlation coefficients.Fig. 2
left side) demonstrates for Corr2 that the FDR of BH
reases with increasingmwhereas the FDR of BKY does n
trongly change whenm increases. The FDR of both me
ds is below the nominal level of 0.05. Similar results w
btained forρ = 0.2,ρ = 0.8 and Corr1.
o the per-pair power (average power) and all-pairs pow
hey seem to be most important in practice.

Our first task was to investigate how the power of our m
iple test procedures depends on the fractionm/k of false hy-
otheses. We observed that the per-pair power of most m
xcept PrA2 increases with increasingm/k, seeFigs. 3 and 4.
owever, the all-pairs power curves of most procedure
-shaped, seeFigs. 5 and 6.

Our second task was to investigate how the power o
ethods depends on the correlation structure of the dat
igs. 3–6. Whenρij = ρ for i �= j, i.e. when the correlatio

s the same for all pairs of components, the per-pair po
f BH, BKY and PrA2 decreases and that of Troe increa
ith increasingρ, seeFig. 3, whereas the all-pairs power
ll methods increases (only in some cases we state for
/k a slight power decrease), seeFig. 5.
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Fig. 3. Per-pair powers forρ = 0.2 andρ = 0.8 (n = 8,k = 40,α = 0.05,∆ =
1.5).

Fig. 4. Per-pair powers under Corr1 and Corr2 (n= 8,k= 40,α = 0.05,∆ =
1.5).

Fig. 5. All-pairs powers forρ = 0.2 andρ = 0.8 (n = 8, k = 40,α = 0.05,∆
= 1.5).

Fig. 6. All-pairs powers under Corr1 and Corr2 (n = 8, k = 40,α = 0.05,∆
= 1.5).

Our third task was to investigate how the power of our test
procedures depends on the numberkof hypotheses. Here the
most important result is that the per-pair power of BKY and
BH scarcely changes with increasingk, seeFig. 7. The all-
pairs power of BKY and BH decreases moderately when the
fraction of false hypotheses is small, and slightly when most
hypotheses are false, seeFig. 8. As expected, the per-pair
power and all-pairs power of the FWE controlling methods
Holm and Troe decrease whenk increases, seeFigs. 7 and 8.
The powers of Troe, PrAu and PrB� were not calculated fork
> 40 because of the immense computational effort. We expect
that the per-pair power and all-pairs power of PrA2, which
are rather high form/k = 0.2 andk≤ 40, will decrease very
strongly with increasingk, so that they will be much lower
for largek than the corresponding power values of BKY and
BH. Figs. 7 and 8are forρ = 0.8. The results forρ = 0.2
which are not shown here are very similar.

When we formally compare the different methods we state
that PrA2 has the highest per-pair power and all-pairs power

F
1

ig. 7. Per-pair powers form/k = 0.2 andm/k = 0.8 (n = 8, α = 0.05,∆ =
.5,ρ = 0.8).



C. Hemmelmann et al. / Journal of Neuroscience Methods 142 (2005) 209–217 215

Fig. 8. All-pairs powers form/k = 0.2 andm/k = 0.8 (n = 8, α = 0.05,∆ =
1.5,ρ = 0.8).

if m/k≤ 1/4 whereas BKY has the highest per-pair power and
all-pairs power ifm/k > 1/4. This applies forρ = 0.2 and 0.8
as well as for Corr1 and Corr2, seeFigs. 3–6. However, the
per-pair power and all-pairs power of PrA2 strongly decrease
with increasingk, so that BKY becomes the most powerful
method also for small fractionsm/k.

3.3. Applications of multiple tests to EEG coherence
data

The data we now evaluate come from the experiment de-
scribed inSection 2.2.2. The number of subjects was 23. For
each subject, a vector of 171 coherence values was obtained
under two different conditions. This means we had to testk
= 171 null hypotheses.

In all multiple tests, we used the pairedt-test statistics. The
number of significant mean differences at levelα = 0.05 with
Bonf, Holm and Troe, PrA1 and PrA2, PrB0.05, PrB0.1, BL01,
BH and BKY are given inTable 2. In the second column are
also the number of significant results with the pairedt-test
which cannot be recommended as it is not a multiple test. Of
course, this test provides more significant differences than
the multiple tests. Among the multiple tests, most significant
differences were found for BKY followed by BH. Among the

T
N mparin al
b

0.05

PrA2

d
d
t
a
a
b

FWE controlling methods, Troe is distinctly more powerful
than Bonf and Holm for most frequency bands. It is also more
powerful than the FDR controlling procedure BL01 which is
considerably less powerful than BKY and BH.

4. Discussion

We have introduced four criteria for controlling type I er-
rors (three of them may be new for most readers) and derived
the relationships between them, seeFig. 1.

Control of the FWE means to require that no type I error
occurs no matter how large the number of hypotheses and
the number of rejected hypotheses is. With high-dimensional
data, this criterion is too strict. Therefore, the other criteria
were proposed.

In our opinion, the requirementP(Q> γ) ≤ α provides the
most reasonable criterion. Unfortunately, with our program
the only corresponding procedure (PrB�) cannot be executed
within an acceptable time of computation whenR > 30. In
this case, a compromise may be to stop the calculations when
R = 30 and report the 30 corresponding (most significant)
endpoints. Further research is needed to develop powerful
procedures feasible for largek andR.

The requirementP(V > u) ≤ α is a generalization of the
F an-
t ich
n ing
p t as
P

=
E is
a
s e
F ese
m ngly
v ver,
t d do
n rA
a ted
t ce-
d tion is
n rite-
able 2
umber of significant coherence differences for different tests when co
ands analyzed

t-test FWE≤ 0.05 P(V > u) ≤
Bonf Holm Troe PrA1

elta1 78 5 6 10 12
elta 64 1 1 7 16

heta 27 4 4 6 7
lpha1 14 0 0 0 1
lpha2 44 0 0 3 7
eta1 55 5 5 5 11
g the processing of subsequently recalled and not recalled nouns forl frequency

P(Q > γ) ≤ 0.05 FDR≤ 0.05

PrB0.05 PrB0.1 BL01 BH BKY

25 9 17 7 54 60
21 7 7 1 44 47
10 6 6 4 10 10

2 0 0 0 0 0
12 1 1 0 12 12
14 7 7 5 23 25

WE criterion. It is less strict, but it has similar disadv
ages. In a practical application it is difficult to decide wh
umberu is appropriate. Moreover, the only correspond
rocedure (PrAu ) requires the same computational effor
rB�.
As mentioned inSection 2.1.3, the requirement FDR

(Q) ≤ α does not prevent thatQattains large values. This
general disadvantage of the FDR criterion. However,Fig. 2
hows that the probabilityP(Q> 0.1) is relatively small for th
DR controlling methods BH and BKY. This means that th
ethods provide a good compromise as they do not stro

iolate the requirement of the criterion we favor. Moreo
hese two methods are computationally very simple an
ot need a special computer program, in contrast to Pu

nd PrB�. In addition, our formal comparisons demonstra
hat BKY has a relatively high power. Therefore, this pro
ure seems to be most recommendable. However, cau
eeded when comparing methods that satisfy different c
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ria because one can expect that the strictest criterion leads to
the lowest power.

Note that PrAu , PrB� and Troe are permutation meth-
ods. Such methods have the advantage that they consider the
correlation of data. This seems to be the reason why these
methods are more powerful forρ = 0.8 than forρ = 0.2, see
Figs. 3 and 5.

In order to demonstrate the properties of different multi-
ple tests we applied them to EEG coherence data obtained
while participants memorized abstract nouns subsequently
recalled or not. The major result was that during the phase of
word encoding, subsequently recalled nouns elicited higher
EEG coherence than not recalled nouns at all electrode pairs
showing significant differences. Thus those words which are
likely to be recalled are associated with an increase of syn-
chronized activity between various brain regions, in particu-
lar left hemispheric sites and between both hemispheres. All
frequency bands analyzed demonstrated significantly higher
coherence for recalled nouns with the exception of the alpha1
band (8–10 Hz), which did not show any significant differ-
ences. The latter finding agrees well with the assumption that
alpha1 predominantly reflects sensory processing, or gen-
eral attentional processes (Klimesch et al., 1996; Weiss and
Rappelsberger, 2000), and does not reflect differences in
memory encoding. In contrast, coherence in the other fre-
q t re-
c was
r -
i rds.
I h
A e of
m lthy
c n our
o var-
i n of
d ll as
l ing
a ocia-
t in-
c ing to
a
a at
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Appendix A

Here are the derivations for the statements given inFig. 1.
We have

FDR = E

(
V

R
|R > 0

)
P(R > 0)

=
{

0 · P

(
V

R
= 0|R > 0

)

+
∑
w>0

wP

(
V

R
= w|R > 0

)}
P(R > 0)

≤ P

(
V

R
> 0|R > 0

)
P(R > 0)

= P(V > 0, R > 0) = P(V > 0) = FWE.

This means FWE≤ α implies FDR≤ α. If all hypotheses
are true we haveV =R. Then FDR= E(V/R|R> 0)P(R> 0) =
P(R> 0) = FWE. Thus, in this case FWE and FDR control are
equivalent. (If FWE≤ α when all hypotheses are true then
the FWE control is calledweak.)

AsP(V > u) ≤ P(V > 0) foru≥ 0, FWE≤ α also implies
P(V > u) ≤ α.

i

F

c n
B
≤

B

uency bands differed considerably for recalled and no
alled abstract nouns. A similar finding to our study
eported byFell et al. (2003)studying intracortical record
ngs of the temporal lobe during memory encoding of wo
n addition,Besthorn et al. (1994)found that patients wit
lzheimer’s disease, who suffer from a major disturbanc
emory functions, exhibited lower coherence than hea

ontrols in the theta, alpha and beta frequency bands. I
pinion, the higher synchronization for recalled nouns in

ous frequency bands is associated with the participatio
ifferent cognitive operations such as short-time as we

ong-time memory, attention to internal thinking, encod
nd storage of episodic information and semantic ass

ions occurring during the task, the latter probably being
reased during the encoding phase and therefore lead
n improved ability to recall the nouns at a later time (Weiss
nd Rappelsberger, 2000). Multiple tests demonstrate th
uring the encoding phase subsequently recalled noun
mbedded within a more complicated network of interact
etween various recording sites than not recalled noun
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As P(Q > γ) = P(V > γR) ≤ P(V > 0), FWE≤ α also
mpliesP(Q > γ) ≤ α.

Furthermore, we have

DR =
{

0 · P

(
V

R
= 0|R > 0

)

+
∑

0<w≤γ

wP

(
V

R
= w|R > 0

)

+
∑
w>γ

wP

(
V

R
= w|R > 0

)
 P(R > 0)

≤
{
γP

(
0 <

V

R
≤ γ|R > 0

)

+ P

(
V

R
> γ|R > 0

)}
P(R > 0) = B.

If γ < 1/k, we haveP(0 <V/R≤ γ |R> 0)= 0 becauseV/R
annot take positive values smaller than 1/k. We then obtai
= P(V/R> γ | R> 0)P(R> 0) =P(Q > γ). Thus,P(Q > γ)
α implies FDR≤ α, whenγ < 1/k.
If 0 < γ < 1, we have

=
{
γ

(
1 − P

(
V

R
= 0|R > 0

)
− P

(
V

R
> γ|R > 0

))

+ P

(
V

R
> γ|R > 0

)}
P(R > 0)

= γP(R > 0) − γ{P(V = 0) − P(R = 0)}
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+ (1 − γ)P

(
V

R
> γ|R > 0

)
P(R > 0)

= γ − γ{1 − P(V > 0)}

+ (1 − γ)P

(
V

R
> γ|R > 0

)
P(R > 0)

= γFWE+ (1 − γ)P(Q > γ),

so that FDR≤ γFWE+ (1−γ) P(Q > γ).

References

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J Roy Stat Soc Ser B
1995;57:289–300.

Benjamini Y, Liu W. A step-down multiple hypotheses testing proce-
dure that controls the false discovery rate under independence. J Stat
Planning Inference 1999;82:163–70.

Benjamini Y, Liu W. A distribution-free multiple-test procedure that con-
trols the false discovery rate. Technical Report. Tel Aviv University,
2001.

Benjamini Y, Yekutieli D. The control of the false discovery rate in
multiple testing under dependency. The Ann Stat 2001;29:1165–88.

Benjamini Y, Krieger A, Yekutieli D. Two staged linear step up FDR
controlling procedure. Technical Report. Tel Aviv University, 2001.

Besthorn C, Forstl H, Geiger-Kabisch C, Sattel H, Gasser T, Schreiter-
Gasser U. EEG coherence in Alzheimer disease. Electroencephalogr

D On
n and
Eng

E tiple

F , et
mpal

F .
y for-
rosci

H i-
Neu-

H gnif-

H ork:

H cand

Horn M, Dunnett CW. Power and sample size comparisons of stepwise
FWE and FDR controlling test procedures in the normal many-one
case. In: Benjamini Y, Sarkar SK, Bretz F, editors. Recent develop-
ments in multiple comparison procedures, vol. 47. IMS Lecture Notes
Monograph Series; 2004.

Horn M, Hemmelmann C, S̈usse T. A comparative study of test proce-
dures for multiple endpoints concerning FDR, FDP FWE and power.
Paper for Meeting of the German MCP Group, Magdeburg, 2003.

Klimesch W, Schimke H, Doppelmayr M, Ripper B, Schwaiger J,
Pfurtscheller G. Event-related desynchronisation (ERD) and the Dm
effect: does alpha desynchronization during encoding predict later re-
call performance? Int J Psychophysiol 1996;24:47–60.

Korn EL, Troendle JF, McShane LM, Simon R. Controlling the number
of false discoveries: application to high-dimensional genomic data. J
Stat Planning Inference, in press.

Kropf S. Hochdimensionale multivariate Verfahren in der medizinischen
Statistik. Aachen: Shaker Verlag; 2000.
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