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Abstract

This paper presents an analytically tractable model that captures the most elementary aspect of the protein folding
problem, namely that both the energy and the entropy decrease as a protein folds. In this model, the system diffuses
within a sphere in the presence of an attractive spherically symmetric potential. The native state is represented by a small
sphere in the center, and the remaining space is identified with unfolded states. The folding temperature, the time-
dependence of the populations, and the relaxation rate are calculated, and the folding dynamics is analyzed for both
golf-course and funnel-like energy landscapes. This simple model allows us to illustrate a surprising number of concepts
including entropic barriers, transition states, funnels, and the origin of single exponential relaxation kinetics.
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Protein folding is a complex chemical reaction in which a polymer
interconverts between an ensemble of unfolded states and a com-
pact native configuration. Over the last decade, considerable theo-
retical and computational effort~Bryngelson et al., 1995; Dill et al.,
1995; Fersht, 1995; Karplus & Sali, 1995; Zwanzig, 1995; Orland
et al., 1996; Thirumalai & Woodson, 1996; Onuchic et al., 1997;
Shakhnovich, 1997; Dobson et al., 1998; Muñoz et al., 1998; Pande
et al., 1998! has been devoted to understanding this phenomena on
a fundamental level. Much of the conceptual framework that has
evolved is based on simple ideas. The purpose of this paper is to
illustrate some of these ideas in the context of an exceedingly
simple model that can be analytically solved. This model is de-
signed to capture only the most fundamental aspect of the folding
problem, namely that both the entropy~i.e., the number of config-
urations! and the energy decrease as the protein folds.

In this model, protein folding is described as diffusion within a
closed sphere in the presence of a spherically symmetric potential.
The native state is represented by a small spherical region in the
center, and the remaining space represents unfolded states. This
model is simple enough to yield analytical results, yet it is rich
enough to describe many of the features exhibited by more realistic
models and even experiments.

In the most elementary version of this model, the energy of all
unfolded states is zero, but the energy of the native region is so low
that it acts as an irreversible trap or “black hole.” Mathematically,

this means that the surface of the inner~i.e., native! sphere is an
absorbing boundary. In the biophysical context, this model has
been previously used to analyze how the reduction of spatial di-
mensionality influences the rate of binding to receptors~Adam &
Delbrück, 1968! and to estimate the rate of coalescence of two
microdomains during folding~Karplus & Weaver, 1976!. In this
paper, this model will be used to illustrate the Levinthal “paradox”
~Levinthal, 1969! on a golf-course landscape~Bryngelson &
Wolynes, 1989!. In three dimensions, when the native region is
sufficiently small, the folding kinetics predicted by this model is
essentially single exponential~Szabo et al., 1980!. By rigorously
mapping the three-dimensional problem onto a one-dimensional
one involving the potential of mean force~i.e., the free energy!, we
will show that this behavior is due to the presence of an entropic
barrier in the free energy.

This model can be generalized to describe reversible folding by
assuming that the potential energy inside the inner sphere is2«
~not 2`, as above! and is zero outside. After solving this model
analytically, we show how it can be mapped onto a two-state
kinetic scheme, and examine the temperature dependence of the
folding and unfolding rate constants. In addition, we discuss the
optimum choice of the dividing surface separating reactants and
products, i.e., the transition state.

This model can be further embellished by incorporating an ad-
ditional attractive potential that is proportional to the distance to
the origin~i.e., a constant force that drives the system toward the
native state!. A two-dimensional slice of the resulting potential
energy surface has the shape of a funnel. This attractive potential
increases the folding rate by reducing the magnitude of the free-
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energy barrier. When the attractive potential becomes strong enough,
the free-energy barrier can completely disappear. This is the so-
called “downhill scenario”~Bryngelson et al., 1995!, where the
folding kinetics becomes nonexponential and the system cannot be
described by a two-state kinetic scheme.

In this paper, for the sake of simplicity, the attractive potential
energy is temperature independent, and thus hydrophobic inter-
actions are ignored. However, one could incorporate the effect of
such interactions by simply making the potential energy depend on
temperature~and thus making it a free energy!.

The model considered in this paper is closely related to and, in
fact, leads to qualitatively the same results as the “correct–incorrect”
model of protein folding kinetics~Zwanzig et al., 1992; Zwanzig,
1995!. In this model, as applied to anN residue protein, states of
the system correspond to corners of anN dimensional hypercube.
The dynamics is described as hopping between adjacent vertices,
and the native state is identified with a corner of this cube. This
multidimensional model can be rigorously reduced to a one-
dimensional one by using the appropriate reaction coordinate. When
the energy difference« between the folded state and unfolded
states is infinite, the folded state is an absorbing point, and folding
is irreversible ~Zwanzig et al., 1992!. If « is finite ~Zwanzig,
1995!, the folding is reversible. When the correctr incorrect rate
is smaller than the incorrectr correct one, the system is driven
toward the native state by a constant force. The dynamics~hopping
vs. diffusion!, the topology~hypercube vs. hypersphere!, the re-
action coordinate~“correctness” vs. distance to the origin!, and the
free energy~harmonic vs. logarithmic! are, of course, different in
the two models, but the spirit is the same.

Formulation of the model

We represent each configuration of the polypeptide chain by a
point r inside ad-dimensional sphere of radiusR. The energy
landscape is specified by a spherically symmetric potentialU~r !
that depends only on the distance|r |5 r from the origin. Because
of spherical symmetry, all configurations with the same radial
coordinate have the same behavior. Thus,r specifies an ensemble
of configurations with different angular coordinates. The number
of these configurations is proportional to the area of a sphere of
radiusr.

The dynamics of the system is assumed to be diffusive in nature.
The probability densityP~r, t! of finding the system atr at time t
satisfies

]P~r, t!

]t
5

1

r d21

]

]r
D~r !r d21 e2bU~r !

]

]r
ebU~r !P~r, t! ~1!

whereb 5 10kBT. Illustrative numerical results will be presented
only for the case where the diffusion coefficient is independent of
r. While it can be argued that the dimensiond should be propor-
tional to the number of residues in the protein, for the sake of
simplicity we will focus primarily on three dimensions. Our pur-
pose here is not to present a model for the way a protein actually
folds, but rather to show that an extremely simple model can
capture so many of the features exhibited by more realistic models
and experiment.

We will consider two forms of interaction potentialU~r !. The
simplest is the radial step function,

U~r ! 5 H2«, 0 # r # RN ,

0, RN , r # R,
~2!

where« $ 0. Any configuration inside the sphere with radiusRN

is identified with the native state. The rest of the space represents
unfolded configurations. Thus, the folded state is energetically
more stable than the unfolded state by«. To keep the notation as
simple as possible, we rescale the variabler asr a r0R so that the
radius of outer sphere is 1 and the radius of the sphere enclosing
the native states isa 5 RN0R.

Figure 1 shows the total configuration space representing all
possible conformations of the polypeptide chain. To visualize the
energy profile that corresponds to Equation 2, we plot the energy
as a function of position on a plane through the center of the sphere
in Figure 2A. It can be seen that the step function potential leads
to a golf-course energy landscape~Bryngelson & Wolynes, 1989!
with a “cup” depth equal to«. When« is finite, this model de-
scribes reversible folding, because any trajectory that enters the
native region can subsequently leave it. When« r `, folding is
irreversible. We shall call this limiting case, the black-hole golf-
course landscape.

In the second form of the potential that will be considered in this
paper, an attractive potential proportional tor is added to the radial
step-function potential. Specifically,

U~r ! 5 H2« 1 F~r 2 1!, 0 # r # a,

F~r 2 1!, a , r # 1,
~3!

whereF $ 0. In this model, a constant forceF drives the system
toward the native state. A two-dimensional representation of this

Fig. 1. Sketch of the three-dimensional version of our model representing
the protein configurational space. Each point within the inner sphere of
radiusRN is a native configuration and the system is bounded by an outer
sphere of radiusR ~R .. RN!. The two spheres are concentric and the
volume between them contains the unfolded configurations.
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potential is shown in Figure 2B. It can be seen that this potential
leads to a funnel landscape~Leopold et al., 1992; Wolynes et al.,
1995; Onuchic et al., 1995! with a stem of length«. The potentials
given in Equations 2 and 3 were chosen because of their simplicity.
Continuous version of them~i.e., replacing the step function by,
say, a Lennard–Jones potential! would lead to similar results.

Black-hole golf course

We first consider the situation where the native state is described
as an infinitely deep well~« r ` in Equation 2!. This implies that
any trajectory that reaches the surface of the sphere of radiusa
folds irreversibly. This mimics the situation when the system is
under strongly folding conditions. We assume that att 5 0, the
system is unfolded and uniformly distributed in the space bounded
by the concentric spheres with radiia and 1. The diffusion equa-
tion, with this initial condition, and with absorbing~at r 5 a! and
reflecting~at r 5 1! boundary conditions can be solved analytically
~see, e.g., Adam & Delbrück, 1968!. The fraction of unfolded
configurations at timet, denoted byS~t!, is then given by

S~t! 5 (
n51

` F 6a2

qn
2~12 a3!$sin2 @qn~12 a!# 2 a%Ge2qn

2 Dt0R2
, ~4!

where the eigenvaluesqn are determined from tan@qn~12 a!# 5 qn.
Using the theory of mean first passage times~Szabo et al., 1980!,
the folding rate constantkf can be expressed as

1

kf

5E
0

`

S~t! dt 5
~12 a!2~5 1 6a 1 3a2 1 a3!

15a~11 a 1 a2!

R2

D
. ~5!

For a 5 RN0R ,, 1 ~whereRN is the radius of the sphere enclosing
the native configurations!, this expression for the folding rate sim-
plifies to kf . 3aD0R2 5 3DRN0R3. In d ~d . 2! dimensions, this
generalizes tokf . d~d2 2!DRN

d220Rd. These results, which show
that kf r 0 as RN r 0, are the quantitative statement of the
Levinthal “paradox”~Levinthal, 1969!. Finding the native state of
a protein by an unbiased random search can take an astronomically

long time when the space of unfolded configurations is sufficiently
large.

Folding kinetics: Exponential relaxation

To examine the nature of the folding kinetics on a flat energy
landscape, we consider the case where the radius of the native
sphere isa 5 0.1. The first two terms ofS~t! are

S~t! 5 0.995e2Dt02.755R2
1 0.0028e2Dt00.0397R2

1 •••. ~6!

This shows that the time evolution of the fraction of unfolded
configurations is almost perfectly described by a single exponen-
tial. Consequently, the approximationSapprox~t! 5 e2kf t, wherekf

is given in Equation 5~kf 5 0.365D0R2! is excellent.
Why is S~t! so close to being a perfect exponential? In Figure 3

we present a typical folding trajectory starting from the point
~0,0,0.8! and terminating upon reaching the inner sphere with ra-
dius a 5 0.1. It can be seen that the system has a “hard time”
finding the folded state and must first explore a large part of the
unfolded configuration space. However, it is by no means clear
from this single trajectory whyS~t! is almost exactly a single
exponential. Let us now consider the behavior of an ensemble of
such trajectories. Imagine that att 5 0 one initiates a large number
of trajectories from positions that are uniformly distributed in the
region between the two spheres. After a very short time, those
configurations that happen to have started near to the inner sphere
are absorbed with a high probability, and thus fold. After this initial
transient, the shape of the distribution of the unfolded proteins
remains virtually the same, because each unfolded conformation
must explore a significant part of the total unfolded configuration
space before arriving at the inner sphere. As the reaction pro-
gresses, the fraction of unfolded configurations, of course, de-
creases. If the shape of the distribution of the unfolded configurations
does not change with time, then the kinetics must be single expo-
nential~i.e., for 0# t1 # t2, the solution of the functional equation
S~t2! 5 S~t1!S~t2 2 t1! is S~t! 5 e2at!.

It is well known from the chemical kinetics that if a system has
to surmount a high barrier to react, the kinetics is single exponen-
tial. In the next subsection, we show how the single exponential

Fig. 2. The potential energy~vertical direction! on a plane bisecting the sphere, fora 5 0.1 and« 5 6.91kBT; N andU stand for native
and unfolded states, respectively.A: Golf-course energy landscape that corresponds to the step function potential given in Equation 2.
The equilibrium population ofN andU are both equal, i.e.,Keq 5 1. B: Funnel-energy landscape forF 5 «02 that corresponds to the
attractive potential given in Equation 3. About 89% of the population at equilibrium is inN, i.e., Keq 5 8.09.
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kinetics of the black-hole golf course can be rationalized using the
concept of an entropic barrier.

Potential of mean force: Entropic barriers

Can ourd-dimensional diffusion problem be rigorously mapped
onto an effective one-dimensional one? Finding an exact one-
dimensional reaction coordinate is impossible in general, but it is

very easy for our spherically symmetric model. Letx be the reac-
tion coordinate and denote its probability distribution byp~x, t!.
To conserve the probability we require that*a

1 p~x, t! dx 5
s~d!*a

1 r d21P~r, t! dr, whereP~r, t! is the solution of Equation 1,
ands~d! 5 2pd020G~d02! is the surface area of a unitd-dimensional
sphere. This suggests the transformationsr r x and
s~d!r d21P~r, t! r p~x, t! in Equation 1. We immediately find that

]p~x, t!

]t
5

]

]x
D~x!e2bVpmf~x!

]

]x
ebVpmf~x!p~x, t!, ~7!

where the potential of mean forceVpmf~x! is given by
exp$2bVpmf~x!% 5 constant 3 xd21 exp$2bU~x!%. Thus,
exp$2bVpmf~x!% is proportional to the equilibrium probability of
finding the system atx. If we choose the constant so thatVpmf~1! 5
U~1!, then

Vpmf~x! 5 U~x! 2 ~d 2 1!kBT ln~x!. ~8!

The potential of mean force is a free energy, and hence,Vpmf~x! 5
U~x! 2 TS~x!. Comparing this with Equation 8, we find that the
configurational entropy is given byS~x! 5 ~d 2 1!kB ln~x!.

In general, a multidimensional dynamical problem cannot be
exactly reduced to a one-dimensional one. However, given any
reaction coordinatex, it is always possible to obtain the free energy
of the system as a function of this coordinate~i.e., the potential of
mean forceVpmf~x!! using equilibrium statistical mechanics. Given
such a potential, the simplest approximate treatment of stochastic
dynamics that is consistent with the equilibrium properties is to
assume that the system diffuses along the reaction coordinate in the
presence of this potential. When the reaction coordinate is cleverly
chosen, this description can be not only conceptually but also
quantitatively useful~Socci et al., 1996!.

For the black-hole golf course@U~x! 5 2` for x # a and
U~x! 5 0 for a , x , 1#, the potential of mean force is plotted as
a function ofx in Figure 4a. It can be seen that this potential has

Fig. 3. A typical three-dimensional folding trajectory for free diffusion
starting from the coordinate~0, 0, 0.8! and terminating on the surface of the
native sphere, whena 5 0.1 and the outer radius is equal to 1.

A B

Fig. 4. Potential of mean force~or free energy! for ~A! the black-hole golf course and~B! the reversible golf-course landscapes as a
function of the reaction coordinatex, which is the radial distance to the origin. The barrier is due to the fact that the number of
configurations~and, hence, the entropy! with a given radial coordinater decreases asr decreases.
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a cusp-like barrier atx5 a. Physically, this is simply the reflection
of the fact that the number of configurations with the samer
decreases asr decreases, and so states with smallr are less prob-
able. Thus, the barrier in the one dimensional free-energy potential
is entropic in nature. The barrier heightD is given by

D 5 Vpmf~a! 2 Vpmf~1! 5 T @S~1! 2 S~a!#

5 ~d 2 1!kBT ln@10a# . ~9!

SinceD @ kBT andkf @ e2D0kBT, the rate of barrier crossing is
weakly dependent on temperature. The rate constant given previ-
ously~i.e.,kf . d~d 2 2!DRN

d220Rd! can be expressed in terms of
the entropic barrier height askf . @d~d 2 2!D0RRN#e2D0kBT and
depends on temperature only throughD. Thus, the folding rate
goes exponentially to zero as the entropic barrier height increases.

When the barrier separating reactants and products is suffi-
ciently high compared to the thermal energy, the populations in
each subsystem rapidly equilibrate and the kinetics approaches
purely single exponential behavior. Thus, single exponential be-
havior is expected for folding on the golf-course landscape when
the entropic barrierD is much greater thankBT. Indeed, fora5 0.1
and d 5 3, we find thatD 5 4.61kBT and the kinetics is well
approximated by a single exponential~see Equation 6!.

Reversible golf course

We now consider the case when the depth of the native well is
finite ~see Fig. 2!, beginning with the thermodynamics. The po-
tential energy is given by Equation 2 and, thus, the normalized
thermal equilibrium distributionpeq~r ! of any configurationr is

peq~r ! 5
e2bU~r !

E
0

1

4pr 2 e2bU~r ! dr

5
3

4p~a3eb« 1 1 2 a3! Heb«, 0 # r # a,

1, a , r # 1.
~10!

The fractionf 5 *0
a 4pr 2peq~r ! dr is the probability of finding the

system at equilibrium in the native state, and the equilibrium con-
stant between the native and unfolded states is

Keq 5
f

12 f
5 e2bDGfold; DGfold 5 2« 1 kBT lnF 12 a3

a3 G.

~11!

Because the free energy of folding isDGfold 5 DUfold 2 TDSfold,
whereDUfold andDSfold are, respectively, the folding energy and
entropy,DUfold 5 2« ~« . 0! andDSfold 5 kB ln@a30~1 2 a3!# 5
kB ln~volume of native sphere0volume of unfolded space!. DGfold ,
0 for T , Tf andDGfold . 0 for T . Tf , whereTf is the folding or
transition temperature at whichDGfold 5 0 ~or equivalently,f ~Tf ! 5
1
2
_ or Keq~Tf ! 5 1!. The folding temperature decreases likekBTf .
«0 ln@10a3# as the native sphere radius gets smaller. Fora5 0.1 and
a 5 0.2 we have« 5 6.91kBTf and « 5 4.82kBTf , respectively.
Figure 5 shows that the temperature dependence off ~T ! has a
sigmoidal shape. The system is under folding conditions forT , Tf

~i.e., low T whereDGfold , 0! and under unfolding conditions for
T . Tf ~i.e., highT whereDGfold . 0!.

Fig. 5. Fractional native population for the golf-course landscape~F 5 0!, funnel landscape~F 5 «02!, and downhill scenario~F 5
27«! vs. Tf ~0!0T with a 5 0.1 and« 5 6.91kBTf ~0!, whereTf ~0! given bykBTf ~0! 5 «0ln@~1 2 a3!0a3# is the folding temperature for
the reversible golf course. The folding temperature is 1.31Tf ~0! for the funnel landscape and 9.35Tf ~0! for the downhill scenario.Inset:
Reduced folding temperatureTf ~F!0Tf ~0! as a function of the reduced funnel slopeF0«.
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Two-state kinetics

The exact description of the dynamics on a reversible golf-
course landscape can be found by solving the diffusion equation
subject to the appropriate boundary conditions~see Appendix A!.
We will soon see that, in certain circumstances, this dynamics can
be well approximated by two-state chemical kinetics. To set the
stage, consider the two-state kinetic scheme:

Ub
kf

Nku

whereN~t! andU~t! are, respectively, the fractional populations in
the native and unfolded configurations, andkf andku are the fold-
ing and unfolding rate, respectively. The rate equations correspond-
ing to this kinetic scheme are

dN

dt
5 2ku N 1 kf U

dU

dt
5 1ku N 2 kf U ~12!

with N~t! 1 U~t! 5 1. At equilibrium,dN0dt 5 dU0dt 5 0, and so,
Neq 5 1 2 Ueq 5 f and Keq 5 Neq0Ueq 5 kf0ku. If initially the
protein is unfolded~U~0! 5 1!, N~t! is given by

N~t! 5
Keq

11 Keq

~12 e2~kf1ku!t !. ~13!

Defining the deviation from equilibrium bydN~t! 5 N~t! 2 Neq,
the combination of the above rate equations gives

d @dN~t!#

dt
5 2~kf 1 ku!dN~t! ] dN~t! 5 dN~0!e2~kf1ku!t, ~14!

and, hence, any deviation from equilibrium relaxes to zero expo-
nentially. Multiplying the first equation of 14 bydN~0!, and taking
the equilibrium average, one finds~Chandler, 1978; Skinner &
Wolynes, 1979!

C~t! 5
^dN~t!dN~0!&

^~dN!2&
5 e2~kf1ku!t. ~15!

The correlation functionC~t!, which describes fluctuations in
the populations at equilibrium, also decays as a single exponential.
The relaxation ratekrx is given bykrx 5 10@*0

` C~t! dt# 5 kf 1 ku.
In kinetic experiments, the observed relaxation time iskrx

21 ~com-
pare Equations 15 and 13!.

Folding kinetics

Two-state kinetics can adequately describe diffusive dynamics
on the reversible golf-course landscape when the exact expression
for the correlation functionC~t! is close to being single exponen-
tial. For the reversible golf-course landscape,C~t! can be obtained
analytically~see Appendix A!. For now, it is sufficient to note only
thatC~t! is multiexponential in which the structure is similar to the
expression given in Equation 4, which describes the time depen-
dence of the fraction of unfolded configurations in the irreversible
case.

As discussed in the preceding subsection, potential of mean
force, diffusion in a sphere in the presence of a spherically sym-
metric potential, is completely equivalent to one-dimensional dif-
fusion in the presence of a potential of mean force given by
Equation 8. For the reversible golf course in three dimensions, this
equation gives

Vpmf~x! 5 U~x! 2 2kBT ln~x! 5 H2« 2 2kBT ln~x!, 0 # x # a,

22kBT ln~x!, a , x # 1.

~16!

This potential is shown in Figure 4b. The barrier that must be
crossed in order to fold is entropic in nature, and its heightD is
again given by 2kBT ln~10a!.

For an arbitrary one-dimensional potential, the relaxation rate
can be expressed analytically in terms of quadratures~Schulten
et al., 1981; Bicout & Szabo, 1997!. For a potential that is infinite
whenx 5 0 andx 5 1, one has

1

krx

5E
0

`

C~t! dt

5
R2Q1~a!

@Q1~a! 1 Q2~a!#Q2~a!
E

0

a @Q2~x!# 2

D~x!
ebVpmf~x! dx

1
R2Q2~a!

@Q1~a! 1 Q2~a!#Q1~a!
E

a

1 @Q1~x!# 2

D~x!
ebVpmf~x! dx,

~17!

where the products are separated from the reactants byx 5 a, and
whereQ6~x! are defined asQ2~x! 5 *0

x
exp$2bVpmf~ y!% dy and

Q1~x! 5 *x
1 exp$2bVpmf~ y!% dy. Using Equation 16 forVpmf~x!,

assumingD~x! 5 D, and evaluating the integrals, we find

D

R2krx

5
a2

15S 1

11 Keq
D

1
~12 a!2~5 1 6a 1 3a2 1 a3!

15a~11 a 1 a2! S Keq

11 Keq
D, ~18!

whereKeq is given in Equation 11.
We now return to the question of whether two-state chemical

kinetics provides a satisfactory description of the dynamics of this
system. When the barrier separating the unfolded configurations
from the native ones~i.e., D in Fig. 4b! is high compared tokBT,
one expects that the folding dynamics can be described by two-
state kinetics. This should be the case whena 5 0.1, becauseD 5
4.61kBT. To verify this, we examine the correlation functionC~t!
for a 5 0.1, « 5 6.91kBT ~Keq 5 1!:

C~t! 5 0.989e2Dt01.3852R2
1 0.0058e2Dt00.0396R2

1 •••. ~19!

Thus, the exactC~t! is almost perfectly a single exponential and is
virtually indistinguishable fromCapprox~t! 5 e2krx t, wherekrx is
given by Equation 18.
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Another somewhat more complex example of a multidimen-
sional problem that can be mapped onto a two-state kinetic scheme
is the diffusion of probes in the membranes of two fused cells
~Chen et al., 1993!. Specifically, the problem of diffusion on the
surfaces of the two fused spheres can be rigorously reduced to one-
dimensional diffusion in the presence of an entropic potential of
mean force. When the radius of the pore at the fusion junction is
small, the kinetics is exponential, and the relaxation rate can be
found using Equation 17.

Temperature dependence of the folding
and unfolding rate constants

The temperature dependence of the relaxation rate constantkrx 5
kf 1 ku can be found from the analytic expression given in Equa-
tion 18. BecauseKeq 5 kf0ku, the individual rates are given by
kf 5 krxKeq0~1 1 Keq! andku 5 krx0~1 1 Keq!. Whena is small,
these rates are approximately given bykf ' 3Da0R2 and ku '
~3D0a2R2!e2b«. Let us assume that the diffusion coefficient is
essentially independent of temperature over the range of interest
~this will be relaxed in the section devoted to the effect of rug-
gedness of the energy landscape!. Then, the folding rate is inde-
pendent of temperature because in this model the barrier between
the unfolded and folded configurations is entropic. The unfolding
rate constant, on the other hand, exhibits the familiar Arrhenius
behavior, because unfolding is a thermally activated process be-
cause of low energy of the native state.

In Figure 6,krx, kf , andku are plotted as a function ofTf0T for
the reversible golf course. This is a kind of chevron plot with the
reciprocal of the temperature playing the role of the denaturant
concentration~Jackson & Fersht, 1991!. The relaxation ratekrx is

equal to the folding ratekf under folding conditionsT , Tf and to
the unfolding rateku under unfolding conditionsT . Tf . As ex-
plained above,ku has an Arrhenius behavior, whilekf is almost
independent of temperature. When a force that drives the system to
the native state is incorporated into the model,kf increases with
decreasing the temperature~see below!.

Transition states

The transition state is usually obtained by choosing the dividing
surface between reactants~unfolded conformations! and products
~folded conformations! at the top of the barrier in the potential of
mean force along the reaction coordinate. This is why in the pre-
vious section we have chosenr 5 a as the dividing surface. Inci-
dentally, the transition state in our three-dimensional model is an
ensemble of conformations all havingr 5 a, but with different
polar angles. Is there a better choice for the location of the dividing
surface? In general, the correlation functionC~t!, which describes
population fluctuations, is multiexponential. One can choose the
positiona‡ of the dividing surface so as to maximize the amplitude
of the exponential with the longest relaxation time. This makes
C~t! as single exponential as possible. It can be shown~see Ap-
pendix B! that a‡ turns out to be the root~i.e., the location of the
node! of the eigenfunction of the diffusion operator with the lowest
~in magnitude! nonzero eigenvalue. For high barriers, this, in turn,
can be identified with the stochastic separatrix~Ryter, 1987!. The
stochastic separatrix is the dividing surface between reactants and
products from which either is reached with equal probability. This
property has been recently exploited~Du et al., 1998! as a practical
way of finding the transition state for lattice models of protein
folding.

Fig. 6. Chevron plot for the reversible golf course. Reduced relaxation ratekrx0k0 as a function ofTf0T, for a 5 0.1 and« 5 6.91kBTf .
The value ofk0 5 0.73D0R2 corresponds to the relaxation rate atT 5 Tf . The curveskf and ku represent the reduced folding and
unfolding rates, respectively. For comparison, the reduced ratekf

bh 5 kf0k0 ~with kf given in Equation 5! for the black-hole golf course
is also displayed.
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For a high parabolic barrier in one dimension, the location of the
stochastic separatrix and the maximum of the potential are the
same. In our problem, however, they are different. For example,
whena 5 0.1, the dividing surface obtained by solving Equation
B3 with q1 5 0.8497 isa‡ 5 0.175. If this choice of the dividing
surface is used to calculate the correlation functionC~t!, we find
that the amplitudes of the two first exponential terms areC1 5
0.9913 andC2 5 0.00466, which should be compared with the
coefficients in Equation 19 found usinga‡ 5 0.1. It can be seen
thatC~t! becomes even closer to being perfectly single exponential.

The entropic barrierD‡ 5 2kBT ln@10a‡# is 3.49kBT and 4.61kBT
for a‡ 5 0.175 anda‡ 5 0.1, respectively. This seems to suggest
that the folding rate should be sensitive to the choice of the divid-
ing surface or the transition state. However, this is not the case. In
one dimension, for high barriers, bothKeq and krx ~as obtained
from the exact expression given in Equation 17! are insensitive to
the choice ofa‡ as long as it is located in a high free-energy region.
For example, atT 5 Tf we haveKeq~a‡ 5 0.175!0Keq~a‡ 5 0.1! 5
1.008 andkrx~a‡ 5 0.175!0krx~a‡ 5 0.1! 5 0.997.

Funnel landscape

We have seen that the Levinthal “paradox” can be viewed as the
result of a high entropic barrier to folding. It can be resolved
~Bryngelson & Wolynes, 1989; Zwanzig et al., 1992; Karplus,
1997! by adding an energetic bias in the direction of the folded
states, which reduces the height of the free energy barrier. In this
section, we consider the influence of a constant forceF that drives
the system toward the folded states. Specifically, we repeat the
analysis of the previous sections using the potential given in Equa-
tion 3, which looks like a funnel in two dimensions~see Fig. 2b!.

Choosingr 5 a as the dividing surface, the equilibrium con-
stant is

Keq 5
kf

ku

5

eb«E
0

a

x2 e2bFx dx

E
a

1

x2 e2bFx dx

5
2eb« 2 @11 ~11 bFa!2#eb~«2Fa!

@11 ~11 bFa!2#e2bFa 2 @11 ~11 bF!2#e2bF
. ~20!

The folding temperatureTf , which now depends on« andF, can
be obtained by numerically solvingKeq~Tf ! 5 1. Fora 5 0.1 and
F 5 «02, we find that« 5 5.27kBTf , which is about 1.3 times the
folding temperature of the reversible golf course. In Figure 5, the
fraction of population in the native state@ f 5 Keq0~1 1 Keq!# is
plotted for several values ofF. As F increases, the curves remain
sigmoidal but are shifted to higher temperatures. The inset of this
figure shows that the folding temperature increases almost linearly
with F.

The one-dimensional potential of mean force for the three-
dimensional spherically symmetric potential given in Equation 3 is

Vpmf~x! 5 H2« 2 2kBT ln~x! 1 F~x 2 1!, 0 # x # a,

22kBT ln~x! 1 F~x 2 1!, a , x # 1.
~21!

The relaxation ratekrx 5 kf 1 ku in this case can be obtained by
using this expression in Equation 17. This potential of mean force

is shown in Figure 7. A new feature of this potential, not seen in
Figure 5, is the shift of the position of the minimum in the unfolded
space fromx 5 1. The location of this minimum, denoted byxm,
is given byxm 5 1 for T $ Tm andxm 5 T0Tm for a , T0Tm , 1,
whereTm 5 F0~2kB!. Thus, one effect of the constant forceF is to
make the ensemble of unfolded configurations more compact. The
other effect is that it reduces the height of the folding barrier:

D 5 Vpmf~a! 2 Vpmf~xm! 5 2kBT lnS xm

a
D2 F~xm 2 a!, ~22!

and thus increasing the rate of folding. Fora 5 0.1,« 5 5.27kBTf ,
F 5 «02, andT0Tf 5 0.5, 1, 2 we havexm 5 0.38, 0.76, 1, respec-
tively. The corresponding barrier heights areD0kBT . 1.2, 2.3,
3.42, which should be compared to the barrier height of 4.61kBT
found for the golf-course landscape.

Figure 8 displays two three-dimensional trajectories on a funnel
landscape. As in Figure 3, both trajectories start from the coordi-
nate~0, 0, 0.8! and terminate at the surfacer 5 a. Clearly, these
two trajectories explore different regions of the conformational
space. Compared with Figure 3, it can be seen that these trajecto-
ries are now less dense because the rate of folding has increased.
In addition, these trajectories explore less of the configuration
space than before, and appear to linger around the surface with
radius specified by the minimum of the potential of mean force
~rm 5 xm . 0.76, in this case!.

Figure 9 shows the temperature dependence of the relaxation
ratekrx, the folding ratekf , and the unfolding rateku. These were
obtained usingVpmf~x! given by Equation 21 in Equation 17 for

A

B

Fig. 7. Potential of mean force~or free energy! for the funnel landscape at
T 5 Tf for a 5 0.1,« 5 5.27kBTf , andF 5 «02. A: Dashed line represents
the potential energybU~x! and the dot-dashed line, the entropy2S~x!0kB.
B: The potential of mean force,bVpmf~x! 5 bU~x! 2 S~x!0kB.
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krx, and relationskf 5 krxKeq0~1 1 Keq! andku 5 krx0~1 1 Keq!.
Comparing this to Figure 6 whereF 5 0, we see that in both cases
the unfolding rate increases with increasing the temperature. This
is the usual Arrhenius behavior with activation energy«.

The folding rate, on the other hand, decreases with increasing
temperature so that the apparent activation energy is negative~Olive-
berg et al., 1995; Muñoz et al., 1997!. This is a simple consequence
of the fact that, in our model, the energy of the unfolded states
decreases the closer they are to the native state. To make this a bit
more quantitative, consider the expression for the folding barrier
height given by Equation 22. This barrier height is a sum of a
positive entropic term and a negative energetic term. Because the
folding rate is roughly proportional toe2D0kBT, one finds that
kf @ eF~xm2a!0kBT.

The correlation functionC~t!, which describes equilibrium pop-
ulation fluctuations, cannot be found analytically whenF Þ 0. We
calculatedC~t! by solving the one-dimensional diffusion equation
involving Vpmf~x! numerically using finite difference techniques
~see, e.g., Bicout & Szabo, 1998!. The time dependence ofC~t! is
shown in Figure 10 for two values ofF. The potential of mean
force for F 5 «02 is shown in Figure 7. Because the barrier for
folding is larger thankBT, C~t! is expected to be and, in fact, is
nearly single exponential.

When F increases at fixed temperature~or the temperature is
decreased at fixedF!, the barrier for folding can disappear com-
pletely~i.e., the energetic contribution exactly counterbalances the
entropic term!. From Equation 21, it follows that this occurs when
Fa0kBT $ 1. This has been called the “downhill scenario”~Bryn-
gelson et al., 1995!. As an example, consider the situation where

Fig. 8. Two three-dimensional folding trajectories on a funneled land-
scape. Both start from the coordinate~0, 0, 0.8! and terminate upon reach-
ing the surfacer 5 a enclosing the native configurations.a 5 0.1 as in
Figure 3 and the slope of the funnel~i.e., the magnitude of the force that
drives the system toward the native state! is F 5 «02 5 2.635kBT.

Fig. 9. Chevron plot for the funnel landscape. Reduced relaxation ratekrx0k0 ~solid line!, as a function ofTf0T, for a 5 0.1 and« 5
5.27kBTf . The value ofk0 5 2.76D0R2 corresponds to the relaxation rate atT 5 Tf . The curveskf andku ~dashed lines! represent the
reduced folding and unfolding rates, respectively.

460 D.J. Bicout and A. Szabo



a 5 0.1, « 5 0.74kBTf and F 5 27«. For these values of the
parametersKeq5 1. Because there is no barrier in the free energy,
the kinetics is expected to be multiexponential. This is confirmed
by the correlation functionC~t! labeledF 5 27« in Figure 10.
Amusingly, a stretched exponential, exp$2~1.4krxt!0.633% ~dashed
line!, turns out to be a very good fit toC~t! for all but very long
times whereC~t! is less than 0.01.

Figure 11 shows a typical trajectory for a downhill scenario. As
in Figures 3 and 8, the trajectory starts at~0, 0, 0.8! and terminates
at the surfacer 5 a. Clearly, these trajectories are quite different.
The Chan and Dill~1998! analogy involving an ensemble of skiers
proceeding downhill to the native state is applicable only for the
case where there is no barrier in the free energy and where the
kinetics is nonexponential.

Rugged energy landscape

The influence of local minima and maxima of the potential energy
surface of protein folding can be roughly treated in the framework
of our model by making the diffusion coefficient depend on the
reaction coordinate and0or temperature. Roughness of the poten-
tial surface slows down diffusion because local barriers must be
surmounted for the system to jump from one configuration to
another. Because some regions of the conformational space can be
rougher than others, the diffusion coefficient can depend onx. This
refinement will not be considered here.

Because local barriers must be overcome, diffusion is an acti-
vated process and, hence,D~T! 5 De2DV0kBT, whereDV is the
activation energy. When the amplitude of roughness is random,

Fig. 10. The correlation functionC~t! that describes equilibrium population fluctuations vs. the reduced time,krxt at T 5 Tf for
a5 0.1 for funnel landscapes. The curve withF 5 «02 corresponds to« 5 5.27kBTf and relaxation ratekrx 5 2.76D0R2. The large funnel
slopeF 5 27« corresponds to the downhill scenario~where there is no free-energy barrier! with « 5 0.74kBTf and relaxation ratekrx 5
206D0R2. The dashed line represents the stretched exponential fit, exp$2~1.4krxt!0.633%, to the data.

Fig. 11. Typical three-dimensional folding trajectory when the forceF that
drives the system toward the native state is so strong that the free-energy
barrier disappears and the kinetics becomes multiexponential~i.e., down-
hill scenario!. The diffusion process starts from the coordinate~0, 0, 0.8!
and terminates at the surfacer 5 a 5 0.1 enclosing the native configura-
tions. The funnel slope isF 5 27« 5 20kBT. Compare this with Figures 3
and 8, where the kinetics is exponential.
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then ~Ferry et al., 1953; Zwanzig, 1988; Bryngelson & Wolynes,
1989!, D~T ! 5 De2s20~kBT !2

, which has a stronger temperature
dependence.

We have seen in the previous section that in the presence of a
constant force that drives the system toward the native state, the
folding rate increases as the temperature decreases. This result was
obtained under the assumption that the diffusion coefficient was
temperature independent. Because the rate is proportional toD, it
is clear that, ifD decreases with decreasing the temperature suf-
ficiently rapidly, the folding rate must eventually decrease as the
temperature decreases. This is confirmed by illustrative calcu-
lations presented in Figure 12. Such turnover behavior of the fold-
ing rate as a function of temperature has been found in lattice
simulations.

Summary

In this paper we have studied a simple exactly solvable model that
allows us to illustrate some of main characteristic features of pro-
tein folding. In this model, each configuration of the polypeptide is
represented by a pointr inside ad-dimensional sphere of radiusR.
The dynamics of the system is described by diffusion within a
closed sphere in the presence of a spherically symmetric potential
U~r ! that depends only on the distance,|r | 5 r, from the origin.
Two types of potential surfaces have been considered.

In the simplest version of this model, we considered the ra-
dial step-function potential that divides the configurational space

into two regions:U~r ! 5 2« ~with « . 0! for configurations
enclosed in the sphere of radiusRN, and U~r ! 5 0 otherwise.
Any configuration with 0# r # RN is identified with the native
state, and the rest of the space represents unfolded configura-
tions. « is the energy difference between folded and unfolded
configurations. As shown in Figure 2a, this potential surface
leads to the golf-course landscape.

When« r`, the model is even simpler and leads to the “black-
hole” golf-course energy landscape describing irreversible folding.
The fraction of unfolded configurations on this energy landscape
decays exponentially for sufficiently small radius of the native
sphere. Why the folding kinetics is single exponential can be under-
stood in terms of the one-dimensional potential of mean force~or
free energy! Vpmf~x! ~see Equation 8! along the reaction coordinate
x 5 |r |. Examination ofVpmf~x! shows that the origin of single
exponential folding kinetics stems from the presence of a high
~compared tokBT! configurational entropic barrier~given in Equa-
tion 9! between unfolded~reactants! and folded~products! states.
In three dimensions, fora 5 RN0R 5 0.1, the entropic barrier
height isD 5 4.61kBT.

When « is finite, the model describes reversible folding. Be-
cause the unfolded configuration space is not affected by making
« finite, the heightD of the entropic barrier is the same as before.
WhenD .. kBT, the correlation functionC~t!, which describes the
relaxation of equilibrium population fluctuations, is virtually iden-
tical toe2krx t, wherekrx is the relaxation rate given in Equation 18.
It follows that the folding dynamics can be well described by a
two-state chemical kinetics. Assuming that the diffusion coeffi-

A

B

Fig. 12. Effect of ruggedness on the folding rate for the funnel energy landscape. Reduced folding rate as a function ofTf0T. A: The
radius of native sphere isa 5 0.1,« 5 5.27kBTf and slopeF 5 0.5«. The value ofk0 5 2.76D0R2 corresponds to twice the folding rate
on the smooth energy landscape atT 5 Tf . Solid line representskf0k0 on the smooth funnel energy landscape, the dashed and
dotted-dashed lines tokf

rug0k0 for uniform and random activated diffusion withDV5 1.25kBTf ands2 5 0.625~kBTf !
2, respectively~see

the text!. For comparison,kf0k0 . 1.5 atT 5 Tf02. B: Same thing as inA for a 5 0.01,« 5 5.74kBTf , F 5 5« andk0 5 126.17D0R2.
The dashed and dotted-dashed lines correspond tokf

rug0k0 for DV 5 4kBTf ands2 5 2~kBTf !
2, respectively.kf0k0 5 3.24 atT 5 Tf02.
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cient is independent of temperature, we examined the behavior of
the relaxation ratekrx as a function ofTf0T, whereTf is the folding
temperature. Bothkrx and the unfolding rateku have an Arrhenius
behavior forT . Tf , because the unfolding is a thermally activated
process because of the energy difference between native and un-
folded configurations. ForT , Tf , on the other hand, bothkrx and
the folding ratekf are almost independent of temperature because
the barrier in the folding direction is purely entropic.

Next, we have addressed the issue of finding the transition state,
i.e., the optimal dividing surface between unfolded~reactants! and
folded ~products! conformations. Usually, the dividing surface is
chosen at the top of the barrier in the free-energy surface along
the reaction coordinate. Thus, the transitions state in our three-
dimensional model is an ensemble of configurations specified by
the surfacer 5 a. As an alternative, the positiona‡ of the dividing
surface is chosen so as to make the correlation functionC~t! as
single an exponential as possible. With this definition, we find that
the transition state corresponds to the node of the eigenfunction of
the diffusion operator with the lowest~in magnitude! nonzero
eigenvalue. For high barriers, this is the same as the stochastic
separatrix, which is the the dividing surface between reactants and
products from which either is reached with equal probability. For
a5 0.1 in three dimensions and atT5 Tf , we find thata‡ 5 0.175,
and the corresponding entropic barrier height isD‡ 5 3.49kBT.
However, when the relaxation rate is calculated using Equation 17,
which is exact for any one-dimensional potential, the result is
insensitive to the locationa‡ as long as the free energy ata‡ is
high.

The second form of the potential surface that we have consid-
ered is the radial step-function potential plus a linear~in r ! attrac-
tive potential of constant slopeF ~i.e., there is an additional constant
forceF that drives the system toward the native state!. This leads
to the funnel energy landscape represented in Figure 2b. The fold-
ing temperature increases withF and the heightD of the folding
barrier decreases withF. WhenD is sufficiently high compared to
kBT, the correlation functionC~t! is again well approximated by a
single exponential with the relaxation ratekrx, which can be ob-
tained using Equation 17. Thus, the folding dynamics on the funnel
landscape can be described by a two-state chemical kinetics as
long asF is not too large~see below!. Assuming that the diffusion
coefficient is temperature independent, the relaxation ratekrx shows
a chevron-like behavior as a function ofTf0T ~see Fig. 9!. As
before, the unfolding rateku has the usual Arrhenius behavior
expected for an activated process. The folding ratekf , on the other
hand, now increases with decreasing the temperature so that the
apparent activation energy is negative. This results from the fact
that the folding barrierD is a sum of a positive entropic term and
a negative energetic term~proportional toF!. WhenFa $ kBT, the
folding barrier D vanishes completely and the free-energy de-
creases monotonically. For the “downhill scenario,” the folding
kinetics is nonexponential, as illustrated in Figure 10.

Finally, we have briefly discussed how the effect of local min-
ima and maxima~i.e., ruggedness! of the potential energy surface
can be taken into account by simply making the diffusion coeffi-
cient decrease as the temperature is lowered. The folding rate now
exhibits a non-Arrhenius concave turnover behavior as a function
of Tf0T. This behavior can also arise if the parameters in the
attractive potential energy are temperature dependent because of
hydrophobic interactions.

The model analyzed in this paper is arguably the simplest ex-
ample of a reaction that is energetically favorable but entropically

unfavorable. It is not intended to be a realistic model of the mo-
lecular mechanism of protein folding or to be used to analyze
experimental data. However, it does show that a surprising number
of features of more complex models and even some experiments
are the consequence of very simple assumptions, and it helps clar-
ify a number of issues and concepts that arise in thinking about
protein folding.
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Appendix A. Relaxation dynamics on the reversible
golf-course landscape

The dynamics is described by the probability densityP~r, t! of finding the
system with configurationr at time t. This satisfies

]P~r, t!

]t
5 S D

R2D 1

r 2

]

]r
r 2e2bU~r !

]

]r
ebU~r !P~r, t!, ~A1!

with the reflecting boundary conditions at edges:

]

]r
@ebU~r !P~r, t!# 6r50,1 5 0. ~A2!

Because the potentialU~r !, as defined in Equation 2, is discontinuous at
r 5 a, Equation A1 has to be solved separately in the regionr # a2 ~folded
space! and in the regionr $ a1 ~unfolded space!. These solutions are then
matched using the conditions:

ebU~r !P~r, t!6r5a2
5 ebU~r !P~r, t!6r5a1

, ~A3a!

e2bU~r !
]

]r
@ebU~r !P~r, t!#6r5a2

5 e2bU~r !
]

]r
@ebU~r !P~r, t!#6r5a1

. ~A3b!

Using the transformation,P~r, t! 5 e2q2Dt0R2
e2bU~r !02c~r !0r, Equation

A1 becomes

ebU~r !02

r 2

d

dr
r 2e2bU~r !

d

dr
FebU~r !02

c~r !

r
G 5 2q2

c~r !

r
. ~A4!

This equation is first solved in both folded and unfolded regions, and the
two solutions are matched as indicated above. In this way, we find that the
Green’s function~i.e., the probability density of being atr at time t
given that the system was atr0 initially ! of the diffusion equation~A1! is
given by

G~r, t 6r0! 5
e2b @U~r !2U~r0!#02

4prr 0
(
n50

`

cn~r0!cn~r !e2qn
2 Dt0R2

, ~A5!

where the eigenvaluesqn are solutions of

qn tan@qn~12 a!# 1 1

qn 2 tan@qn~12 a!#
5

qnaeb« 1 ~12 eb« !tan@qna#

qna tan@qna#
, ~A6!

and the corresponding eigenfunctionscn~r ! are given by

cn~r ! 5 Ansin@qn r #; 0 # r # a, ~A7a!

5 Ane2b«02sin@qna#S sin@qn~12 r !# 2 qn cos@qn~12 r !#

sin@qn~12 a!# 2 qn cos@qn~12 a!#D;

a # r # 1, ~A7b!

with the constantsAn found from the orthonormality condition,
*0

1 cm~r !cn~r ! dr 5 dmn. Note thatq0 5 0, and @c0~r !# 2 5 4pr 2peq~r !,
wherepeq~r ! 5 e2bU~r !0@*0

1 4pr 2e2bU~r ! dr# is the equilibrium distribution.
Knowing now the Green’s function, we next turn to the calculation of

the correlation functionC~t! to study the relaxation dynamics, and thus
folding kinetics.

The native state in this model is defined by configurations withr # a,
i.e., the fractional number configurationsN~r ! in the native state is
N~r ! 5 1 for r # a and zero fora , r # 1. Hence, the deviation from
equilibrium isdN~r ! 5 N~r ! 2 Neq, whereNeq5 f is the fraction of native

population at equilibrium given byf 5 *0
1

4ppeq~r !N~r ! dr. The correlation
functionC~t! that describes fluctuations in the population at equilibrium is
then defined as

C~t! 5
^dN~t!dN~0!&

^~dN!2&

5

E
0

1

4pr0
2 dr0E

0

1

4pr 2 dr dN~r !G~r, t 6r0!dN~r0!peq~r0!

E
0

1

4pr 2 @dN~r !# 2peq~r ! dr

, ~A8!

where the Green’s functionG~r, t |r0! is given in Equation A5. Evaluating
the integrals, we find that

C~t! 5
1

f ~12 f !
(
n51

` FE
0

a

c0~r !cn~r ! drG2

e2qn
2 Dt0R2

,

5
3a

12 f
(
n51

`

$An j1 @qna#%2e2qn
2 Dt0R2

, ~A9!

wherej1@x# 5 sin@x#0x2 2 cos@x#0x is the spherical Bessel function of the
order of 1. The relaxation ratekrx is given by

1

krx

5E
0

`

C~t! dt 5
3aR2

~12 f !D
(
n51

` H An j1 @qna#

qn
J2

. ~A10!

It worthwhile to note that this infinite series for the expression ofkrx is
equivalent to the closed form given in Equation 18 obtained using the mean
first passage theory.
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Appendix B. Location of the transition state

Let a‡ be the position of the dividing surface between reactants and prod-
ucts. It follows from Appendix A that the correlation functionC~t!, de-
scribing fluctuations in population at equilibrium is given by

C~t! 5
1

f ~12 f !
(
n51

` FE
0

a‡

c0~r !cn~r ! drG2

e2qn
2 Dt0R2

5 (
n51

`

Cne2t0tn,

~B1!

where the eigenvaluesqn and eigenfunctionscn~r ! are given in Equations
A6, A7a, and A7b, respectively, and the relaxation timestn are such that
t1 . t2 . {{{. One can choose the positiona‡ of the dividing surface so
as to maximize the first amplitude

C1 5
1

f ~12 f !
FE

0

a‡

c0~r !c1~r ! drG2

, ~B2!

i.e., makeC~t! as single exponential as possible. As in the quantum me-
chanics, the lowest eigenfunction,c0~r ! 5 @4pr 2peq~r !#102, has no nodes,
and the next eigenfunction has one, given byc1~r ‡! 5 0. Thus,c1~r ! is
either negative forr , r ‡ and positive forr . r ‡, or vice versa. It follows
thatC1 will be maximized if the upper limit of the integral in Equation B2
coincides with the node ofc1, i.e., when the dividing surfacea‡ for
transition states is chosen such that

c1~a‡! 5 0 ] tan@q1~12 a‡!# 5 q1, ~B3!

wherec1~r ! is given in Equation A7b~becausea‡ $ a! andq1 is the first
root of the eigenvalue equation A6. Becauseq1 depends on temperature, it
follows from Equation B3 thata‡ is also temperature dependent.
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