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Abstract

This paper presents an analytically tractable model that captures the most elementary aspect of the protein folding
problem, namely that both the energy and the entropy decrease as a protein folds. In this model, the system diffuses
within a sphere in the presence of an attractive spherically symmetric potential. The native state is represented by a small
sphere in the center, and the remaining space is identified with unfolded states. The folding temperature, the time-
dependence of the populations, and the relaxation rate are calculated, and the folding dynamics is analyzed for both
golf-course and funnel-like energy landscapes. This simple model allows us to illustrate a surprising number of concepts
including entropic barriers, transition states, funnels, and the origin of single exponential relaxation kinetics.
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Protein folding is a complex chemical reaction in which a polymerthis means that the surface of the inifiee., native sphere is an
interconverts between an ensemble of unfolded states and a corabsorbing boundary. In the biophysical context, this model has
pact native configuration. Over the last decade, considerable thedseen previously used to analyze how the reduction of spatial di-
retical and computational effo(Bryngelson et al., 1995; Dill et al., mensionality influences the rate of binding to receptéddam &
1995; Fersht, 1995; Karplus & Sali, 1995; Zwanzig, 1995; OrlandDelbriick, 1968 and to estimate the rate of coalescence of two
et al., 1996; Thirumalai & Woodson, 1996; Onuchic et al., 1997;microdomains during foldingKarplus & Weaver, 1976 In this
Shakhnovich, 1997; Dobson et al., 1998; Mufioz et al., 1998; Pandpaper, this model will be used to illustrate the Levinthal “paradox”
etal., 1998 has been devoted to understanding this phenomena ofiLevinthal, 1969 on a golf-course landscap@ryngelson &

a fundamental level. Much of the conceptual framework that hadVolynes, 1989 In three dimensions, when the native region is
evolved is based on simple ideas. The purpose of this paper is wufficiently small, the folding kinetics predicted by this model is
illustrate some of these ideas in the context of an exceedinglgssentially single exponentiébzabo et al., 1980 By rigorously
simple model that can be analytically solved. This model is de-mapping the three-dimensional problem onto a one-dimensional
signed to capture only the most fundamental aspect of the foldingne involving the potential of mean foréee., the free energywe
problem, namely that both the entrofiye., the number of config-  will show that this behavior is due to the presence of an entropic
urations and the energy decrease as the protein folds. barrier in the free energy.

In this model, protein folding is described as diffusion within a  This model can be generalized to describe reversible folding by
closed sphere in the presence of a spherically symmetric potentiaghssuming that the potential energy inside the inner spheresis
The native state is represented by a small spherical region in th@ot —oco, as abovieand is zero outside. After solving this model
center, and the remaining space represents unfolded states. Tlaralytically, we show how it can be mapped onto a two-state
model is simple enough to yield analytical results, yet it is rich kinetic scheme, and examine the temperature dependence of the
enough to describe many of the features exhibited by more realistifolding and unfolding rate constants. In addition, we discuss the
models and even experiments. optimum choice of the dividing surface separating reactants and

In the most elementary version of this model, the energy of allproducts, i.e., the transition state.
unfolded states is zero, but the energy of the native region is so low This model can be further embellished by incorporating an ad-
that it acts as an irreversible trap or “black hole.” Mathematically, ditional attractive potential that is proportional to the distance to

the origin(i.e., a constant force that drives the system toward the

Reprint requests to: D.J. Bicout, National Institute of Diabetes and Kid-natlve state A two-dimensional slice of the resulting potential

ney Disease, National Institute of Health, Bldg. 5, Rm. 136, Bethesda€Nergy surface has the shape of a funnel. This attractive potential
Maryland 20892; e-mail: bicout@speck.niddk.nih.gov. increases the folding rate by reducing the magnitude of the free-
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the free-energy barrier can completely disappear. This is the so- 0 Ry<r=R
called “downhill scenario”(Bryngelson et al., 1995 where the ' '

folding kinetics becomes nonexponential and the system cannot he - ) S .
described by a two-state kinetic scheme. wheree = 0. Any configuration inside the sphere with radigs

) S . . is identified with the native state. The rest of the space represents
In this paper, for the sake of simplicity, the attractive potential ' : b ;
energy is temperature independent, and thus hydrophobic inteanolded configurations. Thus, the folded state is energetically
! ore stable than the unfolded state dyTo keep the notation as

actlons are |gnored. However, one could |ncc_>rporate the effect 0g;mple as possible, we rescale the varialdsr < r/R so that the
such interactions by simply making the potential energy depend on_ - . .

A radius of outer sphere is 1 and the radius of the sphere enclosing
temperaturdand thus making it a free enerngy

The model considered in this paper is closely related to and, ir'ﬁhe native states ia = Ru/R

o “ . » Figure 1 shows the total configuration space representing all
fact, leads to qualitatively the same results as the “correct—incorrect ossible conformations of the polvoeptide chain. To visualize the
model of protein folding kineticéZwanzig et al., 1992; Zwanzig, P polypep )

1995. In this model, as applied to &\ residue protein, states of energy pr_oﬂle that _C(_)rresponds to Equation 2, we plot the energy
: : as a function of position on a plane through the center of the sphere
the system correspond to corners ofNuwdimensional hypercube. .~ _. : .
o . . : . _in Figure 2A. It can be seen that the step function potential leads
The dynamics is described as hopping between adjacent vertice,
. o o . . {0 a golf-course energy landscafigryngelson & Wolynes, 1989
and the native state is identified with a corner of this cube. This . . . N .
- . . with a “cup” depth equal ta&. Whene is finite, this model de-
multidimensional model can be rigorously reduced to a one-__. . . .
. . : : . . scribes reversible folding, because any trajectory that enters the
dimensional one by using the appropriate reaction coordinate. When_ .. . . I
. native region can subsequently leave it. When> oo, folding is
the energy difference between the folded state and unfolded . . Lo
NP . - : . irreversible. We shall call this limiting case, the black-hole golf-
states is infinite, the folded state is an absorbing point, and foldin
is irreversible (Zwanzig et al., 199R If ¢ is finite (Zwanzig ourse landscape. . . . o
S L . ' In the second form of the potential that will be considered in this
1995, the folding is reversible. When the correetincorrect rate . . . . .
; . A paper, an attractive potential proportionat is added to the radial
is smaller than the incorreeb correct one, the system is driven step-function potential. Specificall
toward the native state by a constant force. The dynathiggping P P - 9P Y.
vs. diffusion, the topology(hypercube vs. hyperspherahe re-
action coordinaté‘correctness” vs. distance to the origiand the
free energy(harmonic vs. logarithmicare, of course, different in

the two models, but the spirit is the same.

energy barrier. When the attractive potential becomes strong enough, ue) { —&, 0=r=Ry,
r =

—e+F(r—1), 0=r=a,
U(r)—{ ©)

F(r—1), a<r=1,

whereF = 0. In this model, a constant foréedrives the system
toward the native state. A two-dimensional representation of this
Formulation of the model

We represent each configuration of the polypeptide chain by a
point r inside ad-dimensional sphere of radiu’ The energy
landscape is specified by a spherically symmetric potektial
that depends only on the distarnice= r from the origin. Because
of spherical symmetry, all configurations with the same radial
coordinate have the same behavior. Thuspecifies an ensemble
of configurations with different angular coordinates. The number
of these configurations is proportional to the area of a sphere o
radiusr. y
The dynamics of the system is assumed to be diffusive in nature
The probability densityP(r,t) of finding the system at at timet
satisfies

oP(r.Y _ ! i D(r)rd-te BY(M ieBU”)P(r ) (1)
ot rd=1 or ar '

wherep = 1/kgT. lllustrative numerical results will be presented
only for the case where the diffusion coefficient is independent of
r. While it can be argued that the dimensidrshould be propor-
tional to the number of residues in the protein, for the sake ol
simplicity we will focus primarily on three dimensions. Our pur-
pose here is not to present a model for the way a protein actuall
folds, but rather to show that an extremely simple model can

capture so many of the features exhibited by more realistic model§19- 1. Sketch of the three-dimensional version of our model representing

and experiment the protein configurational space. Each point within the inner sphere of
p_ ; . . . radiusRy is a native configuration and the system is bounded by an outer

We will consider two forms of interaction potentibl(r). The  gphere of radiuR (R > Ry). The two spheres are concentric and the

simplest is the radial step function, volume between them contains the unfolded configurations.
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Fig. 2. The potential energgvertical direction on a plane bisecting the sphere, fo+ 0.1 ands = 6.91kgT; N andU stand for native

and unfolded states, respectivefy. Golf-course energy landscape that corresponds to the step function potential given in Equation 2.
The equilibrium population ol andU are both equal, i.eKeq = 1. B: Funnel-energy landscape f6r= /2 that corresponds to the
attractive potential given in Equation 3. About 89% of the population at equilibrium I ire., Keq = 8.09.

potential is shown in Figure 2B. It can be seen that this potentialong time when the space of unfolded configurations is sufficiently

leads to a funnel landscajkeopold et al., 1992; Wolynes et al., large.

1995; Onuchic et al., 199%vith a stem of lengtlz. The potentials

given in Equations 2 and 3 were chosen because of their simplicity. Folding kinetics: Exponential relaxation

Continuous version of therfi.e., replacing the step function by,  To examine the nature of the folding kinetics on a flat energy

say, a Lennard-Jones potentiafould lead to similar results. landscape, we consider the case where the radius of the native
sphere isa = 0.1. The first two terms o$(t) are

Black-hole golf course 5 X
. . L . ) . S(t) = 0.99%~PV275R" 4 09,0028 PVO-03IRT 4 ... (6)
We first consider the situation where the native state is described

as an infinitely deep wells — co in Equation 2. This implies that This shows that the time evolution of the fraction of unfolded
any trajectory that reaches the surface of the sphere of radius ., figurations is almost perfectly described by a single exponen-

folds irreversibly. This mimics the situation when the system is; Consequently, the approximati@pprolt) = €', wherek
under strongly folding conditions. We assume that at O, the is given in Equation Fk; = 0.363/R?) is excellent.
system is unfoldgd and uniformly di§tributed in thg spgce bounded Why is S(t) so close to being a perfect exponential? In Figure 3
by the concentric spheres with radiiand 1. The diffusion equa- \ e present a typical folding trajectory starting from the point
tion, Wlth this initial condition, an(_j_wrth absorbingtr = a) and (0,0,0.9 and terminating upon reaching the inner sphere with ra-
reflecting(atr = 1) boundary conditions can be solved analytically diusa = 0.1. It can be seen that the system has a “hard time”
(see, e.g., Adam & Delbriick, 1958The fraction of unfolded iy ing the folded state and must first explore a large part of the
configurations at time, denoted byS(t), is then given by unfolded configuration space. However, it is by no means clear
from this single trajectory why5(t) is almost exactly a single
_ < 6a’ —2DU/R? exponential. Let us now consider the behavior of an ensemble of
S(t) = ngl 92(1— a3){sin?[q,(1 — a)] — a} " - @ such _trajec_tories. Imagi_n_e thattat O one i_nitiates a Iar_ge number
of trajectories from positions that are uniformly distributed in the
where the eigenvalue are determined from tdgn(1 — a)] = . regign beMeen the two spheres. After a very short Fime, those
Using the theory of mean first passage tint8gabo et al., 1980 configurations t_hat ha_ppen to ha_\(e started near to the inner s.p_here
the folding rate constark can be expressed as are a_bsorbed with a high proba_lblll_ty, gnd thus fold. After this |n|t|_al
transient, the shape of the distribution of the unfolded proteins
- N2 2 3y o2 remains virtually the same, because each unfolded conformation
1 = f S(t) dt= (1~ )*5+6a+3a”+a) 5 (5) must explore a significant part of the total unfolded configuration
ki Jo 15a(1+a+ a?) D space before arriving at the inner sphere. As the reaction pro-
gresses, the fraction of unfolded configurations, of course, de-
Fora= Ry/R < 1 (whereRy is the radius of the sphere enclosing creases. If the shape of the distribution of the unfolded configurations
the native configurationsthis expression for the folding rate sim- does not change with time, then the kinetics must be single expo-
plifies to k; = 3aD/R? = 3DRy/R®. In d (d > 2) dimensions, this  nential(i.e., for 0= t; = t,, the solution of the functional equation
generalizes té; = d(d — 2)DRY?/RY. These results, which show S(t,) = S(t;)S(t, — t;) is S(t) = e~ %),
that ks —» 0 asRy — 0, are the quantitative statement of the It is well known from the chemical kinetics that if a system has
Levinthal “paradox”(Levinthal, 1969. Finding the native state of to surmount a high barrier to react, the kinetics is single exponen-
a protein by an unbiased random search can take an astronomicatiyl. In the next subsection, we show how the single exponential
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very easy for our spherically symmetric model. ixdte the reac-
tion coordinate and denote its probability distribution i, t).
To conserve the probability we require thdf p(x,t)dx =
a'(d)fal r9=1P(r,t) dr, whereP(r,t) is the solution of Equation 1,
ando(d) = 2792/T(d/2) is the surface area of a unitdimensional
sphere. This suggests the transformations » x and
o (d)r9-1P(r,t) = p(x,t) in Equation 1. We immediately find that

ap(x,t d 9
p(x,t) o D(X)efﬁvpmf(x) _ eBmef(X)p(X, t), (7)
ot X X

where the potential of mean forc&pn,i(x) is given by
exp{—BVemi(X)} = constant X x% lexp{—pU(x)}. Thus,
exp{—BVpmi(X)} is proportional to the equilibrium probability of
finding the system at. If we choose the constant so thé,«(1) =
U(1), then

Vomt(X) = U(X) — (d = DkgT In(x). (8

The potential of mean force is a free energy, and hevige(x) =
U(x) — TS(x). Comparing this with Equation 8, we find that the
configurational entropy is given b$(x) = (d — 1)kgIn(x).

In general, a multidimensional dynamical problem cannot be
Fig. 3. A typical three-dimensional folding trajectory for free diffusion exactly reduced to a one-dimensional one. However, given any
starting from the coordinai®, 0, 0.8 and terminating on the surface ofthe reaction coordinate, it is always possible to obtain the free energy
native sphere, whea = 0.1 and the outer radius is equal to 1. of the system as a function of this coordinéte., the potential of

mean forceVpme(X)) using equilibrium statistical mechanics. Given

such a potential, the simplest approximate treatment of stochastic

dynamics that is consistent with the equilibrium properties is to
kinetics of the black-hole golf course can be rationalized using thgyssume that the system diffuses along the reaction coordinate in the

concept of an entropic barrier. presence of this potential. When the reaction coordinate is cleverly
chosen, this description can be not only conceptually but also
Potential of mean force: Entropic barriers quantitatively usefulSocci et al., 1996
Can ourd-dimensional diffusion problem be rigorously mapped For the black-hole golf courspU(x) = —co for x = a and

onto an effective one-dimensional one? Finding an exact oneb(x) = 0 for a < x < 1], the potential of mean force is plotted as
dimensional reaction coordinate is impossible in general, but it isa function ofx in Figure 4a. It can be seen that this potential has
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Fig. 4. Potential of mean forcéor free energyfor (A) the black-hole golf course ar@) the reversible golf-course landscapes as a
function of the reaction coordinate which is the radial distance to the origin. The barrier is due to the fact that the number of
configurations(and, hence, the entropyith a given radial coordinate decreases asdecreases.



456 D.J. Bicout and A. Szabo

a cusp-like barrier at = a. Physically, this is simply the reflection g Pum
of the fact that the number of configurations with the same Peq(r) = —
decreases asdecreases, and so states with smalte less prob- f Amr2e BYM gr
able. Thus, the barrier in the one dimensional free-energy potential 0
is entropic in nature. The barrier heightis given by
3 efs, 0=r=a, 10
A = Vyi(@) — Vpri(2) = T[S() — S(a)] “an@eri1-a9 |1 a<r=1. O
=(d—DksTIn[1/a]. 9 The fractionf = J& 4mr 2peg(r) dr is the probability of finding the

system at equilibrium in the native state, and the equilibrium con-
SinceA oc kg T andk; oc 7/%87, the rate of barrier crossing is Stant between the native and unfolded states is

weakly dependent on temperature. The rate constant given previ-
ously(i.e., ki = d(d — 2)DR$2/RY) can be expressed in terms of

3
the entropic barrier height d¢ = [d(d — 2)D/RRy]e"**eT and Keq= —I = e PAGnid;  AGq = —& + KgT In[ 1-a ]
depends on temperature only throubh Thus, the folding rate 1-f a®
goes exponentially to zero as the entropic barrier height increases.
When the barrier separating reactants and products is suffi- (1D

ciently high compared to the thermal energy, the populations in

each subsystem rapidly equilibrate and the kinetics approachegecause the free energy of folding &S = AUggg — TASe
¢l (o] old»

purely single exponential behavior. Thus, single exponential be- . ;
havior is expected for folding on the golf-course landscape wher'hereAUriq and ASqq are, respectively, the folding energy and

_ _ 3/(1 — 23] —
the entropic barriea is much greater thaky T. Indeed, fora= 0.1 inltrc()pyl‘AUf‘"df_ t's (e >h (:/) a||f1d AS“"fd kaBan([ja /a eAg )] B
andd = 3, we find thatA = 4.61kgT and the kinetics is well <&'N\VolUMe ofnative spnejgolume of uniolde SpageAGioiq

. . . 0 for T < T; andAGq > O for T > T;, whereT; is the folding or
approximated by a single exponentigee Equation 5 transition temperature at whi&tG, 4 = 0 (or equivalentlyf (T;) =

Lor Keq(Tr) = 1). The folding temperature decreases Iigl; =
¢/In[1/a%] as the native sphere radius gets smalleraei0.1 and
a = 0.2 we haves = 6.9kgT; ande = 4.8XKgT, respectively.
We now consider the case when the depth of the native well igFigure 5 shows that the temperature dependencE©f has a
finite (see Fig. 2, beginning with the thermodynamics. The po- sigmoidal shape. The system is under folding conditiond far T;
tential energy is given by Equation 2 and, thus, the normalizedi.e., low T whereAG;,4 < 0) and under unfolding conditions for
thermal equilibrium distributiomeq(r) of any configuratiorr is T > T; (i.e., highT whereAGyq > 0).
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Fig. 5. Fractional native population for the golf-course landscépe- 0), funnel landscapéF = ¢/2), and downbhill scenarigF =
27¢) vs. T;(0)/T with a = 0.1 ande = 6.91kgT;(0), whereT;(0) given bykgT;(0) = &/In[(1 — a®)/a®] is the folding temperature for
the reversible golf course. The folding temperature is T,@®} for the funnel landscape and 9B®) for the downhill scenaridnset:
Reduced folding temperatuiie(F)/T;(0) as a function of the reduced funnel slopge.
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Two-state kinetics As discussed in the preceding subsection, potential of mean
The exact description of the dynamics on a reversible golf-force, diffusion in a sphere in the presence of a spherically sym-
course landscape can be found by solving the diffusion equatiofetric potential, is completely equivalent to one-dimensional dif-
subject to the appropriate boundary conditi¢sse Appendix A fusion in the presence of a potential of mean force given by
We will soon see that, in certain circumstances, this dynamics caffquation 8. For the reversible golf course in three dimensions, this
be well approximated by two-state chemical kinetics. To set theequation gives
stage, consider the two-state kinetic scheme:

—e—2kgTIn(x), 0=x=a,
V, =U — 2kgT | =
U —kf‘N pr(X) ) e TInN(X) —2ksT In(x), a<x=1.
ke
(16

whereN(t) andU(t) are, respectively, the fractional populations in
the native and unfolded configurations, dgdndk, are the fold-  pis potential is shown in Figure 4b. The barrier that must be
ing and unfolding rate, respectively. The rate equations correspongsossed in order to fold is entropic in nature, and its heilis
ing to this kinetic scheme are again given by BsT In(1/a).
For an arbitrary one-dimensional potential, the relaxation rate

d_N — —K.N+ kU can be expressed analytically in terms of quadrat&shulten

dt Y f et al., 1981; Bicout & Szabo, 1997For a potential that is infinite
whenx = 0 andx = 1, one has

du

ot +kyN— kiU (12

! f"o C(t)dt
Kix a 0

_ R?Q. (a)
[Q.(a) + Q_(a)]Q_(a)

with N(t) + U(t) = 1. At equilibrium,dN/dt = dU/dt = 0, and so,
Neg = 1 — Ueq = f and Keq = Nog/Ueq = ki/ky. If initially the
protein is unfoldedU(0) = 1), N(t) is given by

ePVmi® dx

fa [Q-(x)]?
o D(x)

h(l— e~ (kitkuty,

N(t) = 13 2 2
W= 13 N R?Q_(a) fl [Q-00F 0 4
[Q:(a) +Q-(a)]Q:(a) Ja D(x)
Defining the deviation from equilibrium bgN(t) = N(t) — Ngg,
the combination of the above rate equations gives (17)

d[8N(t)]
dt

— (ks + k) SN(t) = SN(t) = SN(0)e~krtkut  (14)

where the products are separated from the reactants=bg, and
whereQ..(x) are defined af)_(x) = fox exp{—BVpmi(y)} dy and

Q+(X) = [} exp{—BVem( )} dy. Using Equation 16 folme(X),
and, hence, any deviation from equilibrium relaxes to zero expoassumingD(x) = D, and evaluating the integrals, we find
nentially. Multiplying the first equation of 14 byN(0), and taking

the equilibrium average, one find€handler, 1978; Skinner & D a2 1
Wolynes, 1979 R2K, T 15 ( 1+ Keq>
SN(t)8N(0
_ (N(UaN(0) <<5)N)2§ LAp—— (15) (-a’Groatda’+a)( K |\ o
( 15a(1+ a+ a?) 1+ Keg)'

The correlation functiorC(t), which describes fluctuations in o ) .
the populations at equilibrium, also decays as a single exponential?hereKeq is given in Equation 11. _
The relaxation raté, is given byky, = 1/[ [ C(t) dt] = k; + ky. ~We now return to the question of whether two-state chemical
In kinetic experiments, the observed relaxation tim&;j$ (com- kinetics provides a satls_factory des_crlptlon of the dynaml_cs of FhIS
pare Equations 15 and 13 system. When the barrier separating the unfolded configurations
from the native onesi.e., A in Fig. 4b) is high compared t&gT,
Folding kinetics one expects that the folding dynamics can be described by two-

Two-state kinetics can adequately describe diffusive dynamicState kinetics. This should be the case when 0.1, becausé =
on the reversible golf-course landscape when the exact expressi¢h®Xs T To verify this, we examine the correlation functiait)
for the correlation functioi€(t) is close to being single exponen- for & =0.1,& = 6.9KgT (Keq = 1):
tial. For the reversible golf-course landsca@é¢t) can be obtained
analytically(see Appendix A For now, it is sufficient to note only
thatC(t) is multiexponential in which the structure is similar to the
expression given in Equation 4, which describes the time depenthus, the exadE(t) is almost perfectly a single exponential and is
dence of the fraction of unfolded configurations in the irreversiblevirtually indistinguishable fromCapproft) = €%, wherek is
case. given by Equation 18.

C(t) = 0.98% D385 4 0 0058 DVO0BR 4 ... (19)
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Another somewhat more complex example of a multidimen-equal to the folding rat& under folding condition§ < T; and to
sional problem that can be mapped onto a two-state kinetic schentde unfolding ratek, under unfolding conditiong > T;. As ex-
is the diffusion of probes in the membranes of two fused cellsplained abovek, has an Arrhenius behavior, whilg is almost
(Chen et al., 19983 Specifically, the problem of diffusion on the independent of temperature. When a force that drives the system to
surfaces of the two fused spheres can be rigorously reduced to onthe native state is incorporated into the modelincreases with
dimensional diffusion in the presence of an entropic potential ofdecreasing the temperatuigee below.
mean force. When the radius of the pore at the fusion junction is
small, the kinetics is exponential, and the relaxation rate can bq“ransition states

found using Equation 17. N ) ) ) o
The transition state is usually obtained by choosing the dividing

surface between reactar{tsnfolded conformationsand products
Temperature dependence of the folding (folded conformationsat the top of the barrier in the potential of
and unfolding rate constants mean force along the reaction coordinate. This is why in the pre-
The temperature dependence of the relaxation rate cohgtant  vious section we have choser= a as the dividing surface. Inci-
k: + k, can be found from the analytic expression given in Equa-dentally, the transition state in our three-dimensional model is an
tion 18. Becaus&cq = k¢/ky, the individual rates are given by ensemble of conformations all havimg= a, but with different
Ki = kixKeo/ (1 + Keg) andk, = kix/(1 + Keg). Whena is small, polar angles. Is there a better choice for the location of the dividing
these rates are approximately given ky~ 3Da/R? and k, ~ surface? In general, the correlation functioft), which describes
(3D/a’R?)eP¢. Let us assume that the diffusion coefficient is population fluctuations, is multiexponential. One can choose the
essentially independent of temperature over the range of interegiositiona* of the dividing surface so as to maximize the amplitude
(this will be relaxed in the section devoted to the effect of rug-of the exponential with the longest relaxation time. This makes
gedness of the energy landscapehen, the folding rate is inde- C(t) as single exponential as possible. It can be shésee Ap-
pendent of temperature because in this model the barrier betwegrendix B thata® turns out to be the rodi.e., the location of the
the unfolded and folded configurations is entropic. The unfoldingnode of the eigenfunction of the diffusion operator with the lowest
rate constant, on the other hand, exhibits the familiar Arrheniugin magnitude nonzero eigenvalue. For high barriers, this, in turn,
behavior, because unfolding is a thermally activated process besan be identified with the stochastic separatfRyter, 1987. The
cause of low energy of the native state. stochastic separatrix is the dividing surface between reactants and
In Figure 6.k, k¢, andk, are plotted as a function &%/T for products from which either is reached with equal probability. This
the reversible golf course. This is a kind of chevron plot with the property has been recently exploitddu et al., 1998as a practical
reciprocal of the temperature playing the role of the denaturanwvay of finding the transition state for lattice models of protein
concentratior{Jackson & Fersht, 1991The relaxation raté, is folding.
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Fig. 6. Chevron plot for the reversible golf course. Reduced relaxatiorkratie, as a function off/T, fora = 0.1 ande = 6.9kgT;.
The value ofky = 0.73D/R? corresponds to the relaxation rateTat= T;. The curvesk; andk, represent the reduced folding and
unfolding rates, respectively. For comparison, the reducedckPate k:/ko (with k; given in Equation 5for the black-hole golf course
is also displayed.
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For a high parabolic barrier in one dimension, the location of theis shown in Figure 7. A new feature of this potential, not seen in
stochastic separatrix and the maximum of the potential are th&igure 5, is the shift of the position of the minimum in the unfolded
same. In our problem, however, they are different. For examplespace fronx = 1. The location of this minimum, denoted by,
whena = 0.1, the dividing surface obtained by solving Equation is given byx, =1 for T = T, andx,, = T/T,fora < T/T,, < 1,

B3 with g, = 0.8497 isa* = 0.175. If this choice of the dividing whereT,, = F/(2kg). Thus, one effect of the constant forges to
surface is used to calculate the correlation functii), we find make the ensemble of unfolded configurations more compact. The
that the amplitudes of the two first exponential terms @ge= other effect is that it reduces the height of the folding barrier:
0.9913 andC, = 0.00466, which should be compared with the

coefficients in Equation 19 found usiraf = 0.1. It can be seen X

thatC(t) becomes even closer to being perfectly single exponential. A = V(@) — Vpme(Xm) = 2kg T In <—m> - F(xn—a), (22

The entropic barriea* = 2kg T In[1/a*]is 3.4%g T and 4.6kgT a
for a* = 0.175 anda* = 0.1, respectively. This seems to suggest
that the folding rate should be sensitive to the choice of the divid-and thus increasing the rate of folding. For 0.1, = 5.2KzT;,
ing surface or the transition state. However, this is not the case. Iff = &/2, andT/T; = 0.5, 1, 2 we have, = 0.38, 0.76, 1, respec-
one dimension, for high barriers, bot, and k. (as obtained  tively. The corresponding barrier heights axgksT = 1.2, 2.3,
from the exact expression given in Equation &ve insensitive to ~ 3.42, which should be compared to the barrier height of k51
the choice ok* as long as it is located in a high free-energy region. found for the golf-course landscape.
For example, al = T; we haveKeq(a* = 0-175/Keq(a* =01 = Figure 8 displays two three-dimensional trajectories on a funnel
1.008 andk,(a* = 0.179/k(a* = 0.1) = 0.997. landscape. As in Figure 3, both trajectories start from the coordi-
nate(0, 0, 0.8 and terminate at the surface= a. Clearly, these
two trajectories explore different regions of the conformational
space. Compared with Figure 3, it can be seen that these trajecto-
We have seen that the Levinthal “paradox” can be viewed as th&es are now less dense because the rate of folding has increased.
result of a high entropic barrier to folding. It can be resolved In addition, these trajectories explore less of the configuration
(Bryngelson & Wolynes, 1989; Zwanzig et al., 1992; Karplus, space than before, and appear to linger around the surface with
1997 by adding an energetic bias in the direction of the foldedradius specified by the minimum of the potential of mean force
states, which reduces the height of the free energy barrier. In thi€'m = Xm = 0.76, in this case
section, we consider the influence of a constant fétdeat drives Figure 9 shows the temperature dependence of the relaxation
the system toward the folded states. Specifically, we repeat th&ateky, the folding ratek;, and the unfolding rat,. These were
analysis of the previous sections using the potential given in Equaebtained usind/pmi(x) given by Equation 21 in Equation 17 for
tion 3, which looks like a funnel in two dimensiofsee Fig. 2

Choosingr = a as the dividing surface, the equilibrium con-

Funnel landscape

stant is
a A 81 ! 8
eﬂef x2 e PP dx 6 \ 116
kf 0 4 N ] 4
Keq= k_ S va— ) \\\ X ) -
’ f x2 e PP dx = Tt i =
a S 0 ____t=='10 =
o F  ae===T ~—
2 ---mm7T 2 @
2ef* —[1+ (1+ BFa)2]efle—Fa 4 -4
= - (20 6l | -6
[1+ (1+ BFa)?]e PFa—[1+ (1+ BF)?]e #F |
] Sule -8
The folding temperatur&, which now depends ofniandF, can 02 04 06 08 10
be obtained by numerically solving.y(T;) = 1. Fora = 0.1 and
F = ¢/2, we find thate = 5.2kgT;, which is about 1.3 times the B 8
folding temperature of the reversible golf course. In Figure 5, the 6
fraction of population in the native stafd = Kgq/(1 + Keg)] is 4
plotted for several values &¢f. As F increases, the curves remain S 2
sigmoidal but are shifted to higher temperatures. The inset of this E 0
figure shows that the folding temperature increases almost linearly Z 2 |
with F. 4 |
The one-dimensional potential of mean force for the three- 3 |
dimensional spherically symmetric potential given in Equation 3 is 8 4.76
0.2 0.4 0.6 0.8 1.0
—e—2kgTIn(x) + F(x—1), 0=x=a, X
Vomi(X) = 21
pmi(X) —2Ks T IN(X) + F(x — 1), a<x=1 &V

Fig. 7. Potential of mean forcéor free energyfor the funnel landscape at
. . . . T=Tifora= 0.1, = 5.2%gT;, andF = ¢/2. A: Dashed line represents
The relaxation raté = k; + k; in this case can be obtained by the potential energgU(x) and the dot-dashed line, the entrop(x)/ks.
using this expression in Equation 17. This potential of mean forceB: The potential of mean forcgVpmi(x) = BU(X) — S(x)/Kg.
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kix, and relationgk; = ki Keg/(1 + Keg) andky = ki /(1 + Kgg).
Comparing this to Figure 6 whefe= 0, we see that in both cases
the unfolding rate increases with increasing the temperature. This
is the usual Arrhenius behavior with activation eneegy

The folding rate, on the other hand, decreases with increasing
temperature so that the apparent activation energy is negalive-
berg et al., 1995; Mufioz et al., 199This is a simple consequence
of the fact that, in our model, the energy of the unfolded states
decreases the closer they are to the native state. To make this a bit
more quantitative, consider the expression for the folding barrier
height given by Equation 22. This barrier height is a sum of a
positive entropic term and a negative energetic term. Because the
folding rate is roughly proportional t@ 2/*sT, one finds that
kf o eF(xm—a)/kBT_

The correlation functio©(t), which describes equilibrium pop-
ulation fluctuations, cannot be found analytically wher 0. We
calculatedC(t) by solving the one-dimensional diffusion equation
involving Vymi{(x) numerically using finite difference techniques
(see, e.g., Bicout & Szabo, 1998 he time dependence 6f(t) is
shown in Figure 10 for two values d¢f. The potential of mean
force for F = ¢/2 is shown in Figure 7. Because the barrier for
folding is larger tharkgT, C(t) is expected to be and, in fact, is
nearly single exponential.

When F increases at fixed temperatufer the temperature is
decreased at fixe#), the barrier for folding can disappear com-
Fig. 8. Two three-dimensional folding trajectories on a funneled land- pletely (i.e., the energetic contribution exactly counterbalances the

scape. Both start from the coordindé 0, 0.8 and terminate upon reach- . . . .
ing the surfaca = a enclosing the native configurations.= 0.1 as in entropic term. From Equation 21, it follows that this occurs when

Figure 3 and the slope of the funriék., the magnitude of the force that Fa/ksT = 1. This has been called the “downhill scenari@ryn-
drives the system toward the native sjdteF = /2 = 2.63%gT. gelson et al., 1995As an example, consider the situation where

/'k
X

T/ T

Fig. 9. Chevron plot for the funnel landscape. Reduced relaxationkiatk, (solid line), as a function off;/T, for a = 0.1 ande =
5.27%sT;. The value ofky = 2.768D/R? corresponds to the relaxation rateTat T;. The curvesk; andk, (dashed linesrepresent the
reduced folding and unfolding rates, respectively.
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Fig. 10. The correlation functiorC(t) that describes equilibrium population fluctuations vs. the reduced timeat T = T; for
a= 0.1 for funnel landscapes. The curve with= /2 corresponds te = 5.27gT; and relaxation ratk, = 2.76D/R2. The large funnel
slopeF = 27 corresponds to the downhill scenatighere there is no free-energy barjieith ¢ = 0.74gT; and relaxation rat&y =
206D/R2. The dashed line represents the stretched exponential fif-€xpkt)%%33, to the data.

a=0.1,e = 0.74&:T; and F = 27s. For these values of the
parameter&.q, = 1. Because there is no barrier in the free energy,
the kinetics is expected to be multiexponential. This is confirmed
by the correlation functiorC(t) labeledF = 27¢ in Figure 10.
Amusingly, a stretched exponential, €xf(1.4k,t)°-63% (dashed
line), turns out to be a very good fit t6(t) for all but very long
times whereC(t) is less than 0.01.

Figure 11 shows a typical trajectory for a downhill scenario. As
in Figures 3 and 8, the trajectory start§@t0, 0.8 and terminates
at the surface = a. Clearly, these trajectories are quite different.
The Chan and Dil(1998 analogy involving an ensemble of skiers
proceeding downhill to the native state is applicable only for the
case where there is no barrier in the free energy and where th
kinetics is nonexponential.

Rugged energy landscape

The influence of local minima and maxima of the potential energy
surface of protein folding can be roughly treated in the framework
of our model by making the diffusion coefficient depend on the
reaction coordinate aridr temperature. Roughness of the poten-
tial surface slows down diffusion because local barriers must be
surmounted for the system to jump from one configuration to
another. Because some regions of the conformational space can bgy. 11. Typical three-dimensional folding trajectory when the foFctnat

rougher than others, the diffusion coefficient can depengl @inis  drives the system toward the native state is so strong that the free-energy
refinement will not be considered here barrier disappears and the kinetics becomes multiexponénéal down-
. ) . S -hill scenarig. The diffusion process starts from the coordinge0, 0.9
Because local barriers must be 0\/79A|;2k0f:|f_1€, diffusion ,'S an aCtIémd terminates at the surface= a = 0.1 enclosing the native configura-
vated process and, hendg(T) = De 8", whereAV is the  (ons. The funnel slope i§ = 27s = 20ksT. Compare this with Figures 3

activation energy. When the amplitude of roughness is randomand 8, where the kinetics is exponential.
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then (Ferry et al., 1953; Zwanzig, 1988; Bryngelson & Wolynes, into two regions:U(r) = —e (with ¢ > 0) for configurations
1989, D(T) = De “7*sT? which has a stronger temperature enclosed in the sphere of radii, and U(r) = 0 otherwise.
dependence. Any configuration with 0= r = Ry is identified with the native
We have seen in the previous section that in the presence of state, and the rest of the space represents unfolded configura-

constant force that drives the system toward the native state, th#ons. ¢ is the energy difference between folded and unfolded
folding rate increases as the temperature decreases. This result wamfigurations. As shown in Figure 2a, this potential surface
obtained under the assumption that the diffusion coefficient wadeads to the golf-course landscape.
temperature independent. Because the rate is proportioiglito Whene — oo, the model is even simpler and leads to the “black-
is clear that, ifD decreases with decreasing the temperature sufhole” golf-course energy landscape describing irreversible folding.
ficiently rapidly, the folding rate must eventually decrease as theThe fraction of unfolded configurations on this energy landscape
temperature decreases. This is confirmed by illustrative calcudecays exponentially for sufficiently small radius of the native
lations presented in Figure 12. Such turnover behavior of the foldsphere. Why the folding kinetics is single exponential can be under-
ing rate as a function of temperature has been found in latticestood in terms of the one-dimensional potential of mean f¢oce
simulations. free energy Vpmi(X) (see Equation)Balong the reaction coordinate

x = |r|. Examination ofVym¢{x) shows that the origin of single

exponential folding kinetics stems from the presence of a high
Summary (compared td&g T) configurational entropic barriégiven in Equa-

tion 9) between unfoldedreactantsand folded(products states.
In this paper we have studied a simple exactly solvable model than three dimensions, foa = Ry/R = 0.1, the entropic barrier
allows us to illustrate some of main characteristic features of proheight isA = 4.61kgT.
tein folding. In this model, each configuration of the polypeptide is When ¢ is finite, the model describes reversible folding. Be-
represented by a pointinside ad-dimensional sphere of radifs cause the unfolded configuration space is not affected by making
The dynamics of the system is described by diffusion within ae finite, the heightA of the entropic barrier is the same as before.
closed sphere in the presence of a spherically symmetric potenti&/henA > kgT, the correlation functioilC(t), which describes the
U(r) that depends only on the distan¢g,= r, from the origin.  relaxation of equilibrium population fluctuations, is virtually iden-
Two types of potential surfaces have been considered. tical toe ~!, wherek, is the relaxation rate given in Equation 18.

In the simplest version of this model, we considered the ra-t follows that the folding dynamics can be well described by a

dial step-function potential that divides the configurational spacewo-state chemical kinetics. Assuming that the diffusion coeffi-
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Fig. 12. Effect of ruggedness on the folding rate for the funnel energy landscape. Reduced folding rate as a fuiigtiorAofThe
radius of native sphere &= 0.1, = 5.27gT; and slopeF = 0.5. The value ok, = 2.76D/R? corresponds to twice the folding rate
on the smooth energy landscapeTat= T;. Solid line represent&:/k, on the smooth funnel energy landscape, the dashed and
dotted-dashed lines t¢"9/k, for uniform and random activated diffusion witty = 1.2%T; ando? = 0.625kg T;) ?, respectivelysee

the tex). For comparisonk;/ko = 1.5 atT = T;/2. B: Same thing as id\ for a= 0.01,& = 5.7&T;, F = 5 andko = 126.1D/R?.

The dashed and dotted-dashed lines correspokfi%tk, for AV = 4kgT; ando? = 2(kgT;)?, respectivelyk; /ko = 3.24 atT = T;/2.
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cient is independent of temperature, we examined the behavior afnfavorable. It is not intended to be a realistic model of the mo-
the relaxation rat&,, as a function off;/T, whereT; is the folding  lecular mechanism of protein folding or to be used to analyze
temperature. Bothk,, and the unfolding rat&, have an Arrhenius  experimental data. However, it does show that a surprising number
behavior forT > T;, because the unfolding is a thermally activated of features of more complex models and even some experiments
process because of the energy difference between native and uare the consequence of very simple assumptions, and it helps clar-
folded configurations. Fof < T;, on the other hand, botk, and ify a number of issues and concepts that arise in thinking about
the folding ratek; are almost independent of temperature becauserotein folding.
the barrier in the folding direction is purely entropic.

Next, we have addressed the issue of finding the transition state,
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Appendix A. Relaxation dynamics on the reversible
golf-course landscape

The dynamics is described by the probability denBity, t) of finding the
system with configuratiom at timet. This satisfies

aP(r, 1) ( D) 13, som? BOP(r. 1), A1)
== |—= —r?% —e rt
ot R2)r2or ar
with the reflecting boundary conditions at edges:
ad
— [P, O], = 0. (A2)
r

Because the potentiél(r), as defined in Equation 2, is discontinuous at

r = a, Equation Al has to be solved separately in the regisra_ (folded
spacé and in the regiom = a, (unfolded space These solutions are then
matched using the conditions:

eBU(r)P(r:t)h:a, = eBU(r)P(ryt)|r:a+y (A3a)

a ad
O —[eMOP(r, O = e R —[ePUOP( ] s, (A3D)
r r

Using the transformatiorP(r,t) = e~ 9°PVR? @=BU(M/2y,(r) /r | Equation
Al becomes

BU(r)/2
e d e 4 [eﬁum/z “”(”] et
r r

rz dr dr

G(r,tlre) = S Un(fo)dn(r)e "GPV, (A5)
4rr n=0
where the eigenvaluas, are solutions of
thtanga(1-a)]+1  geae’ + (1-ef*)tan(gya] (A6)
On — taf’{Qn(l - a)] qnatar[Qn a] '
and the corresponding eigenfunctiafigr) are given by
0=r=a, (A7a)
sin[g,(1—r)] —g,codq,(1—r
_ Ane’BE/zsin[qna]< ' [an(1—1)] — Gr COSqn(1 — 1)] >
sin[dn(1— a)] — g, cog dn (1~ a)]
a=sr=1, (A7b)

with the constantsA, found from the orthonormality condition,
Jo Ym(r)n(r) dr = 8. Note thatgo = 0, and[yo(r)]? = 4mr 2peq(r),
wherepeq(r) = e PU0/[ [ 4mr 267PY0 dr] is the equilibrium distribution.
Knowing now the Green'’s function, we next turn to the calculation of
the correlation functiorC(t) to study the relaxation dynamics, and thus
folding kinetics.
The native state in this model is defined by configurations with a,

e., the fractional number configuratioé(r) in the native state is
N(r) = 1 for r = a and zero fora < r = 1. Hence, the deviation from
equilibrium isN(r) = N(r) — Neq, WhereNgq = f is the fraction of native
population at equilibrium given bf/= J'Ol 4arpeg(r)N(r) dr. The correlation
functionC(t) that describes fluctuations in the population at equilibrium is
then defined as

(N(t) 8N(0))

C(t) =
O="en

1 1
f 4 drof 4ar2dr SN(r)G(r, t|ro) SN(ro) Peq(ro)
== - . (A8)

1
J 4 2[ SN(r)]%peg(r) dr
0

where the Green’s functio®(r,t|ro) is given in Equation A5. Evaluating
the integrals, we find that

c()

i [f l/fo(")l/ln(l’)dr] @ GADYR?

- _.
=

§ {Anji[gnal)2e ROV (A9)

wherej;[x] = sin[x]/x? — coq x]/x is the spherical Bessel function of the
order of 1. The relaxation ratgy is given by

1 ~ 3aR = [ Anjilgnal)?
k__fo C(t)dt_(l—f)ozl{ thn }

(A10)

This equation is first solved in both folded and unfolded regions, and the ™
two solutions are matched as indicated above. In this way, we find that the

Green’s function(i.e., the probability density of being at at time t It worthwhile to note that this infinite series for the expressiorkgfis
given that the system was gfinitially) of the diffusion equationiAl) is equivalent to the closed form given in Equation 18 obtained using the mean
given by first passage theory.
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Appendix B. Location of the transition state

Let a* be the position of the dividing surface between reactants and prod-

ucts. It follows from Appendix A that the correlation functi€@(t), de-
scribing fluctuations in population at equilibrium is given by

cw= iU ¢o<r>wn<r>dr] e O = 3 Cpetn,

f(1-
(B1)

where the eigenvalues, and eigenfunctiong,(r) are given in Equations
A6, A7a, and A7b, respectively, and the relaxation timggare such that
71> 7, > ---. One can choose the positiar of the dividing surface so
as to maximize the first amplitude

465

C. = (B2)

2
- [J Po(r) Pa(r) dr:| )

i.e., makeC(t) as single exponential as possible. As in the quantum me-
chanics, the lowest eigenfunctiopg(r) = [4ar 2peg(r)]¥2, has no nodes,
and the next eigenfunction has one, givenyhyr *) = 0. Thus,1(r) is
either negative for < r* and positive for > r¥*, or vice versa. It follows
thatC; will be maximized if the upper limit of the integral in Equation B2
coincides with the node ofy, i.e., when the dividing surfaca* for
transition states is chosen such that

n(a¥) = 0= tanqy(1— a¥)] = q, (B3)

wherey(r) is given in Equation A7tibecausa* = a) andq; is the first
root of the eigenvalue equation A6. Becaagelepends on temperature, it
follows from Equation B3 thaa* is also temperature dependent.



