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Abstract
The development of new techniques to quantitatively measure gene expression in cells has
shed light on a number of systems that display oscillations in protein concentration. Here we
review the different mechanisms which can produce oscillations in gene expression or protein
concentration using a framework of simple mathematical models. We focus on three
eukaryotic genetic regulatory networks which show ‘ultradian’ oscillations, with a time period
of the order of hours, and involve, respectively, proteins important for development (Hes1),
apoptosis (p53) and immune response (NF-κB). We argue that underlying all three is a
common design consisting of a negative feedback loop with time delay which is responsible
for the oscillatory behaviour.

1. Introduction

Biological systems display fascinating spatial and temporal
patterns, which hint that the underlying cellular processes
are highly dynamic and operate on a wide range of time-
and lengthscales. This is indeed confirmed by measurements
of the temporal dynamics of protein concentrations and gene
expression levels for various signalling and response systems,
made using pulse-labelling [1], β-galactosidase measurements
and immunoblotting [2], electromobility shift assays [3],
real time PCR [4], fluorescence techniques [5–8], chromatin
immunoprecipitation assays [9] and microarrays [10]. Overall,
it is now evident that regulatory and signal transduction
networks do not depend merely on shifting the relevant protein
concentrations from one steady state level to another. Rather,
the signals often have a significant temporal variation that
carries much more information and propagates through the
regulatory networks in a complex manner. With time-resolved
data now available for a number of response and signalling
systems, it is perhaps the appropriate time to explore whether
there are any commonalities, or ‘design principles’, in the
underlying mechanisms. In this review we will show that
a prominent subclass of such systems does indeed have

a common underlying design structure which combines a
negative feedback loop with a time delay.

This subclass consists of systems that display oscillatory
behaviour under some conditions. The most obvious examples
are circadian rhythms and cell division. Oscillations are
also seen in the levels of cellular calcium [11] and in
embryo development. Somite segmentation, for instance,
exhibits clearly periodic spatial patterns which are produced
by periodic temporal variation of proteins such as Hes1,
Axin, Notch and Wnt [12–15]. We also include in this class
systems which display damped oscillations or semi-periodic
behaviour. One example is oscillations, triggered by DNA
damage, in p53, a key protein involved in cell death and
apoptosis pathways [5, 6, 16, 17]. Hormones, such as the
human growth factor, also show such intermittently periodic
behaviour and pulsatile secretion [18]. For these systems the
recurrent behaviour probably has a direct physiological role. In
cyanobacteria, for example, various physiological processes,
such as respiration and carbohydrate synthesis, are directly
influenced by the circadian clock to be in sync with the day–
night cycle [19]. For other systems, however, clear oscillatory
behaviour is not observed in the wild-type, but only in certain
mutants. For instance, the NF-κB signalling system, involved
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Figure 1. Experimentally observed ‘ultradian’ oscillations in
(a) Hes1, data taken from [12], (b) p53, data taken from [5] and
(c) NF-κB, data taken from [3]. The concentrations are in arbitrary
units.

in immune response in mammalian cells, shows oscillations in
nuclear NF-κB concentration only in a mutant which contains
just one isoform of the NF-κB inhibitor, IκBα, and not the
other isoforms [3]. Fluorescence measurements of the NF-κB
system modified so that IκBα was overexpressed also showed
sustained oscillations over several hours [7]. However, wild-
type cells show at best damped oscillations [3]. Here it
is not clear if the oscillations themselves have a significant
physiological consequence or are merely a by-product of other
requirements for the wild-type behaviour. Nevertheless, the
sub-parts of these systems which are potentially oscillatory
are important, often essential, components which influence
the complex temporally varying wild-type response.

We will focus on three of the regulatory systems
mentioned above: Hes1 in mammalian embryos, p53-Mdm2
in mammalian cells, and the NF-κB signalling system,
also in mammalian cells. Figure 1 shows the oscillations
observed in experiments for all three. These systems are
quite complicated, with many components interacting in
various ways, including transcriptional activation/repression,
translation and post-translation regulation, protein–protein
interaction, targeted protein degradation and active nuclear–
cytoplasmic translocation, composed into a complex network
with multiple feedback loops. In this review, we mainly
describe the mechanisms and structures in these networks that
allow them to produce the observed oscillations. We will do
this using simplified mathematical models where the level of
description balances the need to correctly describe the systems
with the need to coarse-grain over some details in order to
reveal common design features.

We first begin by defining the overall framework of models
we consider, and describing the basic ingredients for producing
oscillatory behaviour within this framework. In the subsequent
sections we show how the three examples of Hes, p53 and NF-
κB contain these ingredients. Therein we also elaborate, using
stability analysis, the requirements for producing oscillations
in these systems. Finally, we briefly discuss how to extract
information about underlying structures from oscillatory time
series data.

Our analysis does indeed reveal that these three systems
have a common underlying design, consisting of a negative
feedback loop with an effective time delay. Among the
many ways of producing a time delay, we emphasize the
mechanism of saturated degradation, where the degradation
rate of a protein saturates at high concentrations of that
protein. This can happen when the protein is actively
degraded by another enzyme, and the degradation rate is
limited by that enzyme rather than the protein concentration.
The importance and generality of saturated degradation are
discussed further in the final section. There we also speculate
on the physiological function of oscillations. While it is
unclear whether the oscillations in themselves have a direct
physiological importance, we suggest that they can carry much
more information than steady state signals. For instance,
oscillations can be very spiky and in the NF-κB system we
show that such spiky oscillations can be used to produce
very sharp response with large effective Hill coefficients.
Thus we argue that oscillations, in particular spiky ones,
have interesting properties that could be exploited by gene
regulatory systems.

1.1. Negative feedback

Figure 2(a) shows a schematic negative feedback loop. The
individual nodes in this loop are the relevant dynamical
variables: they could be protein concentrations, gene
expression levels, etc. Each variable either activates or
represses the next one in the loop. By an activator, we
mean that if the concentration of protein 1 goes up it tends to
increase the concentration of protein 2 (either by increasing its
production rate or decreasing its degradation rate). A repressor
has the opposite effect. Then, a negative feedback loop is
simply defined as a loop with an odd number of repressors,
so that the effect of a perturbation in the concentration of
any species in the loop eventually feeds back to itself with
a negative sign. Feedback loops are, in general, the most
common network motifs in cellular organization, especially
when one considers the regulation of small molecules [20].
We concentrate on negative feedback here because it was
hypothesized by Thomas [21], and rigorously proven for
a wide class of systems [22, 23] that the presence of at
least one negative feedback loop is a necessary condition for
oscillations.

The simplest negative feedback loop is of course a protein
which represses itself. There are many examples of such
proteins: the main repressor of the SOS regulon in E. coli,
LexA, also represses its own production [24]; Hes1, mentioned
above, also represses transcription of its own gene [12], shown
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Figure 2. Negative feedback loops: (a) a generic multi-species negative feedback loop; (b) the simplest negative feedback loop—a
self-repressor; (c) two-component negative feedback loops for the three examples we examine. In all figures a normal arrow represents an
activating interaction, and a barred arrow represents a repressing interaction.

schematically in figure 2(b). However, Hes1 looks like a one-
component loop only if we coarse-grain over the intermediate
steps in protein production. If we also count the Hes1 mRNA
then it becomes the two-component negative feedback loop
of figure 2(c): one component, Hes protein, represses the
production of the second, Hes1 mRNA, while the second
component activates the first. The other two systems we
discuss later in this review have the same loop structure when
coarse-grained to the two-component level. Nuclear NF-κB is
known to activate production of IκBα, which inhibits nuclear
import of NF-κB by sequestering it in the cytoplasm [3]. p53
and Mdm2 work similarly, with p53 activating the mdm2 gene
and Mdm2 sequestering p53 [25].

To examine the possible dynamical behaviour produced
by a negative feedback loop, we model the dynamics of
the concentrations of the components using ordinary coupled
differential equations. For instance, for the two-component
loops shown in figure 2(c),

dx1

dt
= g1(x1, x2)

dx2

dt
= g2(x1, x2), (1)

where x1 and x2 are the concentrations of the two components
X1 and X2. This can easily be generalized to longer loops with
N components,

dxi

dt
= gi(xi, xi−1), i = 1, 2, . . . , N, (2)

which models a single feedback loop with no cross-links
because the rate of change of a given variable xi depends only
on itself and the preceding variable, xi−1. In writing such an
equation we are assuming that fluctuations in space and time
are negligible. Thus, there are no stochastic or diffusion terms.
The functions gi model both production and degradation of the
components, and can take many forms depending on the kind
of interactions in the system. For example, in the p53 example
(with X1 → p53, X2 → Mdm2), we know that p53 binds to
an operator site at the promoter for the mdm2 gene and aids
transcription. Then, under some assumptions4 the production
of Mdm2 can be modelled using a term of the form

(p/K)h

1 + (p/K)h
, (3)

4 In particular, this assumes that the number of proteins bound to the operator
site is much smaller than the total number of proteins.

a sigmoidal monotonically increasing function of the p53
concentration, p (the Hill coefficient, h � 1, accounts for
cooperativity in the binding of p53 to the operator, and K is
the dissociation constant).

It is difficult to say anything about the behaviour of the
general coupled differential equation of a negative feedback
loop, such as equation (2). However, it is reasonable to
constrain the functions gi of equation (2) to be monotonic in
xi−1. This corresponds to saying that a protein that activates a
particular process cannot change to repress it at some other
concentration, and vice versa, which is the case for most
transcription factors5. For monotone systems, not only is there
no ambiguity about whether the loop implements negative
or positive feedback, but we can also prove rigorously that
there is only one fixed point (see appendix A). The question
then is whether such a steady state is stable or unstable.
If the fixed point is unstable, and the system’s trajectories
are bounded (again, a reasonable assumption for a biological
system) then it must show periodic oscillations: this is known
as the Poincaré–Bendixson theorem [28]. On the other hand,
in the case of two-variable monotonic systems, it is possible to
show by Dulac’s criterion [29] that oscillations are not possible
(see appendix C).

1.2. Time delays

Physically, what is required for instability of the fixed point,
and hence oscillations, is a time delay, or a slowing down
of the signal going round the loop. By signal we mean
perturbations of the concentrations away from the steady
state. If a perturbation in the concentration of one variable
instantaneously affects the concentration of the next one, and
so on, then for a negative feedback loop any perturbation will
be immediately cancelled and the steady state will be stable.
A sufficiently large time delay on the other hand will produce
oscillations. This can be readily understood with an example:
consider a person who walks along a straight line to a given

5 Some proteins can both activate as well as repress the same process
depending on their concentration. For instance, CI in lambda phage activates
the PRM promoter at low concentrations, but represses it at high concentrations
[26]. Another example is the galactose regulator GalR, which at high
concentrations of galactose activates the promoter galP2 but in the absence of
galactose forms a DNA loop, which completely represses galP2 [27]. Such
examples are, however, somewhat rare and we will not consider them.
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Table 1. Timescales of some processes in eukaryotic cells
associated with a single molecule. The upper part of the table
indicate the processes which are usually neglected in writing the rate
equations of regulation networks, while the lower part indicate
processes which are usually accounted for.

Translocation through nuclear pores [39] 10−4 s
Molecular diffusion in the cell 1 s
Translation [40] 30 s
Transcription [40] 3 min
mRNA degradation [40] 3 min
Protein degradation 10 min to 10 h
Cellular signals [3, 12, 16] 1 h

point, marked on the ground. If this person is able to take
instantaneous decisions, he will approach the mark and then
stop. This is a stationary solution to the walk kinetics. If, on
the other hand, it takes some time to realize that the mark has
been reached, the person will not stop at the mark, but cross
it. When eventually the information that the mark has been
crossed is processed, the person will turn back and walk in
the opposite direction. The mark will again be reached and
overshot, and so on. The resulting kinetics will be damped
or sustained oscillations about the mark. In cellular systems
many processes could produce time delays. Table 1 lists some
timescales associated with such processes.

With the above insight, one can see that a simple way to
model oscillations using the framework of equation (1) is to
introduce an explicit time delay into the equations

dx1(t)

dt
= g1(x1(t), x2(t), x1(t − τ1), x2(t − τ2))

dx2(t)

dt
= g2(x1(t), x2(t), x1(t − τ3), x2(t − τ4)).

(4)

Of course, this is the most general form, and often it is
possible to have fewer than four delays. Oscillations are
observed even in the simplest case of a linear differential
equation with a single (sufficiently large) delay (see appendix
C), dx/dt = −x(t − τ), which models the one-component
Hes loop of figure 2(b) where Hes1 represses itself after
a time delay τ . Although a linear delay rate equation is
an oversimplification of Hes1 production, the physics which
lies behind more general delay differential equations such as
equation (4) is the same. The added complication is that the
functions g1 and g2 are in general highly nonlinear, resulting
in an amplification of the effect of the delay.

Putting an explicit time delay like this, of course, does not
really shed light on the mechanism producing the time delay.
There are several possibilities which can be used to produce
oscillations in a negative feedback loop:

(i) a process that takes a finite minimum time,
(ii) many intermediate steps,

(iii) a sharp response by some of the variables,
(iv) saturated degradation and
(v) autocatalysis.

To elaborate:

(i) Rate equations, such as equation (2), typically model
processes which occur with a given average rate, such

as the binding of a protein to an operator site. A hidden
assumption is that the time interval between two binding
events is Poisson distributed, which means that often there
is a reasonable probability for two events to be separated
by a very short time interval (say, much shorter than
the average time between events). Sometimes, however,
molecular processes take a certain minimum time. For
instance, if transcription and translation take a time τ

after a polymerase binds to the promoter, then the rate of
production of the protein is more appropriately modelled
as dx/dt ∝ P(t − τ), where P(t) is 1 if the polymerase
is bound to the promoter at time t, and zero otherwise.
Such logic has been used to justify time-delay models in
a variety of systems [30, 32, 33]. This is the approach we
will take to model the p53 and Hes systems, discussed in
the subsequent sections.

(ii) Processes such as transcription and translation have this
character because they are in fact composed of a large
number of intermediate processes: the polymerase binds,
first forming a closed complex, which then makes a
transition to an open complex, and then to an elongating
complex, followed by many ‘steps’ along the DNA until
the polymerase reaches the end of the gene. Even if
each of these individual steps is a Poisson process, the
net effect adds up to a time delay. Thus, instead of
putting in an explicit time delay as in equation (4), one
could work with a negative feedback loop with many
components. One simple example of such an oscillator is
the repressilator [34], which is a negative feedback loop
with six components.

(iii) The repressilator also has another necessary ingredient—
a nonlinearity in the gi functions which allows some of the
variables to respond to changes in the preceding variable
in a faster-than-linear fashion. More precisely, the
repressilator uses sigmoidal functions, such as function
(3), to describe transcriptional repression, and needs Hill
coefficients of at least 2 in order to achieve oscillations.
The earliest example of a negative feedback oscillator
which uses a nonlinearity like this to produce a sharp
response is a model by Goodwin [35], where the Hill
coefficient needs to be more than 8.

(iv) Such high Hill coefficients are unlikely for biological
systems, however. In order to get around this ‘problem’,
Bliss, Painter and Marr [36] introduced another way of
producing an effective time delay. They used the saturated
degradation of one of the concentrations. Saturated
degradation means that there is an upper limit to the
degradation rate of one species, thereby allowing it
to remain abundant for a longer time, thus effectively
slowing down the signal travelling around the loop.
Such saturated degradation is quite common in biological
systems, especially when proteins are tagged for targeted
degradation by another protein, as we will show in the
NF-κB case discussed below.

(v) Finally, autocatalysis, where a molecule activates its own
production can be used to produce oscillations in systems
such as equation (1) [37]. In fact for two variable systems
where there is no explicit time delay this is a necessary
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Figure 3. A sketch of the feedback loops controlling the
concentration of p53 (a), Hes1 (b) and NF-κB (c).

condition for oscillations [38]. Note that this modification
typically makes the system non-monotonic.

This survey of the theoretical requirements for producing
oscillations in negative feedback loops already allows us to
make an interesting observation: monotone two-component
loops without an explicit time delay cannot oscillate, whatever
the nonlinearity in the gi functions. We prove this explicitly
in appendix C. Thus, if one insists on modelling an oscillating
system using two variables, one must choose between
introducing a time delay, and sacrificing monotonicity.

2. Ultradian oscillations in biological systems

We now turn to three biological systems to illustrate these
ideas in action. In the following, we will briefly give a
description of the systems, p53-Mdm2, Hes1 and NF-κB, in
which ‘ultradian’ oscillations have been observed, which have
time periods of the order of hours, as opposed to ‘circadian’
24 h rhythms. We will discuss specific details of each
system, at the same time emphasizing that the basic physical
mechanism which produces oscillations in all three is the
same—negative feedback along with time delays.

2.1. p53-Mdm2

The protein p53 is responsible for inducing apoptosis in
cells with damaged DNA [41]. The concentration of p53
is usually kept low by a feedback mechanism involving
another protein, Mdm2, which binds to p53 and promotes its
degradation. When the DNA is damaged, the cell expresses
a number of kinases which phosphorylate SER20 in p53,
changing its affinity to Mdm2. This results in oscillations
in the concentration of p53, observed both in western blot
analysis [16, 42] (cf figure 1(a)) and in single cell fluorescence
experiments [5, 6]. The standard explanation for the overall
increase in the concentration of p53 is that its phoshoprylation
decreases its affinity to Mdm2, shifting the thermodynamic
equilibrium towards higher concentrations.

Apart from not explaining the oscillations, this argument
does not agree with other experimental evidence. Equilibrium
isothermal titration calorimetry experiments have shown [43]

that phosphorylation at SER20 decreases, not increases, the
dissociation constant between p53 and Mdm2 from kD =
575 ± 19 nM to kD = 360 ± 3 nM. The same effect is
observed in vivo [44], where p53ASP20 (a mutated form which
mimics phosphorylated p53) binds Mdm2 more tightly than
p53ALA20 (which mimics unphosphorylated p53). Moreover,
single cell experiments [5] show a slight decrease in the
concentration of p53 after DNA damage, which cannot be
explained by the standard argument.

We showed that a simple model of the p53-Mdm2 system
that incorporates the time delay associated with some relatively
slow processes within the cell can account for the experimental
facts in a simple way [30]. The feedback mechanism is
sketched in figure 3(a) and the associated time-delayed rate
equations are

dp

dt
= S − a · r − b · p

dm

dt
= c

p(t − τ) − r(t − τ)

kg + p(t − τ) − r(t − τ)
− d · m (5)

r = 1

2

(
(p + m + k) −

√
(p + m + k)2 − 4p · m

)
,

where p,m and r are the concentrations of p53, Mdm2 and of
the complex p53-Mdm2, respectively. In the first equation,
S is the expression rate of p53, a is the Mdm2-mediated
degradation rate of p53 and b is the spontaneous degradation
rate of p53. In the second equation, c is the p53-mediated
expression rate of Mdm2 and d is the spontaneous degradation
rate of Mdm2. The delay τ takes into account the half-life of
mRNA, the diffusion time, the time needed to cross the nuclear
membrane and the transcription/translation time. The last
equation gives the concentration r of the p53–Mdm2 complex,
under the equilibrium assumption. One can solve equations (5)
numerically, simulating the damage to DNA by a sudden
change in the dissociation constant k. Figure 4 shows the
onset of oscillations in this model in response to a sudden
decrease in k at time t = 2000 s.

Several observations emerge from the simulation results
in figure 4. Most interestingly, what triggers oscillations is a
decrease in the dissociation constant k, while any increase in
its value just shifts the equilibrium towards higher values of p
(cf the inset of figure 4). Moreover, just after t = 2000 s
the concentration of p53 decreases, as observed in the
experiments. Finally, the concentration, r, of the complex p53-
Mdm2 is, at any time, essentially identical to the minimum of
p and m (grey curve in figure 4), indicating that the complex
is saturated, in the sense that essentially all possible complex
is formed (i.e., r ≈ min(p,m)).

The relative change, �p, in the maximum concentration
of p53 reached after the simulated stress event is displayed
in figure 5 as a function of the change in k. The value of �p

displays a sigmoidal behaviour if the stress decreases the value
of k. In contrast, in the absence of a time delay, this curve is
linear with respect to k [30]. Thus, the time delay and the
oscillations are crucial for producing a sensitive system that
can respond to stress in a sharp, faster-than-linear manner.

We also undertook a detailed analysis of the response of
the oscillations to changes in the parameters [30]. It turns
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Figure 4. Oscillations displayed by the numerical solution of the
dynamic equations of p53. The concentration of p53 is displayed
with a green curve, that of Mdm2 with a red dashed curve and that
of the p53–Mdm2 complex with a blue curve. The numerical values
of the rates are a = 3 × 10−2 s−1, b = 10−4 s−1, c = 1 s−1,
d = 1 s−2, S = 1 s−1, k = 180, kg = 28 and τ = 1200 s. At time
t = 20 000 s the value of k is decreased by a factor of 10. In the
inset, the solution of the same equations, where the value of k is
increased by a factor of 10 at t = 20 000 s. The equations are solved
with the Adams algorithm [31].
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Figure 5. The height of the maximum response peak �p with
respect to the quantity that multiplies k, mimicking the stress. The
dotted line indicates that the system does not display oscillatory
behaviour.

out that the oscillations do not change qualitatively when
the parameters a, b and c are varied (by up to five orders
of magnitude), whereas a decrease in d or kg suppresses the
oscillating behaviour. Although no intuitive explanation for
this behaviour has been found, it is interesting that these two
critical parameters are associated with the delayed production
of Mdm2. One could speculate therefore that these processes
play an important role in the production of tumours that arise
when the p53 response mechanism fails. This speculation is,
in fact, consistent with the observation that around the 45% of
all tumours display mutations in the p53 region which binds
to DNA [45].

2.2. Stability analysis of the p53–Mdm2 model

The overall behaviour of the proteins with respect to time
evidently depends on the parameters of the dynamic equations,
that is the production and degradation rates and the delay. Over
long timescales, the protein concentrations can either converge
to a steady state or a limit cycle (i.e., sustained oscillations).
Chaotic behaviour is never observed within this model.

A careful analysis of how the dynamics of the protein
concentration depends on the parameters of the rate equations
has been done by Neamtu and co-workers in [46]. The main
conclusion of this work is that under the condition that the
dissociation constant k between p53 and Mdm2 is small, there
exists a critical delay, τ0, above which the system shows
oscillations (see details in appendix C).

In the language of dynamical systems, the transition when
the delay, τ , crosses τ0 is a Hopf bifurcation. A Hopf
bifurcation is the generic type of bifurcation that occurs when a
stable fixed point of the system becomes unstable and turns into
a limit cycle, a dynamically oscillating state, as a consequence
of a change in some parameter of the system (see appendix B
for more details).

2.3. Hes1 and its mRNA

The transcription factor Hes1 controls the differentiation of
neurons in mammalian embryos [47]. Its concentration is
controlled by a feedback loop built out of Hes1 and its own
mRNA (see figure 3). Like p53, its concentrations display
oscillations when the cells are stimulated with serum [12].
The period is similar to that of p53, approximately 2 h, and
the oscillations last for ≈12 h. Hes1 is known to repress
another protein called Mash1. Both the knocking out of
Mash1 and its continuous expression by means of retroviral
introduction results in a lack of cell differentiation. Only
when there are periodic oscillations in the concentration of
Hes1 (and thus of Mash1) there is proper differentiation of
neuronal cells [47], showing that the temporal variation of the
protein concentrations is critical for the development of the
nervous system.

The relation of Hes1 oscillations to segmentation and
spatial patterns has been studied by several authors. It is well
known that oscillations in Hes1 is part of Notch signalling and
Hirata et al [12] studied the coordinated somite segmentation
in the presomitic mesoderm of mice embryos and found a
correlation between the oscillations of Hes1 and initiation of
somites. The general issue of segmentation in vertebrates has
been further studied in [13–15], indicating that the oscillations
in the Notch pathway signalling are intimately related to the
Wnt signalling. At the caudal end (i.e. the ‘tail’) of the embryo
Notch and Wnt oscillates out of phase when the gradient in
the Wnt level is over a given threshold [14, 15]. New cells
are provided at the end of the embryo and where the Wnt
level is below the threshold the oscillation stops and marks the
boundary for a new somite. This continues until all somites
are produced which subsequently gives rise to the spinal cord
[13]. Ultradian oscillations of signalling pathways are thus
extremely important for segmentation.
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Figure 6. The concentration of Hes1 (solid curve) and of mRNA
(dashed curve) obtained solving numerically equation (6).

The control mechanism of Hes1 oscillations again
involves a negative feedback loop with one activation and one
repression: the transcription of the mRNA of Hes1 activates
the production (translation) of the protein, and Hes1 represses
the transcription of its own mRNA. The main difference
compared to p53 is that here one of the nodes represents an
mRNA, not a protein. However, this difference is merely
semantic: the control network still has two nodes, of which
one is activating and one is repressing. The molecular
species of these nodes are immaterial to the description of
the oscillations6.

We model the system using the following equations (cf
[32]):

dr

dt
= αkh

kh + [s(t − τ)]h
− krr(t)

ds

dt
= βr(t) − kss(t),

(6)

where s and r are the concentrations of Hes1 and its mRNA,
respectively. The meaning of these equations is that mRNA
is produced at a rate α when Hes1 is not bound to the DNA.
The effect of binding Hes1 to DNA is to reduce the effective
transcription rate. The probability that Hes1 is bound to DNA
is kh/(kh + sh), where k is a characteristic concentration for
dissociation of Hes1 from the DNA, and h is the Hill coefficient
that takes into account the cooperative character of the binding
process. kr and ks are the spontaneous degradation rates of
the two proteins, while τ is the delay associated with the
molecular processes that we do not want to describe explicitly
(transcription, translocation, etc). [12] suggests that k−1

r and
k−1
s are of the order of 25 min. The value of the time delay is

difficult to assess, since it is determined by a combination of
various molecular processes. One can guess that its order of
magnitude is tens of minutes.

6 We could of course introduce two more nodes in the p53 network
representing the mRNA of p53 and Mdm2. However, this would not change
the logic of the loop, replacing an activation by two successive activations.
As discussed earlier, adding more intermediate nodes introduces a time delay.
Since the p53 equations had an explicit delay it seems redundant to add the
mRNA nodes also.

The numerical solution of equation (6) is displayed in
figure 6. The oscillations have a period �τ ≈ 170 min. For
any delay in the range 10 < τ < 50 min, the oscillation period
is consistent with that found experimentally, and so is the time
difference between the peaks in Hes1 and mRNA, ≈18 min.
For τ < 10 min, the system shows no oscillations.

The behaviour of Hes1 is very similar to that of p53,
both in the features of the oscillations and in the lag delay
before they start. This is not unexpected, since the structure
of equation (6) is very similar to the structure of equation (5)
and to any time delay equation describing a two-component
negative feedback loop.

2.4. NF-κB and IκB

The NF-κB family of proteins is one of the most studied in the
last ten years, being involved in a variety of cellular processes,
including immune response, inflammation, and development
[3, 48]. NF-κB can be activated by a number of external
stimuli [49] including bacteria, viruses and various stresses and
proteins (for instance, [3, 7] used the tumour necrosis factor-
α, TNF-α). In response to these signals it targets over 150
genes, including many chemokines, immunoreceptors, stress
response genes, as well as acute phase inflammation response
proteins [49]. Each NF-κB has a partner inhibitor called IκB,
which inactivates NF-κB by sequestering it both in the nucleus
as well as in the cytoplasm. In fact, the IκB proteins come
in several isoforms α, β, ε [3, 50], and perhaps others [48].
Some of these isoforms are, in turn, transcriptionally activated
by NF-κB, thus forming a negative feedback loop which is
essentially identical in structure to the other two discussed
above.

The potential for this negative feedback loop to produce
oscillations in the nuclear–cytoplasmic translocation of NF-
κB was initially shown by electrophoretic mobility shift assay
experiments [3]. They found that wild-type cells and mutants
containing only the IκBα isoform showed damped oscillations.
In contrast, cells with only the IκBβ or ε isoforms do not
show oscillations. This conclusion was bolstered by single-
cell fluorescence imaging experiments which show sustained
oscillations of nuclear NF-κB in mammalian cells [7], with a
time period of the order of hours. In these experiments IκBα

was overexpressed hence the system behaves like the mutant
which has only the IκBα isoform.

As sustained oscillations are clearest here, we will
focus our modelling on this mutant. The following cellular
processes, summarized in figure 7, are important for this
system on the timescales we are interested in (i.e., we ignore
processes which are very slow):

• NF-κB, when in the nucleus, activates transcription of
the IκBα gene (henceforth we will drop α unless we
are explicitly talking about more than one isoform),
producing IκB mRNA in the cytoplasm.

• The IκB mRNA is translated to form IκB protein.
• The IκB protein can be transported in and out of the

nucleus.
• In both compartments, IκB forms a complex with NF-κB.
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Figure 7. The important interactions in the NF-κB system. Green
arrows indicate transcription and translation. Blue arrows indicate
transport processes. Purple double arrows indicate complex
formation. The red dashed arrow indicates IKK triggered
degradation of IκB when complexed to NF-κB.

• The NF-κB-IκB complex (henceforth referred to as {NI})
cannot be imported into the nucleus. However, if it forms
within the nucleus it can be exported out.

• Free NF-κB behaves in exactly the opposite way. Free
NF-κB is actively transported into the nucleus but not
from the nucleus to the cytoplasm.

• The cytoplasmic {NI} complex is tagged by another
protein, the IκB kinase (IKK), for proteolytic degradation.
This results in degradation of IκB only, releasing NF-κB.
Note that this degradation does not occur for free IκB.

On the timescales of interest, there is no net production
or degradation of NF-κB. It simply cycles in and out of
the nucleus, i.e., the sum of nuclear and cytoplasmic NF-
κB concentrations is a constant. Amongst the above-listed
processes, the association and dissociation of the complex
{NI} occurs fast enough that the concentration of the complex
can be taken to be always in equilibrium with the free NF-
κB and IκB concentrations. This allows us to describe the
system using a very simple model consisting of only three
variables [51], nuclear NF-κB (Nn), cytoplasmic IκB (I) and
IκB mRNA (Im):

dNn

dt
= A

(1 − Nn)

ε + I
− B

INn

δ + Nn

, (7)

dIm

dt
= N2

n − Im, (8)

dI

dt
= Im − C

(1 − Nn)I

ε + I
. (9)

In these equations, all the variables and time have been
rescaled so that they are dimensionless. The three-variable
model was formed by reducing from a larger, seven-variable
model which also kept track of the different complexes
involving NF-κB and IκB (details of the larger model and
the rescaling can be found in [51]).
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Figure 8. Oscillations of nuclear NF-κB (Nn), red, and cytoplasmic
IκB, green, for A = 0.007, B = 954.5, C = 0.035, δ = 0.029 and
ε = 2 × 10−5 (these parameter values are derived from those used in
[3]; see [51].) In order to facilitate comparison with the
experimental plot, the x-axis has been limited to 600 min, but the
oscillations are in fact sustained (see figure 10(a)).

The terms in equation (7) model the nuclear import and
export of NF-κB. The import is inhibited by cytoplasmic IκB
because it forms a complex with NF-κB which cannot enter the
nucleus. Equation (8) models NF-κB-activated transcription
of the IκBα gene (this term could also be modelled using a
Michaelis–Menten term but we simplify it further following
[3]) and spontaneous degradation of the mRNA. Finally,
equation (9) has terms for translation of IκB mRNA into
the protein and IKK mediated degradation of IκB. As the
degradation occurs only on the {NI} complex, the dependence
on IκB is of a Michaelis–Menten form. The external signal
is supplied by IKK that enters the equations through the
parameter, C, which is proportional to IKK concentration (this
could also be converted into a Michaelis–Menten term, but at
the cost of adding more parameters to the model).

These equations produce sustained oscillations in all
variables over a wide range of parameter values. Figure 8
shows the result of simulations which use parameter values
from [3]. The oscillations produced by this model match
the experimentally observed features well, in particular, the
shape, phase, time period and frequency response are correctly
reproduced [51].

Note that this is certainly not the only model able to
reproduce the experimental oscillations observed in NF-κB.
Hoffman et al have constructed a long list of chemical
reactions between 26 different molecules in the NF-κB system,
including 65 numerical parameters [3, 50]. Hayot and
Jayaprakash have also built a model with seven variables for
NF-κB oscillations [52]. Another model, which is similar to
Hoffman et al’s model, but has an additional feedback loop is
described in [53].

2.5. Saturated degradation of IκB

A key element in the model is the saturated degradation of
cytoplasmic IκB in the presence of IKK (second term in
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Figure 9. (a) The stationary value of I as a function of the parameter ε which controls the binding between NF-κB and IKK in the
cytoplasm. (b) and (c) The projection of two trajectories at different values of ε onto the Nn–I plane. Note that a Hopf bifurcation takes
place causing a stable fixed point (c) to bifurcate into a stable limit cycle (b).

equation (9)). This saturation occurs because the level of
the NF-κB-IκB complex saturates, and this complex is needed
for IKK triggered degradation of IκB. A stability analysis of
the system shows the importance of the saturated degradation
for oscillations. We begin by examining the fixed points of the
system.

The fixed point values of Nn, Im and I are solutions to

A
(1 − Nn)

ε + I
− B

INn

δ + Nn

= 0,

N2
n − Im = 0,

Im − C
(1 − Nn)I

ε + I
= 0.

Im and I can be eliminated using Im = N2
n , giving I =(

N2
nε

)/(
C−CNn−N2

n

)
. From this we find that the fixed point

value of Nn is a solution of the equation
(
C − CNn − N2

n

)2 =(
BCε2N3

n

)/
[A(δ + Nn)], or equivalently,

N5
n + (δ + 2C)N4

n + C

[
2(δ − 1) + C − B

A
ε2

]
N3

n

+ C[(C − 2)δ − 2C]N2
n + C2(1 − 2δ)Nn + C2δ = 0.

In general, this has two real solutions, one with C − CNn −
N2

n > 0 and the other with C − CNn − N2
n < 0. The latter

results in a negative value for I and therefore is not an
acceptable solution. Thus we are left with only one fixed
point.

Next we linearize the system around the fixed point, which
we denote N∗, I ∗

m, I ∗, and thereby obtain the Jacobian matrix.
Formally writing the three equations as follows,

Ṅ

İm

İ


 =


f (N, Im, I )

g(N, Im, I )

h(N, Im, I )


 (10)

we can write the Jacobian:

J =




∂f

∂N

∂f

∂Im

∂f

∂I

∂g

∂N

∂g

∂Im

∂g

∂I

∂h
∂N

∂h
∂Im

∂h
∂I




N∗,I ∗
m,I ∗

(11)

For our NF-κB model this gives

J =




− A
ε+I

− δBI
(δ+Nn)2 0 −A(1−Nn)

(ε+I )2 − BNn

δ+Nn

2Nn −1 0
CI
ε+I

1 −Cε(1−Nn)

(ε+I )2


 .

This matrix can be used to examine the stability of the
fixed point: it is unstable if any of the eigenvalues has a
positive real part. For the NF-κB system, figure 9 shows how
the stability depends on the parameter ε. When ε is small
compared to the steady state value of I, the degradation rate of
IκB is independent of I, which is what we mean by the term
‘saturated degradation’. On the other hand, when ε is large
then the degradation is proportional to I and is not saturated.
Figure 9 shows that, indeed, the fixed point is unstable when
ε is small compared to I and through a Hopf bifurcation the
fixed point is replaced by a stable limit cycle. Physically, this
is because saturated degradation introduces an effective time-
delay into the feedback loop: it allows IκB to accumulate and
stay around longer than with non-saturated degradation.

2.6. Spikiness and sharp response of the NF-κB oscillation

One property of the oscillations of nuclear NF-κB, in figure 8,
that stands out is that they are extremely spiky. By choosing
different parameter values one can also get soft oscillations
(see figures 10(a) and (b)); however, for biologically relevant
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Figure 10. (a) Spiky oscillations in the NF-κB model (parameter
values are identical to those used to produce figure 8). (b) Soft
oscillations, produced in the same model using a larger value of ε,
keeping all other parameters unchanged. (c) A contour plot of the Z
measure of spikiness (see text), in the B–C parameter plane (other
parameters are unchanged). The z = 0.01 contour maps,
approximately, the region of oscillations. The Z = 2 contour shows
the region of spiky oscillations. The black dot marks the value of B
and C used in (a) and (b), as well as in figure 8.

parameters the oscillations are spiky. We suggest the following
measure of spikiness:

Z = max − min

average
. (12)

In other words, Z is the ratio of the amplitude of the oscillations
to the average level. Then, we will call a particular oscillation
spiky if Z > 2 and soft otherwise. Further, Z = 0 indicates
the absence of oscillations. Figure 10(c) shows a contour plot
of Z values on the B–C plane. In some directions the system
transitions quickly from no oscillations to spiky oscillations,
whereas in other directions there is a softer transition. In
general, the existence and spikiness of the oscillations are
very robust to changes in most of the parameters of the model
[51].

There is one parameter, however, to changes in which the
system shows a very sensitive response. That parameter is the
external input, IKK. Figure 11 shows that both the spike height
(or peak level), as well as the spike duration, can change by

large amounts in response to small changes in IKK level. Note
that this sensitivity is particularly high in IKK ranges which are
near the transition from spiky to soft oscillations. One way of
quantifying this sensitivity is to measure the expression level
of a gene whose transcription is activated by NF-κB. Imagine
a gene whose upstream regulatory region contains a binding
site for NF-κB dimers. Upon binding, the gene promoter
is activated: G + 2N �kon

koff
G∗. Experimental measurements

of NF-κB-dependent gene expression suggest that many genes
closely follow the oscillations of NF-κB [8]. This corresponds
to the case where the binding of NF-κB to the operator is in
equilibrium, i.e., kon and koff are much larger than the rates
of all other processes in the NF-κB system. In that case
the gene activity, G∗, will follow the NF-κB concentration:

G∗ = N2
n

koff/kon+N2
n
. In this case the downstream gene inherits

the high sensitivity of the NF-κB signal to IKK: the peak gene
activity as a function of IKK is a very steep sigmoidal curve
with an effective Hill coefficient of over 20 [51]. Such a large
value is very unusual for biological systems, and is much larger
than the values obtained by other mechanisms [54, 55].

3. A tool to analyse oscillation patterns in time series

After having discussed the mechanism underlying the
production of oscillations and studied in detail three examples
of ‘ultradian’ oscillations in cells, we would like to describe
an easy tool [56] capable of providing information on the
architecture of the underlying network, given the experimental
time series data for oscillating biological systems.

More precisely, given the time sequence of maxima
and minima of the concentrations of the species during the
oscillations, the method allows one to assess whether the
observed sequence is compatible with a single underlying
negative feedback loop, describable by equation (2). If it
is, the method further predicts the logical structure of the loop,
i.e. the order of the proteins within the loop, as well as which
protein acts as an activator and which as a repressor.

The method is grounded in a mathematical result valid for
all monotone systems describable by equation (2). For such
a system, we can prove the following statements about the
sequence of maxima and minima in the time series:

• the extrema (maxima or minima) have to follow the order
of the variables; for example, after a maximum of variable
i − 1 there can either be a maximum or a minimum of
variable i, and

• if two successive extrema are of the same kind (both
maxima, or both minima), then variable i is activated
by variable i − 1. Conversely, if they are of opposite
nature (one maximum and one minimum), then variable i
is repressed by variable i − 1.

These statements can be used to reconstruct the structure
of the underlying loop from the time series, if it is compatible
with the above restrictions. We illustrate this using the
example of p53-Mdm2 time series shown in figure 12.
The reconstructed loop is exactly the structure we used in
equation (5): p53 activates Mdm2, which represses p53. Of
course, in this case, there are only two possible loop structures,
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Figure 12. Reconstructing the underlying loop from the time series.
The time series shows p53-Mdm2 oscillations observed in single
cell fluorescence experiments [6]. Using the rules mentioned in the
text, the sequence of maxima and minima is converted to the
feedback loop shown at bottom right.

and the correct interactions are already known experimentally
so the information gained is minimal. The method comes into
its own for systems with more variables. One example is the
cyanobacterial circadian clock. Figure 13 shows oscillations in
the expression of three circadian clock genes in Synechocystis
and the reconstructed loop. Two of the interactions have been
experimentally observed in another strain of cyanobacteria
[57], but the activation of kaiA by kaiB3 is a new prediction.

Note that there are many possible maxima/minima
sequences which are not compatible with the above rules. For
example, in order to be compatible with a single loop, each
species must have exactly one maximum and one minimum
during one period. Moreover, if the method predicts an
even number of repressors, one should consider an oscillating
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Figure 13. Reconstruction algorithm applied to circadian rhythms
in cyanobacteria. Data from [10]. The algorithm predicts that kaiA
activates kaiC1, which represses kaiB3, which, in turn, activates
kaiA.

positive feedback loop, which is impossible (see [56] for a full
list of non-allowed cases). In all these situations, one should
conclude that the mechanism causing the oscillations is more
complicated and cannot be reduced to a single feedback loop.
Even if the structure of the real protein interaction network
is more complicated that a single loop (which is usually the
case), the method can hint at the interactions which are most
relevant for the oscillating mechanism and help in building up
a zeroth-order model of the system.

Finally, we note that while the method is mathematically
rigorous for systems without time delays, it works even if there
are unobserved chemical species taking part to the loop [56].
As intermediate species introduce time delays it is likely that
the result can be extended to systems with an explicit time
delay added to equation (2).

4. Summary and outlook

Questions about cellular processes that use complex,
temporally varying signals can be crudely classified into
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the ‘how’ and ‘why’ groups. ‘How’ questions deal with
the structure of the regulatory network and the range of
dynamical behaviour it can produce: how does the network
produce oscillations? what are the necessary and sufficient
mechanisms? how are they implemented in real cellular
systems? ‘Why’ questions deal with the physiological role of
the particular dynamical behaviour produced by the network:
why does p53 start oscillating in response to DNA damage?
do oscillations carry some information that can be decoded
by downstream genes? could a non-oscillating system have
worked equally well for the cell?

In this review we have mainly investigated the ‘how’
questions for one subset of cellular response systems
that use temporally varying signals: eukaryotic systems
exhibiting ‘ultradian’ oscillations. The three systems we have
modelled—p53, which is important for apoptosis, Hes1, which
is part of the Notch cycle responsible for somite segmentation,
and NF-κB, a key protein in immune response—all turn out
to have the same basic design that produces oscillations. The
two key aspects of this design are the presence of negative
feedback and time delays. There are many ways of producing
an effective time delay in cellular processes. In particular,
we emphasized, using the example of NF-κB, saturated
degradation as one such mechanism.

Saturated degradation plays a role in many models of
oscillatory negative feedback loops. The earliest use of
this mechanism is in the model of Bliss, Painter and Marr
[36], which is similar to our NF-κB model. Saturated
degradation has also been used by Goldbeter in various
models of cellular oscillations, e.g., the cell cycle [58],
development in myxobacteria [59], yeast stress response [60]
and the mammalian circadian clock [61]. It is also found
in models of calcium oscillations in cells [62, 63]. In the
p53-Mdm2 system too, as described earlier, there is a similar
saturated complex formation, where one component of the
complex is subsequently degraded. This is so similar to
the NF-κB case that it should be possible to construct a
model for p53 oscillations which has ordinary differential
equations without an explicit time delay (see, for instance,
[6]). Because saturated degradation is easily implemented by
complex formation we conclude that it would be a very useful
general mechanism for producing an effective time delay in
cellular systems.

Although we have focussed more on how the oscillations
are produced, the ‘why’ question of whether the oscillations
have a direct physiological role in these systems is of course
an important one. In NF-κB, oscillations are observed,
not in wild-type cells, but rather in mutants or cells which
overexpress certain proteins. Therefore, it is quite possible
that oscillations themselves play no direct role in the wild-type
response [64]. However, wild-type cells do show a complex
temporal variation of NF-κB of which the spiky response of
the IκBα module is an extremely important component (IκBα

is the only isoform whose knockout mutants are not viable [3]).
Hes1 oscillations, even though damped, might have a direct
relevance for spatial pattern formation in embryos. Hes1 is a
key element in the Notch oscillating cycle, which, in mouse
and chicken embryos, is coupled, out of phase, with the Wnt

cycle. In each period of these cycles, a somite is formed,
thus leading to vertebrate segmentation. Further work should
clarify whether the Hes1 oscillations drives these cycles, or
is slaved to them, or has a different role entirely. In the case
of p53, the oscillations appear to be sustained; therefore it is
likely they are directly important for the apoptosis pathway,
but again it is not clear precisely how.

Even in the absence of unambiguous evidence that
oscillations have a direct functional importance, investigations
into the mechanisms underlying the oscillations have
implications for some of the ‘why’ questions. For instance,
noting that an oscillating signal carries much more information
than a steady signal, references [17, 65] suggested that
differential regulation of downstream gene circuits could
be achieved if they were sensitive to the frequency of the
oscillation. Indeed, as we have shown [51], it is easy
for a single downstream gene to act as a ‘low-pass filter’.
Regulatory circuits with multiple genes could be constructed
to have particular frequency responses. However, it is perhaps
more fruitful to look for a physiological role in other properties
of the dynamics, rather than the periodicity. One such property,
especially prominent in NF-κB oscillations, is the spikiness.
A spiky signal of this kind carries even more information than
a soft oscillation or a steady state level. Spiky pulses, whether
periodic or random or isolated, are in a sense less ‘expensive’:
if a downstream gene is expressed when p53 crosses some
threshold it is energetically and metabolically cheaper to have
a spike whose peak crosses the threshold for long enough to
trigger the gene, than to produce and maintain the protein
above that level for a long time.

In this context it is noteworthy that several of the most
ubiquitous signalling molecules in eukaryotes, hormones,
exhibit recurrent spikes. The spikes sometime come in a
nearly periodic fashion but may also appear more randomly.
Why hormones appear in spikes is also not known. Again,
we speculate that spikes are an efficient way to trigger
other regulatory mechanisms in the body as compared to a
steady level which does not deliver ‘kicks’ to stimulate other
compartments. An added benefit is that the time between
spikes allows an extra level of regulation. In addition, it might
not be good for a biological organism to be subjected to a
constant level of hormones all around the clock.

A related issue where spikiness has implications is that of
cross-talk between signals. Thus, a high constant level of a
protein may potentially interfere with other signals being sent,
for instance by saturating common receptors. In contrast, a
‘quantization’ of the signal into spikes allows different signals
to use common receptors without fear of interference. An
analogy to cars is perhaps useful to visualize this difference:
If there were no traffic lights, it would still be easy to drive a
car to your destination provided the traffic was not too heavy.
However, if all cars were made 10 times longer it would
become much harder to drive at the same density of traffic.
Indeed, railway tracks have less intersections because trains
are, in effect, very long cars.

On a more concrete level, our analysis of the NF-κB
network suggests that the spikiness of the oscillations was
correlated to a sharp, threshold-like response of the system.
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The output (nuclear NF-κB concentration), we found, could
be extremely sensitive to changes in the input (IKK) while
remaining relatively insensitive to other parameters—a clear
prediction that awaits experimental verification. Such a
threshold-like response is likely to be very important for the
differential regulation of downstream genes. It would be very
interesting to know if there is a causal connection between
spikiness and sharp responses in this system, as well as other
regulatory systems.

Overall, we conclude that oscillations, especially spiky
ones, have many useful properties that could be exploited to
improve the speed and efficiency of signalling and response
systems.
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Appendix A. Properties of monotone systems

In this section we study the fixed point properties of a feedback
loop composed of an arbitrary number, N, of nodes whose
dynamics is given by equation (2) in the main text, which we
repeat here:

dxi

dt
= g

(A,R)
i (xi, xi−1) i = 1, . . . , N. (A.1)

Our analysis proceeds by noting that, using the
monotonicity condition, we can write explicit functional
relations between neighbouring variables in the steady state
(when dxi/dt = 0):

g
(A,R)
i (x∗

i , x
∗
i−1) = 0 ⇒ x∗

i = f
(A,R)
i (x∗

i−1). (A.2)

Note that the functions fi have the same monotonicity
properties as the gis with respect to the second argument (for
this it is necessary that gi(x, y) be a monotonically decreasing
function of x). By iterative substitution, we obtain

x∗
i = fi(x

∗
i−1) = fi(fi−1(x

∗
i−2)) = · · · =

= fi ◦ fi−1 ◦ fi−2 ◦ . . . ◦ fi+1(x
∗
i ) ≡ Fi(x

∗
i ) (A.3)

where ◦ denotes convolution of functions. Here, we introduced
the function Fi(x), which quantifies how the species i interacts
with itself by transmitting signals along the loop. Note also
that if equation (A.3) holds for one value of i, then it holds
for any i, since it is sufficient to apply fi+1( ) on both sides to
obtain the equation for x∗

i+1 and so on. For feedback loops,
much useful information can be obtained from the properties
of Fi(x). Firstly, by applying the chain rule, we obtain the
slope of Fi(x) at x: F ′

i (x) = ∏
j f ′

j (xj )|xi=x . The r.h.s is
always greater (less) than zero if the number of repressors
present in the loop is even (odd). In the former case, there
can be multiple fixed points, i.e., this is a necessary condition

F’(x*)

Im(   )

Re(   )

λ

λ
γ

Stable region Unstable region

Hopf bufurcation

Figure 14. Sketch of the Hopf bifurcation in the eigenvalue
complex plane, in the case in which all the degradation rates are
equal to a constant γ .

for multistability. On the other hand, when there are an odd
number of repressors, then Fi(x) is positive and monotonically
decreasing, meaning that there is one and only one solution to
the fixed point equation x∗

i = Fi(x
∗
i ).

To perform the stability analysis, we write the
characteristic polynomial evaluated at the fixed point:∏

i

[λ − ∂xgi(x, y)|x=x∗ ] =
∏

i

∂ygi(x, y)|x=x∗ . (A.4)

The above equation can be greatly simplified using
the relation F ′(x) = ∏

i ∂ygi(x, y)/∂xgi(x, y), which is a
consequence of the implicit function theorem and the chain
rule. One then obtains the following equation:

N∏
i=1

(
λ

hi

+ 1

)
= F ′(x∗) (A.5)

where the hi = −∂xgi(xi, xi=1)|x∗ are the degradation rates at
the fixed point. Note that, because F ′(x) is always negative in
a negative feedback loop, all coefficients of the characteristic
polynomial are non-negative, hence it can not have real positive
roots. This means that the destabilization of the fixed point
can only occur via a Hopf bifurcation, i.e. with two complex
conjugate eigenvalues crossing into the positive real half-
plane.

In the simple case in which all the degradation rates are
equal and unchanging (i.e, hi = γ , a constant) the roots of
the polynomial (A.5) in the complex plane are the vertices of
a polygon centred on −γ with a radius |F ′| as sketched in
figure 14.

Therefore, the fixed point will remain stable as long as

|F ′(x∗)| cos(π/N) < γ. (A.6)

In this case, Hopf’s theorem (see appendix B) ensures the
existence of a periodic orbit close to the transition value, whose
period is

T = 2π/Im(λ) (A.7)
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which, in the simple case of equal degradation timescales,
becomes T = 2π/[|F ′(x∗)| · sin(π/N)]. Note that the Hopf
theorem does not ensure that the orbit is stable; however, since
the system is bounded and there are no other fixed points, we
expect the orbit to be attracting, at least close to the transition
point.

Note that condition (A.6) is always satisfied when N = 2.
This result also extends to the more general case where
degradation rates are unequal. Thus, we have proven that
a two-component monotone negative feedback loop without
an explicit time delay can never show oscillations.

Appendix B. Hopf bifurcations

Usually, the bifurcation takes place under the variation of
some external ‘control’ parameter µ and the new state appears
at a critical value µc of this parameter. For genetically
regulated networks, the control parameter could be some
external chemical stimuli, a production rate, or a binding
constant, just to mention a few examples. To illustrate a
Hopf bifurcation let us first consider a completely general
two-dimensional dynamical system (without delay) defined
by two coupled nonlinear differential equations(

ṗ

ṁ

)
=

(
f (p,m)

g(p,m)

)
(B.1)

(we use variables (p,m) to resemble p53 and mdm2). The
stationary fixed point (p∗,m∗) is determined by

f (p∗,m∗) = g(p∗,m∗) = 0. (B.2)

Using standard routines one linearizes around the fixed point
by means of the Jacobian matrix

J =
(

∂f

∂p

∂f

∂m

∂g

∂p

∂g

∂m

)
∗

(B.3)

where the star symbolizes that we insert the fixed point into
the Jacobian. The resulting set of eigenvalues λ1, λ2 can either
both be real or be a set of two complex conjugates. This is the
case we are interested in here:

λ1 = α + iω, λ2 = α − iω. (B.4)

For α < 0 (corresponding to µ < µc) the fixed point (p∗,m∗)
is stable whereas the limit cycle becomes stable for α > 0
(corresponding to µ > µc) and performing oscillations on
the limit cycle with a frequency ω defining the period of
the oscillation. For a genetic system, this period could for
instance be circadian, ultradiand or related to cell cycles. Just
above the bifurcation, the limit cycle can be well approximated
by a circle whose radius for super-critical Hopf bifurcations
generally grows continuously as

√
µ − µc (as in contrast to a

sub-critical Hopf bifurcation where the radius will jump and
exhibit hysteresis effects). When the control parameter µ is
much larger than µc, the limit cycle may easily be deformed
in various ways ‘away’ from the circle.

When we introduce a time delay in the equations, as
discussed above, we can formally write it by introducing the
delayed variable pτ into the equations:(

ṗ

ṁ

)
=

(
f (p,m)

g(p,m, pτ )

)
. (B.5)

We find numerically that the system still exhibits Hopf
bifurcations when crossing critical lines in the parameter
space. In fact, we find that one can drive the system through
Hopf bifurcations by increasing the value of the time delay τ

through specific values.
The fixed point of p is of course equal to the fixed point

of pτ , i.e., f (p∗,m∗) = g(p∗,m∗, p∗) = 0. Now we use the
same approach as above and linearize around the fixed point,

q = p − p∗, r = m − m∗, qτ = pτ − p∗, (B.6)

which leads to the following dynamical equations for the
increments:

q̇ = f (p∗ + q,m∗ + r) = f (p∗,m∗) +
∂f

∂p
· q +

∂f

∂m
· r

= 0 + α · q + β · r (B.7)

ṙ = g(p∗ + q,m∗ + r, p∗ + qτ )

= g(p∗,m∗, p∗) +
∂g

∂p
· q +

∂g

∂m
· r +

∂g

∂pτ

· qτ

= 0 + γ · q + δ · r + ε · qτ . (B.8)

We can now assume solutions on the form

q(t) = q1 eλ1t + q2 eλ2t , r(t) = r1 eλ1t + r2 eλ2t , (B.9)

and find after some lengthy algebra the eigenvalues:

λ1 = 1
2

[
α + δ ± ((α − δ)2 + 4β(ε e−λ1τ + γ ))

1
2
]

(B.10)

λ2 = 1
2

[
α + δ ± ((α − δ)2 + 4β(ε e−λ2τ + γ ))

1
2
]
. (B.11)

We note that these are transcendental equations in the
eigenvalues λ1, λ2 but that the time delay τ specifically appears
into the relations (for a further discussion, see the previous
appendix).

In many biological systems with genetic feedback
regulations, there are often more than two dynamical variables,
for instance the NF-κB system discussed earlier. The
procedure to study this type of equations is exactly the same as
for the two-dimensional system. In this case one obtains three
eigenvalues λ1, λ2, λ3 which are either all three real, or one is
real and the two others complex conjugates. Again, in the last
case one may encounter a Hopf bifurcation where the fixed
point bifurcates into a limit cycle in the three-dimensional
configuration space, causing oscillations in these variables.
Note that there topologically is a big difference between
oscillatory limit cycles in two and three dimensions. In two
dimensions a limit cycle can ‘enclose’ trajectories, which is not
the case in three dimensions where trajectories may ‘escape
around’ the limit cycles. An important theorem for this type of
behaviour is called the Poincare–Bendixson theorem, which
states that if a trajectory is confined to a closed, bounded region
and there are no fixed points in that region, then the trajectory
eventually approaches a closed orbit (see, e.g., [28]).

Appendix C. Stability analysis of delay systems

Appendix C.1. Linear delay systems

Consider the simplest delayed system of the form
dx

dt
= ax(t) + bx(t − τ). (C.1)
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A complete description of the solution is given in an appendix
of [66], while we will just investigate the conditions where the
system display sustained oscillations. The general solution of
equation (C.1) is x = exp(λt) which, inserted in t investigate
the conditions where the system display sustained oscillations.
The general solution of equation (C.1) gives

λ = a + b e−λτ . (C.2)

Defining λ = µ + iω, the oscillatory case takes place when
µ = 0. The solution is then

iω = a + b cos ωτ − ib sin ωτ (C.3)

which gives

ω = (b2 − a2)1/2 (C.4)

τ = arccos(−a/b)

(b2 − a2)1/2
. (C.5)

A more general treatment [67] gives the conditions under
which the system converges to a stationary solution, that is
|a| > |b| for any τ or if |a| < |b| for τ < arccos(−a/b)/

((b2 − a2)1/2). Roughly speaking, the system can oscillate if
the dominant part of the kernel is the delayed one and if the
delay is large enough.

Appendix C.2. Absence of closed orbits

If we label the vector forming the left-hand side of equation (1)
as x and that forming the right-hand side as F, its divergence
of F is

∇ · F = ∂g1

∂x1
− kx +

∂g2

∂x2
− ky. (C.6)

Since we exclude that each of the two molecules can activate
itself, the partial derivatives ∂g1/∂x1 and ∂g2/∂x2 are non-
positive, and consequently ∇ · F � 0. By virtue of Green’s
theorem, if the trajectory C were closed,

0 >

∫
∇ · ẋ dA =

∮
C

ẋ · n dl, (C.7)

where n is the normal to the trajectory, and consequently
ẋ · n = 0 everywhere. Since the circulation of a null vector is
zero, this leads to a contradiction, and the trajectory cannot be
closed.

Appendix C.3. Stability analysis of the p53-mdm2 system

Neaumtu and co-workers develop in [46] the complete stability
analysis of the p53-mdm2 system with delay. First they show
that for any choice of the parameters there is a unique stationary
point for the rate equations. Consider the system obtained by
linearization of equation (5) around such point

dp

dt
= (aρ10 − b)p(t) − aρ01m(t)

dm

dt
= −dm(t) + cγ10p(t − τ) + cγ01p(t − τ),

(C.8)

where ρ10 and ρ01 are the derivatives of r(t) with respect
to p and m in the stationary point, while γ10 and γ10 are
the derivatives of the function p − r/(kg + p − r). Define
p1 = b + d + aρ10, p0 = db + adρ10, q1 = cγ01 and

q0 = cγ01(b + aρ10) − acρ01γ10. Let λ be the eigenvalues
of the linearized system. It is possible to prove that if τ > 0
and p2

1q
2
0 − q2

1p2
0 − 2p0q

2
0 > 0 then there is a delay τ0 such

that

Re

(
dλ

dτ

)
λ=iω0,τ=τ0

> 0 (C.9)

and consequently a Hopf bifurcation occurs at the stationary
point.

In the limit of large dissociation constant k, ρ10 = ρ01 =
0. Consequently the condition for a Hopf bifurcation begins
b2 > 0, which is always satisfied (except for the trivial case
b = 0).

The critical delay τ0 is given by

τ0 = 1

ω0


arcsin

p1ω0√(
p0 − ω2

0

)2
+ ω2

0p
2
1

+ arcsin
q1ω0√(

p0 − ω2
0

)2
+ ω2

0p
2
1


 , (C.10)

where ω0 is the solution of the equation

ω4 +
(−p2

1 − 2p0 + q2
1

)
ω2 + p2

0 − q2
0 = 0. (C.11)
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