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0 Einleitung

Technicalities:

e Skript ist diinn, ersetzt nicht das Studium von Lehrbiichern !

Hierarchie

— Vorlesung: Konzepte

— Biicher: Konzepte und Details, Empfehlung: Filk Buch

— Ubungen: Rechnen & Versténdnis, Themen, die wir in der Vorlesung nicht
schaffen

Viele Stunden darauf verwenden. Nicht versuchen, es mit Google zu l6sen.
Wird zu Katastrophe fiithren.

Abgeben in 2er-Gruppen.
Fragen zu den Ubungen an Christian Ténsing

Scheinkriterium, 50 % der Ubungspunkte, Bestehen der Klausur

Bemerkung Vektorpfeile und Nomenklatur

Wer hat nicht Mathe als zweites Fach ?

Wenn etwas unklar: Fragen ! In der Vorlesung, bitte keine mails.
e Miinsterfithrung
Literatur:
e Schwabl. Quantenmechanik
e Grawert. Quantenmechanik
e Greiner ...
e Cohen-Tannoudji ...
Unterschiede der Biicher:
e Verhiltnis Text zu Gleichungen

e Der Einstieg, Beispiel Griffiths
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1 Prolegomena

QM auf niichternen Magen schwer verdaulich, hier etwas Friihstiick

Zwei Arten von physikalischen Theorien, i.e. Axiomen

e Von Phinomenen zu Axiomen

Beispiele

— Newton’sche Mechanik

— Quantenmechanik

Bedingungen der Moglichkeiten

Beide sagen natiirlich auch neue Phéanomene vorher

e Von Axiomen zur Vorhersage von Phdnomen

Beispiele

— Spezielle Relativitédtstheorie: Lichtgeschwindigkeit in allen Interialsyste-
men gleich

Vorhersagen: Langenkontraktion, Zeitdilatation

— Allgemeine Relativitdtstheorie (1914): Schwere Masse = Triage Masse

Vorhersagen, u.a.: Lichtablenkung an der Sonne (1919), Gravitation be-
einflusst Uhren (GPS), Gravitationswellen (2015)

Newton:

e 1. Axiom genial, aber auch gew6hnungsbediirftig
SRT:

e ¢ = const. auch nicht anschaulich
QM:

e Die Axiome erschlagen einen erst mal

e Die Phiinomene erzwingen sie

e zwangsldufig oder zwanglos



e Wenn QM Thnen - wie auch Einstein - nicht gefillt machen Sie einen Vorschlag :-

)

Drei Zugénge zu Quantenmechanik
e Schrodinger: ”Platonischer Zugang”
— Abstrakter Formulierung der Klassischen Mechanik: Hamilton-Jacobi For-

malismus

— Naherung der Wellengleichung zur geometrischen/Strahlenoptik: Eikonal-
gleichung

— Aquivalenz Hamilton-Jakobi /Eikonalgleichung

— Geniale Spekulation

Mechanik E-Dynamik
Wellenmechanik Wellenoptik
”Entnédherung” T (X Néherung
Klassische Mechanik Geometrische Optik

Hamilton-Jacobi <= Eikonal-Gleichung

e Heisenberg: ” Aristotelischer” Zugang

— Abstrakt: In dieser Arbeit soll versucht werden, Grundlagen zu gewinnen
fiir eine quantentheoretische Mechanik, die ausschliefilich auf Beziehungen
zwischen prinzipiell beobachtbaren Gréflen basiert ist.

— Ein Jahr spéter: Schrodinger zeigt Auquivalenz beider Zugénge

e Nichtrelativistische Dispersionsrelation massiver Teilchen



2 Die Schrédinger-Gleichung

Zeitabhéngige Schrodinger-Gleichung

. a . hz . ~ 62 62 82
ih &w(x,t) = (—%A + V(m,t)) (@ t), A= o2 + 012 + 922 (1)

Eigenschaften:

Partielle Differentialgleichung

Linear

Keine konstanten Koeffizienten

Wesentlich komplex, Kap. 2.2

Keine andere fundamentale Gleichung der Physik ist komplex
e Wellenfunktion v, Bedeutung von 1 vor der Hand unklar

Zeitunabhéngige Schrodinger-Gleichung, siehe Original-paper auf ILTAS
h2
(-5 V@) 0@ = Eu(@ )

e Eigenwert-Gleichung
e Energie F lisst sich berechnen, ohne dass man wissen muss, was ¢ (¥) bedeutet

e Beachte: Wo vorher Zeit war ist jetzt Energie, erinnere Noether-Theorem

2.1 Die Ausgangslage

e Stabilitdat von Atomen
Klassisches Bild

— Elektron rotiert um Atomkern

— Beschleunigte Bewegung

Elektrodynamik: Energie wird abgestrahlt

Klassische Mechanik: Elektron spiralisiert in Kern

— (Deutlicher) Widerspruch zur Erfahrung
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e Ultraviolett-Katastrophe, Planck 14.12.1900
e Klassisches Licht: Elekromagnetische Welle

— Charakteristische Welleneigenschaft: Interferenz

— Doppelspalt-Experiment

SN

“DETECTOR

AE ))

SOURCE 1,

NIRRT

WALL ABSORBER
Abbildung 2.1

Aber auch Teilcheneigenschaften: Photonen

— Einstein, 1905: Photo-Effekt (Nobelpreis):

Elektromagnetische Wellen verhalten sich wie Teilchen mit Energie £ =
hw

Energie E des herausgeschlagenen Elektrons:
E=hw—A, A: Ablosearbeit (3)

Energie E nicht abhéngig von Intensitét des Lichtes

— Comptom-Effekt, 1922

Stofl von Photonen auf freie Elektronen fithrt zur Abnahme der Energie,
E = hw, d.h. Zunahme der Wellenlénge

h h
AN = —(1 —cos¢), Compton-Wellenlinge A\c = — (4)
me me

Fir A > A\¢ gilt klassisches Streuverhalten
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e Klassische Teilchen: Punktférmig mit (x, p)

— Charakteristische Teilcheneigenschaft: Energieiibertrag bei Stof3
— Doppelspaltexperiment Billiard-Kugeln

MOVABLE

DETECTOR P1 P12

P2

BACKSTOP P12 =P1 + P2
Abbildung 2.2

Aber auch Welleneigenschaften

— de Broglie, 1924: Impuls p = hk, Wellenzahl ]12] =2 A= %

— Doppelspaltexperiment Elektronen

" DETECTOR

h L,

WAVE )
SOQURCE

WALL ABSORBER
Abbildung 2.3



— Kein Interferenzmuster, wenn man annimmt, dass Elektron entweder
durch Spalt 1 oder Spalt 2 geht

— Auf dem Schirm werden immer nur ”ganze” Elektronen beobachtet, Elek-
tron "teilt” sich nicht

— Interferenzmuster verschwindet, wenn durch zusédtzliche Messung be-
stimmt wird, durch welchen Spalt das Elektron geflogen ist Terminl

— Quanteneffekte fiir mirkoskopische Systeme

x kleine Massen
x niedrige Temperaturen

* kleine Léngen

— Quanteneffekte fiir markoskopische Systeme

*

Supraleitung

*

Magnetismus

*

Spezifische Wérme
Schwarz-Korper Strahlung, Planck 14.12.1900, Geburtsstunde QM
* Verschrinkte Zusténde, km-Skala, Kap. 9.3

*

e Welle-Teilchen Dualismus

— Sowohl Licht als auch masive Teilchen zeigen sowohl Wellen- als auch
Teilcheneigenschaften

— Ungewohnt, weil um 1800

x "klassisches Licht” Welleneigenschaften zeigte
x "klassische Teilchen” Teilcheneigenschaften zeigten

— Welleneigenschaften, wenn es um Ausbreitung geht
— Teilcheneigenschaften, wenn es um Wechselwirkung geht

— Dualismus, kein Widerspruch, da nicht in der selben Hinsicht

e Elektrisches Feld £

— Quadrierte Grofie |E|? o« Anzahl der Photonen
— Nicht-quadrierte Grofie E ist physikalisch: Kraft

— Erinnere dies fiir die Interpretation der Wellenfunktion )
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e (Quantenmechanik

— In Einklang mit allen experimentellen Fakten, teilweise mit Genauigkeit
1071, gyromagnetischer Faktor

— Grundlage fiir ca. 40% unseres Bruttosozialproduktes
— In gewisser Weise bis heute nicht verstanden, Kap. 10

— Alle Griindervéter der Quantenmechanik haben sie am Ende ihres Lebens
gehasst

2.2 DMotivation iiber Dispersionsrelation
Zeitabhéngige Schrodiger-Gleichung soll folgende Eigenschaften haben
e linear, damit Superpositionsprinzip gilt
e Wellenlésungen, damit Interferenz maglich ist

e Dispersionsrelation fiir Materie erfiillen®

Dispersionsrelationen

e Erinnere

E=hy, p=hk (5)
In w = % steckt die Zeit, in Wellenvektor k| = Z& steckt der Raum

e Dispersionsrelationen beschreiben Beziehung zwischen Impuls und Energie oder
entsprechend Wellenldnge und Frequenz

e Allgemein: Beschreiben Zusammenhang zwischen rédumlichem und zeitlichen
Verhalten

e Beispiele

— Elektromagnetische Wellen, Photonen

E = cp, lineare Abhédngigkeit (6)

In vielen Biichern steht auch noch, dass die Gleichung erster Ordnung Zeitableitung haben soll,
damit durch den Anfangszustand die Zeitentwicklung festgelegt ist. Das ist aber Quatsch, wie man
an der elektromagnetischen Wellengleichung sieht.
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— Nicht-relativistische Materie

1
E = 51 p?, quadratische Abhingigkeit (7)
m

— Relativistische Materie, Ruhemasse my

E2 = (moc2)2 -+ CQpQ’ oder E = \/(mOCQ)Q + 02p2 (8)
Ubung
— Phononen im Festkorper
Ubung

Erinnere Elektrodynamik

e Aus Maxwell-Gleichungen folgte Wellengleichung fiir’s elektromagnetische Feld
im Vakuum, hier mal B, weil E grade benutzt :-)

1 02 0?
——B=—B
c? ot? 0x? (9)
Losung
B(x,t) = B,e”@i-k) (10)

e Intuition:

— In w steckt Energie F, in £ Impuls p
— Ableiten nach der Zeit holt w und damit F aus dem Exponenten
Ableiten nach dem Ort holt £ und damit p aus dem Exponenten
— Dispersionsrelation: £ = cp
_—
Es muss gleich haufig nach ¢ und nach x abgeleitet werden
— Einfachste Moglichkeit:

10 0
~_B=—-—2RB 11
c Ot ox (11)
Beweis durch Einsetzen
ZﬁBoe_i(“t_’””) = ik:Boe_i(”t_km), w=ck E=c¢p (12)
c

Beachte: Nicht jede PDE mit einer zeitlichen- und einer raumlichen Ab-
leitung ergibt Wellengleichung, sondern nur obige. Notwendig und hinrei-

chend.
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— Dass in der elektromagnetischen Wellengleichung je zweimal und nicht nur
je einmal abgeleitet wird, sagen die Maxwell’schen Gleichungen

Betrachte nun nicht-relativistisches, freies, massives Teilchen:

1

E = — 12 13
5P (13)

e Wellenansatz

bz, 1) = Aexp(—i(wt — kz)) = Aexp ((-ét) + Q%)) (14)

0 —i 0
7%’ = ;EA exp ((—Z%t) + <Z%JZ>) — (@ha—t) Vv =FEv

0 _ip E p h 0 B
0l = EAexp ((—zﬁt) + (z;ix)) = (;%) UV =pY

Definition Operator: Frifit etwas, spuckt etwas aus

Der Energie F wird der Energie-Operator E

N 0

dem Impuls p der Impuls-Operator p

ho

zugeordnet:

temechanik Operatoren zugeordnet

Korrespondenz-Prinzip: Den klassischen physikalischen Grofien werden in der Quan-

e Da die Dispersionsrelation quadratisch ist, muss Energie-Operator einmal, der
Impuls-Operator zweimal angewendet werden, ergénze noch ﬁ

o, h? 0?2
(zha) Y = <—%@) Y (17)

die freie zeitabhingige Schrodinger-Gleichung

13



Merke

¢ unumganglich auf Grund der Dispersionsrelation fiir nicht-relativistische Materie

Aber: Dies ist nur die einfachste Moglichkeit. Erinnere elektromagnetische Wel-
lengleichung: Dort wurde die einfachste Moglichkeit nicht genutzt.

Ubung: Wie sieht das im relativistischen Falle aus ?

Hamiltonfunktion allgemein

1
H(l’,p,t) = %]f—i—‘/(x,t) (18)

Potential V' taucht in Argument der Wellenfunktion nicht auf, ergibt einfach
addititven Beitrag

2m Ox?

(zh%) Y(z,t) = (—h—28—2 + V(:Jc,t)) Y(z,t) (19)

die zeitabhéngige Schrodinger-Gleichung

Mit Hamilton-Operator

Von der zeitabhingigen zur zeitunabhéngigen Schrédinger-Gleichung

Héngt Potential V' (x) nicht von der Zeit ab, wihle Separationsansatz

(e, t) = () exp (—i%t) (21)
FEingesetzt:
E - E
Ey,(x) exp (—iﬁt) = Hi,(z) exp <—z’Et) (22)
Teile durch exp (—i%t), ergibt zeitunabhéngige Schrodinger-Gleichung
- R o2
0(0) = (=g ez + V(@) 000) = BUla) (23)
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eine gewohnliche Differentialgleichung
Losungen sind die stationdren Zustidnde des Systems

Beachte:

Hy(z) = Ev(x)

ist die natiirliche Formulierung, nicht

E¢(z) = Hy(z)

Interpretation von

(24)

(25)

o [(z,t)?dr = ¢*(x,t)y(x,t)dx ist die Wahrscheinlichkeit, das Teilchen zum

Zeitpunkt ¢ am Orte (x,x + dx) zu detektieren

e Es gilt

[ dstoe =1

(26)

e Beachte: Die Wellenfunktion fasst Welleneigenschaften (bei Ausbreitung) und
Teilcheneigenschaften (bei Detektion) von Quantenobjekten zusammen.

Vergleich klassischer Physik und Quantenmechanik fiir Punktteilchen

klassisch quantenmechanisch
Beschreibung des (2, p), Element Wellenfunktion ¢ (%, ),
Zustands durch eines 6-dimensionalen Raumes | Element eines unendlich-
(Kinematik) dimensionalen Vektorraums iiber C
Zeitentwicklung Bewegungsgleichung, Schrédinger-Gleichung,
(Dynamik) gewohnliche, i.a. nicht-lineare | lineare partielle
Differentialgleichung Differentialgleichung
Ergebnis einer Messung | vollig bestimmt nur Wahrscheinlichkeits-
bei bekanntem Zustand aussagen
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Lessons learned:

e Um Wellenphdnomene erkldren zu kénnen, braucht es eine partielle Differen-
tialgleichung

e Korrespondenz-Prinzip: Klassischen Gréfien werden (Differential-)Operatoren
zugeordnet

e Grundlage der QM ist klassische Theorie, was merkwiirdig ist.

e i in zeitabhéngiger Schrodinger-Gleichung ”folgt” aus (nicht-relativistischer)
Dispersionsrelation fiir Materie

3 Formalisierung

Wir werden uns der Sache spiralisierend nahern

3.1 Physikalische Formalisierung

e Keine physikalische Theorie ist beweisbar, am Ende entscheidet das Experiment
e Physikalische Theorien sind motivierbar?

e Formuliere sie durch Axiome, um sie auf den Punkt zu bringen
Die Axiome der klassischen Mechanik, Hamilton’sche Variante

1. Der Zustand ist durch einen Punkt (x,p) im Phasenraum P gegeben
2. Eine Observable ist eine reellwertige Funktion f : P — R auf dem Phasenraum

3. Die Zeitentwicklung im Phasenraum ist durch die Hamilton’schen Gleichungen

gegeben

0oH 0OH

2Fiir Geniefler: Maxwell-Gleichungen durch Newton’sches Argumentieren motiviert, aber am
Ende Lorentz- nicht Galilei-invariant.

16
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Daraus folgt Zeitentwicklung der Observable

fla,p) = {f(z,p), H(z,p)} (28)

mit Poisson-Klammer

da Ob  Oa 0Ob
= — 2
{0} Z; (8%’ Op; Op; 8%’) (29)
Die Axiome der Quantenmechanik?

1. Der Zustand ist durch einen Vektor |¢) in einem (unendlich-dimensionalen)
Hilbertraum H gegeben.

2. Eine Observable A entspricht einem hermiteschen /selbstadjungierten linearen Operator

A : H — H mit Eigenfunktionen |n) und Eigenwerten a,.

3. Sei |¢) =) cn|n). Die Wahrscheinlichkeit P der Messung von a,, ist

P(Messung von A an |¢) ergibt a,) = |c,|* = (| Py |) (30)

mit ]5”> = |n)(n| dem Projektor auf |n)

Daraus folgt: Der Erwartungswert von A ist

(A) = (Y] Aly) (31)

4. Die Messung von a,, fithrt zu einem Kollaps der Wellenfunktion |¢) — |n)

5. Zeitentwicklung von |[¢) fiir geschlossene Systeme ist gegeben durch
Schrodinger-Gleichung

P .
h—|)y = H 32
i) = H|y) (3)
Zentral:
e Zufall des Messausgangs liegt nicht an Unkenntnis des Zustands

e Im Unterschied zur Statistischen Physik

3Unterstrichen ist, was wir im Folgenden lernen werden
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e Der Kollaps der Wellenfunktion kann nicht durch eine Schrédinger-Gleichung
beschrieben werden. Schon allein deshalb, weil er zufillig ist, nicht wie
Schrodinger-Gleichung deterministisch

Betrachte zeitunabhéngige Schrédinger-Gleichung

~

Hy(z) = E(x) (33)
Zwei Aufbaustiicke:
e Operator H
— "Frifit” ¢ (x) und gibt Ey(x) aus
— Eigenwert-Problem, der Eigenwert F muss reell sein

— Frage: Welche Eigenschaften miissen Operatoren in der Quantenmechanik
erfiillen ?

— Wie wird eine Messung mathematisch abgebildet ?
e Wellenfunktion 1 (z)

— In welchen Raum leben die Wellenfunktionen ¢ (x) ?

3.1.1 Zustande

Schrodinger-Gleichung ist linear = Wellenfunktionen bilden Vektorraum

Fiir Wellenfunktion ¢ (z) muss gelten

/ dep(@)? = 1 (34)

D.h., sie liegen im Raum der quadratintegrablen Funktionen L,

[ dx|ip(x)|* stellt ein Skalarprodukt dar

Wir brauchen Vektorraum mit Skalarprodukt: Einen Hilbertraum

18



3.1.2 Operatoren
Zeit-abhangige Schrodinger-Gleichung

B(e,t) = Hil,1)
(zh%) Y(x,t) = (—%;—;—H/(m,t)) Y(x,t)

e Verallgemeinertes Eigenwert-Problem

Operator;1) = Operatoryi) (35)

e Beispiel: Harmonischer Oszillator:

.0 B R 0% mw?
(Zh§> P(x,t) = (—%@—i— 5 x)zﬁ(:c,t)

E¢(x7t) = ﬁkinw(x7t)+ﬁpotw(mat)

mit
— Energie-Operator £
0
Y (x,t) nach (zha) P(x,t) (36)
Zeitableitung
— Kinetischer Energie Operator H kin
h? 0*
t h — ——— t
Y1) mach — 5 () (37)
Ortsableitung
— Potentieller* Energie Operator H,
Y(z,t) nach const. x%)(z, 1) (38)
Multiplikation mit 2
— Alle diese Operatoren O sind linear im Sinne von:
O(athr + Biba) = aO(¢1) + SO(i) (39)
e Wir miissen iiber lineare Operatoren mit reellen Eigenwerten nachdenken, die
in Hilbertraumen wirken 1/2
40) 2. Wo-

che
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3.1.3 Observable
Ausflug: Klassische Statistik

e Definition Zufallsvariable X

— Etwas, das eine Wahrscheinlichkeitsdichte px () hat

— Wahrscheinlichkeit, eine Realisierung « in (z,x 4+ dx) zu beobachten, ist
px(x)dx
— px(z) >0, [px(x)de =1

p(®)

ndf=3

0.0 ———

Abbildung 3.1
e Prominentes Beispiel:

GauBverteilung oder Normalverteilung:

1 e
o 5 (40)

Bezeichnung: N (yu, 0?)

Wichtig wegen Zentralem Grenzwertsatz: Die Summe von beliebigen Zufalls-
variablen (mit endlichen Momenten) konvergiert gegen eine Gaufiverteilung.

20



e Physikalisch entsteht Zufall entweder durch

— Chaos, bei Wiirfel und in der Statistischen Physik realisiert
— viele Einfliisse 4 la Brownian Motion

— Quantenmechanik

e Erwartungswert (f(z)), bitte fiir unten merken

<nm=/Mfmmw (41)

Beachte: Erwartungswert ist eine Zahl

e Beispiele: Momente

;%zw%:/&%@Mx (42)

1. Moment: Mittelwert

2. Moment

Varianz o2

o’ = ((z —(2))*) = (&%) — ()" = p2 — 1y (45)
e Wie Erwartungswert in der Quantenmechanik definieren ?
Wir haben:

— Wellenfunktion (x)

— Wahrscheinlichkeit Teilchen in (z, z+dz) zu finden: p(z)dz = | (z)|*dx =
V(@)Y (z)de

— 7Zu Observablen A gehoren Operatoren fl, die Wellenfunktionen fressen
wollen

21



— Naive Analogie zu Gl. (41):
W= [ AP [ @ dweee) o

geht nicht
— Einzige verniinftige Moglichkeit

(4) = / " dz ¢ (0)A(a) (47)

Da (A) reell sein muss, miissen Eigenwerte von A reell sein.

— Wir miissen iiber hermitesche/selbstadjungierte Operatoren nachdenken

3.1.4 Messungen

(x) ist 7irgendwie”

Messung gibt zufélligen Wert fiir Observable

"Sofortige” zweite Messung ergibt denselben Wert

e Messung muss ¢ (x) verdndert haben

e Wir miissen iiber die mathematische Formulierung einer Messung nachdenken
Quantenmechanik hat die Mathematik sehr befruchtet, Funktionalanalysis.

e ¢-Distribution

e 1930 von Physiker Dirac lax eingefiihrt

e 1945 von Mathematiker Schwartz rigoros behandelt, Ubung

3.2 Mathematische Formalisierung
3.2.1 Hilbert-Raum
Wellenfunktionen leben im Hilbert-Raum H

1. H ist ein Vektorraum iiber C

22



Kommutativ-Gesetz
Assoziativ-Gesetz

Existenz des Null-Vektors
Die iiblichen Vektor-Gesetze

2. Es existiert ein Skalarprodukt: (a|b)

Bra- und Ket-Vektoren, von bra-ket: Klammer, (©) Dirac

Ket-Vektoren: "normale” Vektoren

Im endlich-dimensionalen:

b) == : (48)

Bra-Vektoren leben im Dualraum: Operatoren, lineare Funktionale: Wer-
fen Vektor auf Zahlen

Im endlich-dimensionalen, mit * komplexe Konjugation:
(al := (al, .., ap) (49)

Bilden auch einen Vektorraum, aber einen ganz anderen

Es gelten die iiblichen Gesetze fiir das Skalarprodukt

Die Norm ist durch

| a) | := v/{ala) (50)
gegeben.
Es gilt die Cauchy-Schwarze Ungleichung

[{alb)] <[ a) [-] b) | oder [{alb)|* < (ala)(b|b) (51)

Hier besonders wichtig: Der abzéhlbar unendlich-dimensionale Ly-Raum
der quadratintegrablen Funktionen

(W) = / dz §* (2)(z) (52)
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Bra-Vektoren:

[z @) (53)

warten auf ein ¢(x), fressen es und geben eine Zahl aus

/dm W*(z):C - R (54)

3. Es gibt eine abzdhlbare Menge von paarweise orthogonalen Vektoren, deren
lineare Hiille dicht in H ist. Diese bilden eine Basis

4. Hilbert-Raum ist vollstidndig: Zu jeder Cauchy-Folge in H existiert ein Grenz-
element in ‘H

Bemerkungen

e Fiir endlich-dimensionale Hilbert-Rdume folgen 3. und 4. aus 1. und 2. Fiir
Quantenmechanik aber (abzéhlbar-)unendlich dimensionale Vektorrdume von
besonderem Interesse

Wichtige Definitionen:

e Orthogonalitdt von Vektoren

Zwei Vektoren |a) und |b) heiflen orthogonal, wenn gilt:

(alb) =0 (55)

e Orthonormalsystem

Menge {|a,)} von Vektoren heift Orthonormalsystem, wenn gilt

(an|am) = Onm (56)

e Vollstdandiges Orthonormalsystem

Orthonormalsystem {|a,)} heifit vollsténdig, wenn jeder Vektor |b) darin aus-
gedriickt werden kann:

) = 3 cula) (57)
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mit

Cm = (am|b) = {(an| Z Cnlan) (58)

Vollstandiges System von Basisvektoren kann stets in ein orthonormiertes Sys-
tem iiberfiihrt werden

Bras und Kets revisited, Nomenklatur flexibel halten

e Mit {|1;)} ein VOS (ab jetzt immer), eine Basis

) = ZQ’W%‘) (59)

i
folgt fiir normierte Zustédnde

1= (g|¢) = Z vjlcieilw) = Z i (60)

also

d el =1 (61)

i

Fiir spéter: Interpretation: |c;|? ist Wahrscheinlichkeit, dass bei einer Messung

von |¢) der Basiszustand |1);) gemessen wird

e Vollsténdigkeitsrelation und Projektoren

Betrachte

) = D_(wilo)v)
D) (wilo)

(Z rwi><w¢!> 4)

- Z |i)(;) =1 Vollstandigkeitsrelation

Einschieben der Eins oft sehr niitzlich
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Betrachte einen Summanden ergibt Projektionsoperator P;

Py = 1) (4] (62)

Warum 7
Pil¢) = Z W) (W5 (Wil @) i) = (Wsld)5) = ¢5ly) (63)

Das j-te Element wird herausprojeziert

Allgemein: |a)(b| ist aus der linearen Algebra als dyadisches Produkt bekannt.
Im endlich-dimensionalen:

aq CleT e alb:
(b1, 0p) = : : (64)
Qn apnbi ... ayb)
Es gilt
PP = [4;) (sl5) (| = P (65)

Projektsoperator ist idempotent

Eigenwerte des Projektionsoperators sind 0 und 1

Sei
Ppp =X\ (66)
dann
Plp=Np=Pyp=Xxp, N¥=X A=0,1 (67)
Interpretation:

— A=0:% im Kern von P;
— A=1:% im Bild von P;

Summen von Projektionsoperatoren projezieren auf Teilrdume
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Basistransformationen

Zustand |¢) sei in Basis {|¢;)} gegeben

(@) =D i), mit ¢ = (vi]0)

i

Um in eine andere Basis {|a,)}zu gelangen, Eins einschieben

6y = ZW Zm (i)

— ZZ Vil Y (an|thi) |an) = Z’f )

,k;n

Kontinuierliche Basen

(68)

Bisher: Diskrete Basiszustinde [¢;) mit (un-) endlicher abzahlbarer Dimension

Betrachte freie zeitunabhéngige Schrédinger-Gleichung

—%%1/1( r) = Ey(x)

Losung:

1 .
() = —=eP" =1 |p), peR

V2rh

Sicher nicht normierbar, uneigentlicher Zustandsvektor

Gesamtheit der ebenen Wellen definieren auch eine Basis:

16) = / dp () lp)

Basis ist iiberabzihlbar unendlich dimensional

Normierung

(plp) = /dpe D)

2rh
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Von diskreter Basis zu kontinuierlicher Basis:
T = P
> o [
dj — O(p— 28|

Termin3

3.2.2 Lineare Operatoren im Hilbert-Raum
Definition

e Ein Operator f bildet einen Zustand |¢) auf einen Zustand |¢) ab:

¢) = f([¥)) (73)
In der Quantenmechanik sind lineare Operatoren A von Interesse.

e Definition:

Fiir lineare Operatoren A gilt:

Alern) + ealtha)) = erAlibr) + ca Al ) (74)
Beispiel: Der Impuls-Operator p = %% ist linear

Darstellung von Operatoren

e Endlich-dimensionaler Fall

Stellen wir Bras (1| und Kets |¢)) in einer Basis |i) dar

(W] = w;:...,w:;):Zwm
Wy

) = Co =D il
Q/}n 7

so ist Operator A eine Matrix mit Elementen
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Es folgt

e Ist |i) Eigenbasis von A

so folgt der Spektralsatz

Sehr wichtig:

— A hat Diagonalgestalt

— In Eigenbasis zerfallt das i.A. hoch-dimensionale Problem in viele ein-
dimensionale Probleme

— Spektralsatz auch im unendlich-dimensionalen formulierbar, siche Ubung.

Hermitesche/selbstadjungierte Operatoren

e Der zu Operator A® adjungierte Operator A ist definiert durch

(AToly) = (¢]Av) (79)

Adjungierter Operator A" wilzt Wirkung von A auf Ket-Vektor auf Bra-Vektor
um

e Wegen (¢[)) = (¢[¢)* gilt

(plAv) = (ATgly) = (U]AT)" (80)

In Dirac-Notation

(el Al) = (¥ AT|9)" (81)

5Das "Dach” ist ab jetzt mitunter unterdriickt
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e Endlich dimensionaler Vektorraum
Sei A eine n X n Matrix, dargestellt in einer Basis, so gilt:

Adjungierte Matrix ergibt sich durch Transposition und komplexe Konjugation

e Definition:

Ein Operator ist hermitesch, wenn gilt

Al =A (82)

e Sind ferner Definitionsbereiche von A und A" identisch, heifit A
selbstadjungiert®.

e Beispiele:

— Endlich dimensionaler Vektorraum
Eine n x n Matrix ist selbstadjungiert, wenn sie reell und symmetrisch ist

— Der Ortsoperator ist (trivial) hermitesch

| v v = [ @y (53)

h

i

XAV WS
Yo s

% ist hermitesch

dx oo dz
h o h [~ dy*
1 U ) s dz
o hd \*
= [ (fie) e
oo 1 dr
— Damit folgt: Hamilton-Operator
n* o?
H=—— 4
s+ V() (54)

ist auch hermitesch

SNur im unendlich-dimensionalen relevant. Wir werden die Begriffe synonym verwenden
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o Es gilt

(AT = A
(AT = AAT
(A+B) = A4+ BT
(AB)! = BTAl

Ubersetzung in die Physik

e (Fast) alle Operatoren der Quantenmechanik sind hermitesch, wichtige Aus-
nahme siehe Kap. 5.4

e Schrodinger-Gleichung ist Eigenwert-Problem, betrachte zeitunabhéngigen Fall
Hy = By (85)

Im endlich-dimensionalen Falle fiihrt dies auf den bekannten Fall aus der linea-
ren Algebra

hin ..o B U1 U1
SRR | =E| (86)
Im allgemeinen hat Gl. (85) unendlich viele Losungen i = 1,2, ...
Hyi = Egy (87)

e Wir miissen iiber Eigenwerte und Eigenfunktionen hermitescher Operatoren
nachdenken

Wichtige Eigenschaften hermitescher Operatoren

(i) Die Eigenwerte hermitescher Operatoren sind reell

Beweis:

— Sei a Eigenwert von A A
dgp = ay (38)
— Dann gilt

WA (Aol )

(Wl) (Wl
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(ii) Die Eigenfunktionen hermitescher Operatoren sind orthogonal

Beweis:
— Multipliziere
fl@/}n = a, VU, (90)
mit " | ergibt
YAt = antlythn (91)
Entsprechend R
Ay = Qi (92)
mit ¢, ergibt

— Subtrahiere Gl. (93) komplex konjugiert von Gl. (91) und integriere

/_OO dx <¢:n/i¢n - (AT¢m)*wn> = /Z dx (antln — a0 0,)  (94)

o0 —

A hermitesch = linke Seite = 0, damit
(@n =) [ dz i, =0 (95)

— Drei Fille :
1. n=m
x Eigenwerte sind reell.
x Gleichung trivial erfiillt

2. n # m, nicht entartete Eigenwerte a,, # a.,

x Es folgt
/cm%%=0 (96)
x Mit der richtigen Normierung
nlbn) = [ do 30 = G (97)
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x Eigenfunktionen eines hermitschen Operators zu verschiedenen
nicht-entarteten FKigenwerten sind orthogonal

3. Betrachte n # m, entartete Eigenwerte a,, = a,,
% Zugehorige Eigenfunktionen nicht notwendiger Weise orthogonal
x Orthogonalisierung durch Bildung von Linearkombinationen

* Entartung physikalisch relevant, da mit Symmetrien des Problems
verbunden

(iii) Die Eigenfunktionen hermitescher Operatoren sind vollstandig

Beweis:
— Eigenfuntionen {9} vollstandig bedeutet fiir beliebige Wellenfunktion ¢:
o) =D cnthn() (98)
n=1

¢ 148t sich nach 1, entwickeln

— Zur Berechnung der ¢, multipliziere mit v} und integriere

/_de wmzzcn/_zdx G = e (99)

=4
ergo .
tn = / dx 47 (2) () (100)

— ¢ sei normiert, so folgt
1= / dx ¢* ¢ = / dx Zc;cmw;wm = Z Cr ConOnm, (101)

und damit

1= Z e, |? (102)
n=1

{cn} ist unendlich-dimensionaler Vektor der Linge 1.

— Es besteht ein-eindeutiger Zusammenhang zwischen ¢(z) und ¢,

Berechnung von Erwartungswerten

33



e Betrachte beliebige Wellenfunktion ¢(z) und Operator A mit seinem orthogo-
nalen, vollstindigen und normierten System von Eigenfunktionen ,,(x)

Aty () = anthn(x) (103)

e Frage: Wie lautet Erwartungswert von A 7

() = / " dz ¢*(x) Ad(a) (104)

—00

Mit {¢,,} Eigenfunktionen von A

$(x) = catn(x), e = (tu9) (105)
folgt

@ = [ Cae Y du,

oo
nm =anPn

&
= E CrCnQn, /
nm _
_ *
= C,,CnQp

n

o0

dx ¥y )y,

:5nm

Ergo

o0

(A) = Jeal’an (106)

n=1

e Interpretation

— Erwartungswert von A ist Summe {iber Eigenwerte von A gewichtet mit
|cn|?, dem quadrierten Uberlapp |(¢,|#)|* von 1, und ¢

— Ist ¢ Eigenfunktion von A, d.h. ¢ = oy, so giltcp, =1und ¢ =0 fiir [ # k
Dann )
(A) = a (107)

eine scharfe Messung
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Korrespondenz-Prinzip revisited:

e Observablen werden hermitesche Operatoren zugeordnet

A(z,p) ~ A(%, p) (108)
Das ist nicht eindeutig:
— Trivial nicht eindeutig:
pra? nicht hermitesch
p’r® ~ { L(p*3? + 2%p*)  hermitesch (109)
(Pt + p)? hermitesch

— Tiefsinnig nicht eindeutig
Groenewald-van-Hove Theorem, 1946, 1951

Quantisierung ist nicht konsistent fiir Potenzen > 2

e FAPP (For all practical purposes), Ort, Impuls, Energie, Drehimpuls, geht alles
gut.

Inverser Operator

e Definition:

Wenn fiir |¢) = A) ein Operator A~! mit A7 ¢) = [¢) existiert, so heiit
dieser inverser Operator

o Es gilt
ATTA=AAT1 =1 (110)

Unitédre Operatoren
e Definition: Ein Operator U ist unitédr, wenn gilt
Ur=u"* (111)

und damit

U'U=UU"=1 (112)

e Betrachte unitare Transformation U eines
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— Zustandes:
") = Ula) (113)

— Operators:
A =UAUT (114)

so bleiben experimentell messbare Groflen invariant:

— Skalarprodukte
(Blv) = (AlUTUI) = (¢'[W") (115)
— Erwartungswerte:
(W]Al) = (W|UTUAUTU ) = ('] A (116)
— Eigenwerte:
Sei
Uy =\ (117)
dann gilt

(Wly) = @IUWUY) = (UUY) = MP@ly) = PP=1  (118)
Alle Eigenwerte eines unitédren Operators sind vom Betrage eins.
Beispiel: Zeitentwicklungsoperator
— Betrachte zeitabhéngige Schrodinger-Gleichung, zeitunabhéngiges Poten-
tial
L0 ~
i) = ) (119)
Formale Losung:

(1)) = U(t—to)|(to))
Ult,ty) = e #A0-10)

e~ #H(t=t0) definiert iiber Potenzreihe?
A . Angn A 1
At 2,2
= =1+ At+ —A“t .. 120
e ngzo ] + At + 5 + (120)

"Wunderschéner Artikel: Moler & van Loan. Nineteen Dubious Ways to Compute the Exponen-
tial of a Matrix, Twenty-Five Years Later, STAM Review, 2003, 45(1), 3-49.
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— Zeitentwicklungsoperator U(t,ty) ist unitér:
Ut tg) = er0) = U(tg, t) = U (t, to) (121)
und erhélt somit die Norm der Wellenfunktion

WD) = W)Ut 1)Ut o) [ (ko)) = ((to) (o)) (122)

3.2.3 Kommutatoren

e Betrachte zwei Operatoren A und B. Der Kommutator [.,.] ist definiert als

[A,B] .= AB— BA (123)

Kommutator misst, ob zwei Operatoren vertauschen
e Erinnere endlich-dimensionalen Fall: Fiir Matrizen A und B gilt in der Regel:
[A,B] = AB—BA#0 (124)

e Betrachte Kommutator von Orts- und Impulsoperator

[2,p] = {SE, %idix] = 722 (x% - %x) (125)
Beachte: Operatoren wollen auf Zustinde angewandt werden
Daher
%m/z =1y + x%d) = <1 + x%) ) (126)
Somit
[z, p] = i; (x% —-1- x%) = _72_? (127)
oder
[z, p| = ih (128)

37

Termin4



e Beachte: Orts- und Impulsoperator beziiglich verschiedener Komponenten ver-

tauschen
(%3, 5] = [m?a%j} = 7; (xia%j — %xi) , i#j (129)
Wegen:
aixja:iw = xiaixjw (130)
folgt
(%, 0] =0 (131)

e Ubung: Berechne diverse Kommutatoren

e Definition: Antikommutator

[A,B], == AB + BA (132)

e Frage: Wann ergibt das Produkt zweier hermitescher Operatoren wieder einen
hermiteschen Operator ?

Ubung:
Verschwindet der Kommutator, [A, B] = 0, ist das Produkt AB hermitesch

Wichtiger Satz:

e Zwei Operatoren A und B kommutieren genau dann, wenn ein Satz von ge-
meinsamen Eigenfunktionen beider Operatoren existiert.

e Gemeinsame Eigenfunktionen —- A und B kommutieren
Beweis:

Sei 1,, gemeinsame Eigenfunktion von Aund B , dann folgt:

ABwn = Abnwn - anbnwn = bnanwn = Banwn = BAqwbna V¢n (133)
— [A,B] =0 (134)
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e Dieses wird spéter, Kap. 7, wichtig zur Definition von Quantenzahlen.

3.3

A und B kommutieren = Es existiert gemeinsames Bigensystem

Annahme: Eigenwerte seien nicht entartet, Satz gilt aber auch sonst.

Beweis:

Sei

Awn = Qp wn

Dann gilt . R
BAwn = aann

Mit Kommutativitét:
Damit zusammen

A<B¢n) = an(Bwn)

= ¢p, = Bwn ist auch Eigenfunktion von A mit Eigenwert a,

(135)

(136)

(137)

(138)

Da Eigenwerte nicht-entartet sind, sind Eigenfunktionen eindeutig = ¢,, < ¢,

¥, ist Eigenfunktion von B zum Eigenwert b,,.

Zuriick zur Physik

3.3.1 Die Messung

Der Ablauf, Axiome der Quantenmechanik revisited

Zeitentwicklung von ¢ (x,t) durch Schrodinger-Gleichung gegeben
Observable A durch hermiteschen Operator A gegeben
Bestimme Eigenfunktionen |n) mit Eigenwerten a, von A

Messung zum Zeitpunkt ¢: Projeziere ¢(x,t) auf |n)

Cn = (n[t(,1))
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|c,|? gibt Wahrscheinlichkeit, dass a,, gemessen wird.

Beachte:

leal® = (nf(x, 1)) (nfd(z,t)), mit (n|y(z,1))" = (Y(2,1)|n)
(W(z,t)  [n)(n]  ¥(x,1)
——
Projektor

e Wird a,, gemessen, geht Zustand |¢(x,t)) in Zustand |n) tiber.
Kollaps der Wellenfunktion.

Wird direkt danach noch mal gemessen, ist System immer noch in Zustand |n),
Messung ergibt wieder a,,

e Falls nicht, ist |n) Anfangswert fiir Zeitentwicklung mit Schrodinger-Gleichung

e Wird mehrfach an identisch prapariertem Zustand [i(z,t)) gemessen, erinnere
Gl. (106), so gilt:

o0

(A) = leal’an (141)

n=1

Interpretation

e Erwartungswert von A ist Summe iiber Eigenwerte von A gewichtet mit |lenl?,
der Wahrscheinlichkeit, dass a,, auftritt

|cn|? ergibt sich aus Uberlapp von |¢(z,t)) und |n)
e Ist ¢ Eigenfunktion von A, d.h. ¢ = |k), so gilt ¢y =1 und ¢; =0 fiir [ # k

Dann
(A) = ay (142)

eine scharfe Messung

e Ist 7 nicht Eigenfunktion von A, so wird eine einzelne Messung einen der
Eigenwerte a,, liefern und zwar mit Wahrscheinlichkeit |c,|?.

e Ergebnis einer einzelnen Messung ist also unbestimmt®.

8und zwar in einem sehr tiefen Sinne, siche Kap. 10
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e Merke: Die Zeitentwicklung des Zustandes ist deterministisch. Zustand be-
stimmt aber nicht deterministisch Ergebnis einer Messung

Zentral:
e Zufall des Messausgangs liegt nicht an Unkenntnis des Zustands
e Im Unterschied zur Statistischen Physik

e Der Kollaps der Wellenfunktion kann nicht durch eine Schrodinger-Gleichung
beschrieben werden.

3.3.2 Ehrenfest Theorem

Die klassische Mechanik muf} als Grenzfall in der Quantenmechanik enthalten sein.

e Betrachte Schrodinger-Gleichung und die komplex konjugierte, adjungierte

0 1
aw(x’t) — —ﬁHw(a:,t)
o V(@) = SH (1) = S HY (a,1)

Fiir Operator A ist der Erwartungswert

(A)(t) = / dr (o, ) At x 1) (143)

e Zeitliche Ableitung, alle Argumente unterdriickt

d o 0A 0

Z(4) = /da: 4 AYp + 0 ==+ ¢ A %y

dt ot ot ot
~~ ~~
= Hy =— 4 HY

[ s ( (A w*AHwHw—w)
- [ (;Lw*HAw P AHY) + w)
[ (

(" (HA — AH)) + w)



Ergibt

d ) 0A
G = Ay + (55) (14)
Vergleich mit klassischer Mechanik
d, af
Sf = {H 1+ 5 (145)
mit Poisson-Klammer
_0fdg 0g90f
{f,9}= 9030 p 0 (146)

Andere Formulierung des Korrespondenz-Prinzips:

Klassische Poisson-Klammer entspricht quantenmechanischem Kommutator
multipliziert mit ;

Zwei wichtige Kommutatoren, Beweise als Ubung

2
1= Pi = ik
[H, 2] = [; S @i | = —ih (147)
hod %
[H, pi] = [V(:v),;ax,] =iho (148)

Anwendung von Gl. (144) auf x und p, mit Kraft: F(z) = —VV (x)

d 1
Loy = Lo
d
= —(VV(2)) = (F(z))
Fasse zusammmen:
d? .
mﬁ@) = (F(z)) erscheint bekannt (149)

Ehrenfest Theorem: Die klassischen Gleichungen gelten fiir die Mittelwerte

ABER: Das bedeutet nicht, dass die Mittelwerte (z) und (p) den klassischen
Bewegungsgleichungen geniigen.
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Dazu muss man Mittelwert der Kraft

<Fu»=1/mmwm¢ﬂww¢@¢> (150)

durch ihren Wert F'({x)) an der Stelle (x) ersetzen diirfen

Wann gilt dies ? Betrachte Taylor-Entwicklung
F(z) = F((x)) + F'({z))(z — {z)) + %F"((@)(x — (@) +... (151)
Wegen ((z — (x))) = 0 entféllt 2. Term

F(z) = F({a)) + (@) (@ — (o)’ + .. (152)

=Az?
Ersetzen von (F(x)) durch F'({x)) ist exakt, wenn zweite und hohere Ableitun-

gen verschwinden. Naherungsweise gut, wenn Wellenfunktion so gut lokalisiert
ist, dass sich F'(z) im Bereich ihrer Ausdehnung nur wenig dndert

(Az)*F"((z))

)< 1 (153)
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Lessons learned

e Die Axiome der Quantenmechanik:

— Zustdnde leben im Hilbertraum
— Observable durch selbstadjungierte Operatoren représentiert

— Messung: Projektion der Wellenfunktion auf Eigenzustédnde des selbstad-
jungierten Operators

— Eigenwert als zufilliges Messergebnis

— Wahrscheinlichkeit durch Uberlapp von Wellenfunktion mit Eigen-
zustdnden gegeben

— Kollaps der Wellenfunktion auf zugehorigen Eigenzustand

Drei wichtige Eigenschaften selbstadjungierter Operatoren:

— Eigenwerte sind reell
— Eigenzusténde sind orthogonal

— Eigenzusténde sind vollsténdig

Groenewald-van-Hove Theorem: Korrespondenz-Prinzip nicht konsistent

Kommutatoren messen Vertauschbarkeit von Operatoren

Ehrenfest-Theorem: Klassische Mechanik als Grenzfall der Quantenmechanik

Terminb

4 Unscharferelationen

e Erinnere Cauchy-Schwarz’sche Ungleichung:
(dld) (DY) > [oly)I® (154)

e Betrachte zwei hermitesche Operatoren A und B und Zustand (0

Definiere Operatoren A und B durch Abziehen des Mittelwertes im Zustand
A=A—(A) = A~ (|vlAl) (155)
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B entsprechend

Setze A und B in Cauchy-Schwarz’sche Ungleichung ein

(AV|AY)(BY|BY) > [(A¢|BY)[* (156)

Hermitezitat ausnutzen

(WA 1) (W[ B*[) = |(¥|AB[)|* (157)

Mit Antikommutator
[A,B], = AB+ BA (158)

zerlege AB in hermiteschen und einen anti-hermiteschen Anteil

1 1
mit
[A, B!, = [A,B]; hermitesch
(V[[A, Blily) € R
und

[A, B]' —[A, B] anti-hermitesch
Kommutator von Aund B = iC, A, B,(C hermitesch
(V|[A, B]|y) rein imaginér

Zerlegung eines Operators in einen hermiteschen und einen antihermiteschen
bedeutet fiir Erwartungswert Zerlegung in Real- und Imaginérteil

Damit gilt fiir Betragsquadrat:
1 1
[(WIABIY)® = 7 (SI[A, BLelv)® + 71 [[A, Bl¢)* (160)

Die Mittelwerte (A) und (B) sind Zahlen, kommutieren mit allem.

Daher gilt o
4,8 = [4,B] (161)
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Damit folgt bei Vernachléssigung des ersten Terms in Gl. (160)

WIAB)P 2 FIIIA, Bllo)P? (162)

Warum nicht den zweiten statt des ersten Terms vernachlissigen? Uber kom-
mutierende Operatoren wissen wir was :-)

e Die Unschérfe AA ist die Standardabweichung von A, Wurzel aus der Varianz
(AA)? = (D[(A = (A))*[4) (163)
AB entsprechend

e Somit folgt fiir das Produkt der Unschérfen mit Gln. (157, 162)

AAAB > %\([A, B))| (164)

die allgemeine Unschérfe-Relation:

Observablen von nicht-kommutierenden Operatoren sind nicht simultan scharf messbar

e Betrachte : A = Z; und B= Dj
Erinnere:

[2:, ;] = iRy (165)

Es folgt der wichtige Spezialfall der Orts-Impulsunschérfe:

h

die Heisenberg’sche Unschérfe-Relation.

Kurzklausur
Physikalisch/mathematische Interpretation

e Kommutierende Operatoren

— Erinnere: Kommutieren zwei Operatoren A und B, so haben sie die glei-
chen Eigenfunktionen |n)

— Messung von A iiberfithrt Wellenfunktion |¢) in Eigenfunktion |n) und
ergibt Eigenwert a,, als Messwert
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— Unmittelbar anschlieBende Messung von B lasst Eigenfunktion |n) un-
verandert und ergibt b, als Messwert

— Erneute Messung von A ergibt wieder |n) and a,
— Dieses lédsst beliebig héufig wiederholen
- At —0

— Ergo: Man kann von simultanen scharfen Messwerten sprechen
e Nicht-kommutierende Operatoren
— Messung von A iiberfithrt Wellenfunktion |¢) in Eigenfunktion |n) ergibt
Eigenwert a,,

— |n) ist nicht Eigenfunktion von B

— Messung von B ldsst |n) in Eigenfunktion |m) von B kollabieren und
ergibt by,

|m) ist keine Eigenfunktion von A

— Erneute Messung von A ergibt Kollaps in Eigenfunktion |n) und Eigen-
wert a,,

— Diese wechselseitigen Zerstorung der Eigenfunktionen iteriert
— Die Messwerte dndern sich stédndig

— Ergo: Man kann nicht von scharfen Messwerten sprechen
e Gilt alles im zeit-abhéngigen wie im zeit-unabhéngigen Falle

Unschérferelation ist eine Ungleichung
Unter welchen Bedingungen an die Wellenfunktion wird das Gleichheitszeichen an-
genommen ?

e Gleichheitszeichen bei Cauchy-Schwarz’scher Ungleichung
(AY|Ap)(BY|BY) > [(Ay|By)[? (167)

wird angenommen fiir

B =24y, z€C (168)
Gleichheitszeichen in Gl. (162)

(WIABJ) P = S [(WI[A, B][v) | (169)

N
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wird angenommen, wenn Erwartungswert des Antikommutators verschwindet

(V[ABl) + (| BA[Y) = (AY|BY) + (By[Ay) = 0 (170)
Gl. (168) eingesetzt
0 = (A|zA) + (2AY[AV) = (AP|zAY) + (A[2AY)" = (2 + 27)(AP|Ay)

(171)
Ergo: z muss rein imaginér sein
e Eingesetzt in Gl. (168)
By =i Ay, A reell (172)
e Fiir A =2 und B = p ergibt sich die Differentialgleichung
h o
Z — i\ — 1
(5= 0) v =i — (o (173)

Losung: GauB’sches Wellenpaket, siche Kap. 5.1. Beweis als Ubung
Beweis der Orts-Impuls Unschérfe auf Grund der Fourier-Transformation

e Sei ¢(x) eine quadrat-integrable Funktion

e Dann ist?

0w =—=[ "o pla)e (174)

die Fourier-Transformierte von ¢ (x)

e Sei ferner

(Ax)? = / " e (@)@ — () (a)

(AR = / "k k) (k — (R)2O(R)

o0

dann gilt

AzAk > (175)

N —

9mal wieder nomenklatorisch flexibel bleiben :-)

48



e Beweis als Ubung

e Mit de Broglie-Beziehung p = hk folgt

AzAp > (176)

Termin6b

| S

Energie-Zeit Unschérfe

e Betrachte 1(t) und Fourier-Transformierte

7 1 00 —iwt
9w) = —= / e vl (177)

und

B0 = [ do Pl - @)
Es folgt analog
AwAt > % (178)
und mit £ = hw folgt
h
AEAt > 3 (179)

e Aber: Die Zeit t ist in der Quantenmechanik keine Observable, nur ein Para-
meter. Es gibt keinen Zeit-Operator

e Daher lidsst Zeit-Energie Unschérfe sich nicht aus Kommutator-Relation ablei-
ten

e Bedeutung von At: Zeitdauer, keine Standardabweichung in obigem Sinne

e Anwendungsbeispiele
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— Durchgangsdauer und Energieunschérfe
Etwas hand-waving :-)

Energieunschérfe eines freien Wellenpaketes mit py und Ap

PoAp
m

AFE ~

(180)

Zeitunscharfe At: Zeit, die das Teilchen an Stelle x gefunden werden kann,
d.h. die Zeit, die das Wellenpaket mit Ausdehnung Az fiir Durchgang
durch Ort x bendtigt

A A
At =2 22T (181)
Vo Po
Somit 5
AEAt = AxzAp > 3 (182)
— Energie-Zeit-Unschérfe hat praktische Konsequenzen in der Spektrosko-
pie:

x Hat ein angeregter Zustand die Lebensdauer At, dann ist die Frequenz
nur bis auf Aw, resp. die Energie auf AE bestimmt.

* Endliche Lebensdauern fiihren zu verbreiterten Emissionslinien im
Spektrum

Lessons learned

e Observable, die zu nicht kommutierenden Operatoren gehéren, sind nicht si-
multan scharf messbar

e Die Zeit ist in der Quantenmechanik keine Observable, es gibt keinen ”Zeit-
Operator”

e Energie-Zeit Unschérfe in besonderem Sinne

5 Erste Anwendungen

”Shut up and calculate”
Uberblick
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5.1

Zentral ist der Hamilton-Operator:

Zeitunabhéngig

(_5_23_; + V(x)) U(z) = E(x)

(183)

(184)

Das heifit, die Fragestellungen klassifizieren sich nach dem Potential V' (x)

— Freies Teilchen

— Potentialbarriere

— Kastenpotential

— Harmonischer Ostzillator

— Periodische Potentiale

Bestimme Eigenfunktionen und Eigenwerte, das Energiespektrum, von H

Freies Teilchen
V(z)=0

h? d?

2mda?

U(r) = Ey(z)

Losung: trigonometische Funktionen

Ansatz: (z) = Aetke

Es folgt
72 A .
__A(_k,Q)e:I:zk‘x — EAezl:zk:z
2m
mit Energie F
27.2
JoL
2m
bzw. )

51

(185)

(186)

(187)

(188)



e Fiir jede Energie F existieren zwei Losungen, jeder Eigenwerte ist zweifach

entartet '
Vi (z) = A (189)

Jeder Wert E > 0 ist Eigenwert, keine Quantisierung, sondern kontinuierliches
Spektrum

e Energie kann scharf gemessen werden AE =0

e Zeitabhéngige Losung
w:i:(x, t) — Ae:l:ik:ce—i/hEt (190)
ergibt mit w = E/h

Yo (x,t) = Ae'® =Y rechtslaufende Welle
Y_(x,t) = Ae'F=“0  linkslaufende Welle

Allgemeine Losung: Linearkombination

U(z,t) = (Ae™ 4+ Be ™) e (191)

e Quantenmechanische Wahrscheinlichkeitsamplitude fiir freies Teilchen ist eine

Welle.

Dies erlaubt Effekte wie Interferenz, so war es konstruiert.

Wellenpakete

e Konstruiere lokalisierte Losung durch Superposition

Y(x,t) = \/% /_ "k a(k)eitkz=wkt) (192)

Anfangsbedingung, t = 0
w0 = —— [ db (e’ (199
r,0) = — a(k)e
V21 J o
a(k) ist (inverse) Fouriertransformierte von ¢(x,0)
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e Beachte: Wellenpaket ist keine Eigenfunktion von H

Zerfliessen von freien Wellenpakten

e (QQuantenmechanische Dispersion

e Betrachte Gaufl’sches Wellenpaket

a(k) = Ce=olh—ho)® (194)
a legt Breite fest, C' sorgt fiir Normierung
e Ganz allgemein, gilt auch fiir elektromagnetische Wellen.
e Erinnere unterschiedliche Dispersionsrelationen

27.2
_ hk QM
2m

w = ck ED

Entwickele w(k) um kg

dw 1 dPw
k) = k — k—k e
o) = wlho)+ | kg o

w(k‘) = WO—f—U(;(k—ko)—f—ﬁ(k?—k?o)?—f—...

k— ko) +...

vg: Gruppengeschwindigkeit, 3: Dispersionsparameter

e Hier: Entwicklung bricht (spétestens) nach quadratischem Term ab
Eingesetzt in Gl. (192)

@/)([E,t) = \/%/dke_a(k—ko)26ikzz€—z’(wo+vc(k—k0)+6(k—k0)2)t

C 1 — (x —vgt)?
_ _—ez(kom wot) exp | —————
V2o +ipt 4(a + 15t)

Beweis als Ubung
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Damit Wahrscheinlichkeitsdichte

- |C|? oz —wgt)?
|¢(J;7t)| - 2\/mexp( 2(0(2 +52t2) (195)
Erinnere Varianz von Gauf3-Verteilung
_ _a (@)
pG($) - \/W exXp ( 252 (196)
2 242
ol = # = (Az)? (197)
4
2
[ ¥ (x, 0)]
_— : 2
Zeitliche Entwicklung Il,b(x, 1) I
|
l
|
i >
0 Vgl A

Abbildung 5.1

e Fiir Impulsunschirfe gilt

h
Ap = —— 198
N (198)
e Damit folgt fiir die Unschérferelation
h B2t h
AzAp = =1+ — > = 1
TAp = o + 2 25 (199)

Beachte: Fiir t = 0 gilt minimale Unschérfe.
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e Quantenmechanischer Fall:

dw hko h
UG—%ICO—W» 5—% (200)

Dispersion gilt fiir jede Art von freien Wellenpaketen.

e Elektrodynamischer Fall: im Vakuum keine Dispersion, da

vg=c¢ (=0 (201)

5.2 Potentialbarriere und Tunneleffekt

e Betrachte Teilchen mit Energie ' und eine Potentialbarriere V()

0 firz< —a
Vie)=¢ W fir —a<z<a 0<E<V (202)
0 firz>a

I I a IMI

Abbildung 5.2

e Klassisch: Teilchen kann Barriere nicht iiberwinden

e Quantenmechanisch: Es gibt endliche Tunnelwahrscheinlichkeit 7'(£), ein von
links kommendes Teilchen rechts der Barriere zu finden

e Intuition, Faktor e~™* im Folgenden unterdriickt:
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— Rechts und links der Barriere: freies Teilchen

Y(z) o< e k= —v/2mE

1
J

— In der Barriere, Schrodinger-Gleichung
h? d?
(—%@ + Vb) Y(z) = Ep(z)

oder

h* d?
— 5o (@) = (E = Vo) ()
max N——
<0

Losung: Exponentielles Verhalten
(@) oc e,

9= %\/2m(Vo —E)

Allgemeine Losung

Aethr 4+ Be=T  fiir x < —a
P(x) = Ce 9% 4+ De?” fir —a<z<a
Fe*® 4+ Ge ™= fiir & > a
VA
B Wl
L B
N F ~
> ”
A
V,
b
I II a IM1

Abbildung 5.3: Von links ein laufendes Teilchen
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e Bei x = —a und x = a miissen die Wellenfunktionen fiir endliches Potential 1}
stetig und differenzierbar aneinander anschlieffen

Beweise:

— Intuitiv

* Angenommen (x) oder ¢/(x) wiren unstetig, dann bewirkt

P(x) o< O(z —a) fir ' (z) o< §'(z — a)
V'(z) o« O(x—a) fir v'(z) x 6(x — a)

% 1"(+a) hat aber hochstens endliche Sprungstelle
x Widerspruch

% Analoge Argumentation: Bei unendlichen Spriingen von V' (x) bleibt
() stetig, aber ¢/(x) wird unstetig

— Physikalisch: ¢’(x) entspricht Impuls, dieser kann nicht unendlich sein,
daher muss () stetig sein.

— Mathematisch

« Integriere Schrodinger-Gleichung iiber das Intervall [a — €, a + €]

_E_“y%§¢@5[€@mmy/“MV@wm@w

2m a—e —€ a—e

hQ a-+te a-+te

Wt = va-0) = [ de Bv@) - [ doVigla)

a—e a—e (209)

x Fiir e = 0 folgt verschwindet 1. Integral auf jeden Fall, zweites, wenn
Sprung in V(x) endlich

e AnschluBlbedingung bei z = —a

Stetigkeit ‘ ,
Ae~ke 4 Beika — Ce9% 4 De™9% (210)

Differenzierbarkeit

ik(Ae™™* — Be'*) = —g(Ces* — De™9%) (211)
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Beginn Heimarbeit

In Matrixschreibweise

e—ika eika A
e—ikza o 6ikza B

Umgestellt

Ergibt

(

)=

e9e e 9 C
%969“ —%ge_g“ D

eg

) (212)

A 1 eika eika a o—90 C
B ) = 5 ( e—ik‘a _e—ika ) ( %]ega _%e—ga ) ( D ) (213)

e Anschlulbedingung bei z = a

Analoge Rechnung

ika (1 _ %) e—9atika )

ika (1 + %) e—ga—ika

_ ik a+ika ik a—ika
M= L[ (e (1)
2 (1 + %) e 9e + '

( (cosh2ga + £ sinh 2ga)e

— 3l sinh 2ga

2ika
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—ika (1

%7 sinh 2ga
(cosh2ga — % sinh 2ga

(214)

(215)

(216)

(217)

(218)

)

(219)



mit

|
Qx|

> I e
_|_

e Ende Heimarbeit Termin7

Betrachte von links einlaufendes Teilchen, d.h. G = 0. Dann
A = F(cosh2ga + % sinh 2ga)e?™*

= —F% sinh 2¢ga

exponentieller Abfall

Oszillation Oszillation
[ I1 I11

Abbildung 5.4: Wellenfunktion

e Definiere Transmissionsamplitude S(E):

s(E) =L T 220
(E) = A~ cosh2ga + £ sinh 2ga (220)

Definiere Tunnelwahrscheinlichkeit T'(E) = |S(F)|?, dass Teilchen, das auf
Schwelle trifft, diese durchdringt:

1

1+ (1 + (€2/4))sinh® 2ga (221)

T(E) =
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e Betrachte Grenzfall einer sehr hohen und breiten Barriere: ga > 1

Beginn Heimarbeit

Dann gilt
1 1
sinh 2ga = 5(629“ — e ¥ 5629“ > 1 (222)
Damit .
e\~ 16(gk)?
TE)~ (14— 4de "= _——2L_¢ % 223
B (1) - g 2

Mit k = +v2mE und g = +1/2m(Vp — E)

_16E(V, — E)

T<E) V02

exp (—4% om (Vo — E)> (224)

Ziehe Vorfaktor in den Exponenten

T(E) ~ exp (—4%\/W—E) +log (%‘L_E))) (225)

Vo
Logarithmus wéchst viel langsamer als Wurzel, vernachléssige ihn
T(E) ~ exp (—4% om(Vy — E)) (226)

Ergebnis: Fiir sehr hohe und breite Barriere, ga > 0

Ende Heimarbeit

e B

Q

T(E) ~ e
5 = 2oV B)

Tunnelwahrscheinlichkeit nimmt exponentiell ab mit der

— Breite der Barriere

— Wurzel der Masse

60



— Wurzel aus der Energiedifferenz

e Tunneleffekt ist ein Wellenphdnomen. Geht auch mit elektromagnetischen Wel-
len: Evaneszente Wellen, lateinisch: evanescere: verschwinden. Z.B. bei Total-
reflexion

45°-Prismen mitn > 1,4
(z. B. Glas)

Lichtquelle

reflektierter elenanen ~getunnelter”
Anteil Anteil

Abbildung 5.5

e Technisch: Grundlage des Rastertunnelmikroskopes, Nobelpreis 1986 fiir
G. Binnig und H. Rohrer
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— Halte Metallspitze iiber abzutastender Oberflache

— Zwischenraum entspricht Potentialbarriere

— Lege Spannung zwischen Metallspitze und Oberflache an

— Strom misst den Abstand

— Quantitative Beziehung zwischen Abstand und Strom schwierig

— Praxis: Halte Strom konstant und variiere Abstand durch Piezokristalle

— Abstand o« Spannung an Piezokristall

Ubung: a-Zerfall

5.3 Potentialtopf
Unendlich hoher Potentialtopf

e Sci

V() =

{O fir0<z< L (227)

oo sonst

e Losung muss im Auflenbereich verschwinden, sonst wire Erwartungswert der
potentiellen Energie

vy = / " dz V(@)l(a)]? (228)

o0

unendlich

e Schrodinger-Gleichung im Innenbereich

ﬁ2 d2
~ 9 (z) = Ev(x) (229)
Allgemeine Losung
(z) = Asin(kx) + B cos(kx) (230)

e Wellenfunktion muss stetig sein: 1(0) = ¢¥(L) =0
Yn(z) = Asin(kpz), k,=—, n=12,... (231)
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Richtig normiert:

() = \/% sin (?) (232)

e Wellenfunktion ist an £ = 0 und x = L nicht differenzierbar

E,t

Ej

Abbildung 5.6

e Energiespektrum durch Einsetzen in Schrédinger-Gleichung

m2h? 9
n — n-,
2m L2

n=12,... (233)

E, o n? mag zunichst iiberraschen, da Energieliicken zwischen benachbarten
Energie-Eigenwerten damit auch grof§ werden.

Aber relativ werden Abstiande kleiner

AE, Enp—E, 2n+1

E, E, n?

2
— 234
2 (234)

e Fiinf Beobachtungen

— Tiefster Energiewert liegt nicht bei Null
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— Es gibt nur diskrete Energiewerte.

Es gilt allgemein: Lokalisierte Losungen fiihren iiber Randbedingungen zu
diskreten Energieeigenwerten

— Fiir grofle Massen und breite Topfe ergibt sich Quasi-Kontinuum, der
klassische Grenzfall

— Fiir grofie n oszilliert ¢, () sehr schnell. Wahrscheinlichkeit pa,(z) Teil-
chen in [z, x + Ax] zu finden

9 [rtar o (T Ax . L
paz(T) = z/z dx sin <TI> N7 fiir - < Az (235)

— Verringerung von L erhéht die Energie: Es gibt einen Druck

e E; # 0 ist in Ubereinstimmung mit der Unschérferelation

— Wire E; = 0 wire p scharf bestimmt. Dann miisste Az = oo gelten. Geht
aber bei beschrianktem System nicht

— Uberschlagsrechnung

Az ~ L, damit Ap ~ h/L

Dazu gehort F = QTZ%, bis auf Faktor 72 die Grundzustandsenergie

e Beachte:

— Durch Potential-Randbedingungen wird aus iiberabzidhlbar unend-
lich dimensionalem Losungsraum der freien Schrédinger-Gleichung ein
abzahlbar unendlicher Losungsraum

— Die ganze Rechnung geht, ohne dass man iiber ¢y nachdenken muss

Endlicher Potentialtopf als Ubung

e Nicht-triviale Anschlussbedingungen analog zur Potential-Barriere

V' (z) ist endlich, ¢ (x) verschwindet aulerhalb des Potentialtopfes nicht

V' (z) macht bei z = +a einen Sprung, also auch V(z)i(x)

Also macht %zﬂ(as) einen endlichen Sprung

Damit hat erste Ableitung einen Knick.

e t)(z) einmal stetig differenzierbar
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5.4 Harmonischer Oszillator

e Hamilton-Funktion des klassischen harmonischen Oszillators:

P2 mw?

H=-—
2m+ 2

7 (236)

e Zeitunabhéngige Schrodinger-Gleichung:

R A omw?
- =F 2
(~gms + T #*) vle) = Boa) (237)
mit charakteristischer Lange
h
=1/ — 238
o wm (238)

5.4.1 Losung per Leiteroperatoren, algebraische Methode

Fast alle " unterdriickt

e Definiere Leiter-Operatoren a und af, seinen adjungierten Operator

wmax + ip

vV 2wmh

wmx — 1p
2wmh

CLT:

Beachte: ¢ und af sind nicht hermitesch, Beweis als Ubung

e In Umkehrung

h
_ i
x S (a+a") (239)
p = —i hu;m(a —al) (240)
e Es gilt, Ubung
[a,al] =1 (241)



wm

e Mit charakteristischer Linge z¢ = 1/ &

1 (= d
S = L(ﬁ_xi)
V2 \zg da

Mit Gln. (239, 240) ergibt sich Hamilton-Operator des harmonischen Oszilla-
tors, Ubung :

1
H = §hw(aTa + aa’) (242)
e Addiere a'a — afa, unter Benutzung des Kommutators, Gl. (241), folgt
Lttt ot t_ gt fy4 1 -
H=_-hv(a'a+a'a+aa" —a'a) =hw|a'a+ =) =hw|n+ = (243)
2 T 2 2

mit hermiteschen Besetzungszahloperator 7 := a'a

e Aufgabe: Finde Eigenwerte und Eigenfunktionen, die sogenannten
Fockzusténde, des Besetzungszahloperators.

e Es sei ¢, Eigenfunktion zum Eigenwert v von 7

ny, = v, (244)
e Berechnung von
Aus
v |t) = (Wu|inh,) = <¢V|GTG¢V> = (ay|arp,) > 0 (245)
folgt

v >0 (246)

Kleinstmoglicher Eigenwert: v = 0

Um zugehorige Eigenfunktion zu berechnen, beachte, dass Norm von aiy ver-
schwinden muss:
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ayo =0

d.h.

d
(£ + 950—) o =0
g dx

Normierte Losung dieser Differentialgleichung

i () "o (36

Berechnung der iibrigen Eigenfunktionen

Es gilt, Ubung

A

[,a'] =a’ und [A,a] = —a

Behauptung: a1, ist Eigenfunktion von 7 zum Eigenwert v + 1

Beweis:

Addiere geschickt eine Null:

salt = (a'h 4+ fat — aliVe. = (alf + aT ., = Dat
na'y, = (a'n +na" —a'n)y, = (a'n+a")v, = (v + 1)a"y,

a,T

Damit
qurl X GT%

Normierung, wieder geschickt Null addieren, erinnere [a, a'] = 1

(a'ula’y) = (Gylaa’sy) = (¥ [(aa’ - ala+a'a)ys,)
(Wol(ala+ 1)) = (Wl(R +1)0h,) =
(v 4+ 1) ([th) >0

Somit gilt fiir normierte v, und 1,4

1
Vv +1
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Iteriere

1 1
— 4 —
\/;a¢u—1 NIl

Merke: Mit a geht es die Leiter eins hoch

Yy (a")"4y (254)

Behauptung: ai, ist Eigenfunktion von n zum Eigenwert v — 1

Beweis:
nay, = (an + na — an), = (an — a), = (v — 1)a, (255)
Damit
Yy—1 X ay (256)
Normierung:
(ay,|avy,) = <¢V|aTawy> = (Yu|naby) = v{|1y) (257)
v = 0 hatten wir schon oben, Gl. (247)
Firv>1 .
Yy = ﬁ ap, (258)

Merke: Mit a geht es die Leiter eins runter

Behauptung: Mit ¢,,, v =0,1,2, ... sind alle Eigenfunktionen gefunden
Beweis durch Widerspruch:

Nehme an, es géibe einen Eigenwert v =n+amit 0 <a <lundn €N

n, = (n + a)i, (259)
Dann folgt mit Gl. (255)
ﬁ(an¢u) = Oé(a”%) (260)
und
a(a™ M) = (a —1)(a" ) (261)

Norm von a""1), existiert, aber o — 1 ist negativ. Widerspruch zur Positivitét
der Eigenwerte
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e Zusammengefasst:

Zustand n E
Grundzustand 1) 0 hw/2
1. angeregter Zustand v, = a'y 1 3hw/2
2. angeregter Zustand ¢y = (a)?hy 2

B2

1
En—(n+§), n=0,1,2...

(262)

(263)

e a' erhoht Energieeigenwert um fw = Erzeugungsoperator eines Energiequan-

tums

a erniedrigt Energieeigenwert um hw = Vernichtungsoperator eines Energie-

quantums

— a' und a zentral in der Quantenfeldtheorie

— Dort werden auch die Felder quantisiert

— Felder haben Moden, das sind im wesentlichen harmonische Oszillatoren

— Diese kénnen angeregt, erzeugt, und abgeregt, vernichtet werden.

— Stichwort: Zweite Quantisierung

e Berechnung der Wellenfunktionen, Faktoren unterdriickt

1 1
= — T = —
wl/ U a ¢u71 \/J

— Grundzustand: Von oben

(@T)Vlbo

'QZ)O x 6—302/2

— Erster angeregter Zustand

dx

(264)

(265)

d 2 2 2 2
Py o althy o <:c — —) e = ge /2 — (—xe /%) = 20e7 /% (266)
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— Zweiter angeregter Zustand

Yy o althy o (x — %) 2we /2 = (422 — 2) e/ (267)

— Allgemein
Uy < Hy(z) e/ (268)
Mit den Hermite-Polynomen H, (z)
H()(CL’) =1
H1 (LIZ') = 2
Hy(x) = 42° -2
H3(z) = 82°— 12z
Hy(r) = 162" — 482 +12

Fingeriibungen damit als Ubung

— In aller Schonheit:

Eigenfunktionen des harmonischen Oszillators
1 a4 T x?
(1) = —— H,| —)Jexp| — 269
(o) = =Tty () e (5 (269)

@n(x)

Abbildung 5.7: Eigenfunktionen des harmonischen Oszillators
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5.4.2 Nullpunktsenergie

e Analog zum Potentialtopf: Klassisch ist niedrigste Energie des harmonischen

Oszillators: £ =0

fw

Quantenmechanisch: £ = 5

e Berechnung des Unschérfeprodukts AzAp

e Mittelwert und Varianz des Ortes

<.1'> = <wn‘an> X <¢n‘<a + aT)%) (S8 (%!%4) + <wn’wn+1> =0

und

(Az)* = (%) = %(dﬂ(cﬂ +aa' +ala+a™),) = 23 (n +1/2)
=20+1

e Analog fiir den Impuls

() o (nl(a — al)) = 0, (Ap)? = (p?) = ’;—3@ +1/2)

Aus Unscharferelation

(AP (ap)? = (p)a?) = &

folgt Ungleichung fiir Energie

(p*) | mw?, o (P mw’h® 1
_ M/ T > -
om T2 W2 T ST

e Ableitung nach (p?) liefert Bedingung fiir Minimum

1 mw?h? 1 1 0
2m § (» 2>§nin
Somit:
mhw
<p2>min = T
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Fiir die Energie gilt

mhw  mw?h® 2 hw
E > = — 2
— 4m + 8 mhw 2 (277)

Ergo: Nullpunktsenergie ist der kleinste FEnergiewert, der mit der
Unschérferelation vereinbar ist.

5.4.3 Vergleich mit klassischem harmonischem Oszilllator

e Fiir grofie Werte von n ist die Wellenfunktion v, (z) an den Réndern grofler als
in der Mitte

e Das entspricht klassischem Fall

e Berechnung der klassischen Aufenthaltswahrscheinlichkeit

d
z(t) = Asinwt, d—f = wA coswt (278)

Mit A2 cos? wt + A2sin? wt = A?

dr = wAcoswt dt = w\/ A2 — A2sin?wt dt = wy/A? — x(t)? dt (279)

oder p
dt = i (280)
wy/ A% — x(t)?

e Mit Periode T' = 2% folgt fiir relative Zeitspanne, die das Teilchen wéahrend
einer Periode im Intervall dz ist, Faktor 2 fiir hin und zuriick

a_ d (281)
T 7\/A? — 2(t)?
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Abbildung 5.8

Lessons learned:

e Quantenmechanische Dispersion: freie Wellenpakete zerfliessen

e Tunneleffekt als Wellenphénomen

Diskrete Energien im Potentialtopf und beim harmonischen Oszillator

Jeweils Nullpunktsenergien in Ubereinstimmung mit der Unschérferelation

Harmonischer Oszillator: (Nicht-hermitesche) Erzeugungs- und Vernichtungs-
operatoren werden wichtig in Quantenfeldtheorie

Harmonischer Oszillator und klassischer Grenzfall

6 Drehimpuls

e In > 2 Dimensionen zusétzlich zu Translation auch Rotation. Speziell wichtig
fiir Atomphysik.
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e Klassischer Drehimpuls

L=mifxT=Fxp (282)

e Rotation in z-y -Ebene

L, = TPy — YPx (283)

6.1 Der quantenmechanische Drehimpuls
Betrachte L,

e Korrespondenz-Prinzip: Ersetze die klassischen Impulse durch die entsprechen-
den Operatoren

. h 0 . h o
Da e by =+ oy (284)
e Damit Operator L,
A h 0 0
Lz—;(ra—y—y%) (285)
e Entsprechend
- h 0 0 A h 0 0
Kommutatoren
e Kommutator [ﬁx, j}y] = ﬁxﬁy — f}xf,y
PR 0 0 0 0
. _pH2 I I
LiLy = —h (y(‘?z Z@y) (Zax x@z)
N V' 9:° 00 Y9:"9: “oyTox oy o:
:1+z%
N Yor "V 0200 o2 T T ayor T oyo-



und

Lo 0 0 0 0
_ _ B2 I I

Lyls = —h (2833 x@z) (yaz Zé’y)
_ (29 _p00 O 0 00
N Yor o2 Ox Jy Yo.2 dy 0z Oy

e Damit Kommutator

o by = Lok, Loi,
0

e Entsprechend

Dies impliziert Unschérferelationen

Da die L; nicht kommutieren, kann immer nur eine Komponente des Drehim-
pulses scharf gemessen werden.

e Wie in Klassischer Mechanik: Drehungen um verschiedene Achsen vertauschen
nicht

Betrachte Quadrat des Drehimpulsoperators L2

A

o L%
[*=L-L=12+L1%+L? (287)
e Es gilt

(L%, L,] = [L?, Ly) = [L*, L.] = 0 (288)

e [? und L; kommutieren. Daher kénnen L? und einer der L;s simultan diago-
nalisiert und ohne Unschérfe gemessen werden.

5
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e Alle Kommutator-Relationen gelten auch fiir den Spin von Elementarteilchen,
siehe Kap. 8

Kugel- und Zylinder-Koordinaten
o Azimutwinkel ¢: 0 < ¢ < 27

e Polarwinkel 0 : 0 <0 <7

e Radius r: /22 + y? + 22
AZ

Abbildung 6.1

e Kugelkoordinaten:

xr = rsinfcos¢
= rsinfsing
z = rcosf

e Zylinderkoordinaten in z-y-Ebene

r = Trcoso
= rsing

= 2z
mit r = /a2 + y?
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Berechnung von L, in Zylinderkoordinaten

e Ausgangspunkt: L, in kartesischen Koordinaten
A h 0 0

L.=—-(z— —y— 289

i (m dy y@x) (289)

e Fiir Funktion f(x,y) = f(z(¢),y(¢)) gilt

o _0for  of oy

== — 2
dp O0xrdp Oy dp (290)
o Mit
g—z = —rsing =—y
g—z = rcos¢==x
folgt
of of of
2L - 291
19J0) Yor +x8y (291)
und damit p p 5
= = 292
96 oy Yox (292)
Folglich, L, in Zylinder- (und Kugel-) Koordinaten:
A h 0
L,=—-—— 2
=58 (293)

e Ubung: Zeige, dass in Kugelkoordinaten gilt:

: 10 9 18
e (-2 (gnel )y L& 294
h (sin989 (Smgae) * sin2ea¢2) (204)

Ubung: Auf Grund von welchem mathematisch-intuitiven Argument kommu-
tieren L? und L, ?
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6.2 Eigenfunktionen von L,

Betrachte Eigenwert-Gleichung von L., Beispiel fiir Quantisierung

’ A hoo
L.p(¢) = ;a—d)lﬁ(ﬁb) = \(o)
e Losung durch Hingucken _
(@) = Aei?

e Eis muss gelten

D¢+ 271) = e 2h(¢) = ¥(9)

Dies fiithrt zur Quantisierung;:

ﬁM“zlzemm—+%mw:ﬁMm,7n:QiLiZ”.

e Damit Figenwerte A und Eigenfunktionen ), von L,

A = mh, m=0,+£1,£2 ...
’Qbm(Qb) = /47neim(Z>

Energie der zweidimensionalen Bewegung
e Klassische Formel der Rotationsenergie in der x-y-Ebene

L? 1
H= "2 = __]?
omr?2 217

I = mr? das Triagheitsmoment

2

Siehe Analogie zur freien Bewegung: F = -

e (QQuantenmechanisch:

. 1 .
H=_—L2
21~
e Eigenwertgleichung:
1 .
— LY =F
Aus A

(295)

(296)

(297)

(298)

(299)

(300)

(301)

(302)



folgt

L2 = m2h2 4 (303)

Ergo: Die Eigenfunktionen ¢(¢) von L, sind auch Eigenfunktionen von H mit
den Eigenwerten

R,

B, =
o1 "

(304)

Merke:

6.3

Drehimpuls-Eigenfunktionen sind auch Energie-Eigenfunktionen

Zusténde mit m # 0 sind zweifach entartet, die beiden Eigenfunktionen ent-
sprechen den entgegengesetzen Drehsinnen

Aufenthaltswahrscheinlichkeit im Drehimpulseigenzustand ist [i,(¢)> =

|A,,|?, damit unabhiingig von ¢ = Kenntnis von Drehimpuls schliefit Kenntins
des Winkels aus.

Unschérferelation

Winkeloperator o )
D Y(¢) = d(9) (305)

Damit Kommutator o
[®, L] =ih (306)

und Unschéarferelation

Eigenfunktionen von L2

Die Eigenwert-Gleichnung des Operators L2 ergibt:

L*Yim(0,¢) = RI(1 + 1)Yi (0, 9), 1> 0 (307)
mit
. 1 0 0 1 9?
L2 — _p2 -~ . - - v
h (smeae (Smeae) * sm2ea¢2) (308)



e Ergebnis

A+ 11— [m|"\'"*
Y P,
lm(97¢> ( At l—|— |m||> l (COS(Q) €
am
() = (1- a2 )
1 d 5,
Pz) = 2,—1!@( -1)
mit
[ = 0,1,2,... Drehimpulsquantenzahl
m = —1,...,0,...,1 magnetische Quantenzahl
und
— Yin(0, ¢) : Kugelflichenfunktionen
— P™(x) : Legendre-Funktionen
— PB(z) : Legendre-Polynome
Ubung zu Legendre-Polynomen
o Es gilt
Yi-m(0,9) =Y, (0,9) (309)
und R

Y sind Eigenfunktionen von f/Z und L2. Das geht & muss so sein, da j}Z und
L? kommutieren.

e Drehimpulseigenfunktionen Y}, bilden orthonormales und vollstindiges System
von Eigenfunktionen

/ d¢/ dcost Y ¢)Y/m/ ((9, (b) = 5”/(5mm/ (311)

e Quantenmechanischer Drehimpuls wird durch die Quantenzahlen [ und m be-
schrieben:

— [ legt Betrag des Drehimlupses fest: L? = [(I + 1)R?
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— m legt Projektion auf z-Achse fest: L, = mh
— Beispiel [ = 2

L
7= V22+1)=v6, m=-2-1,0,1,2 (312)

Wurzel(6) ¢

Abbildung 6.2

Das ergibt folgende Eigenfunktionen

e [ =0, m =0 liefert Yoo = 1/v/4n

Kugelformige Wellenfunktion, genannt s-Orbital. Radialabhéingigkeit néchstes
Kapitel
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Abbildung 6.3
e [ =1, m =0 liefert Yiqg = /3/4mw cos @
Das p.-Orbital
dz
-
X,y

Abbildung 6.4
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o [ =1, m= =1 liefert Y; », = —+/3/8msin fe**®

Durch Linearkombination zu reellen Orbitalen

1
—E Yn+Yi) = \/% sinf cos¢ p, — Orbital

1
—E (Yn—-Yi1) = \/43 sinsin¢ p, — Orbital
T

Az AZ

Abbildung 6.5

Energie der drei-dimensionalen Rotation

e Klassisch

1 1
H = | — 313
2mr? 21 (313)
Ergibt quantenmechanisch
~ 1 -~
H=_—=L? 314
5] (314)

e Kigenfunktionen Y}, sind also auch Eigenfunktionen der Schrodinger-Gleichung
fiir die drei-dimensionale Rotation

.\ h?
Yy = 571+ 1)V (315)
Die Energieeigenwerte
h2
b = ﬂl(l +1) (316)
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héngen nicht von m ab, sind damit unabhéngig von Orientierung von L zur

z-Achse

e Wegen m = —1[,...,0,...[ gibt es zu jedem Eigenwert 2/ + 1 Eigenfunktionen,
E; ist 2(1 + 1)-fach entartet

Rotationsspektroskopie

e Durch elektromagnetische Strahlung der Energie hw, Bereich Mikrowellen,
kénnen Ubergidnge zwischen benachbarten Rotationsniveaus induziert werden

B2 B2 B2
hw = Eia—E = gz (D) (42) = 2l(1+1) = = (+1), 1=0,1,2,... (317)

Absorptionsspektroskopie: Aus einer Richtung kommend, in alle Richtungen
abstrahlen

e Rotationsspektrum weist dquidistante Linien bei

h? h* _h?
hw:— 2—, 37,

318
I Y [ ( )

auf

Damit 148t sich Tragheitsmoment I eines Molekiils bestimmen

Lessons learned:
e [L,,L,| =ihL, und zyklisch

e [L;, L?] =0, simultan diagonalisierbar, gleichzeitig scharf messbar, gleiche

Eigenfunktionen

e Eigenfunktionen von L? sind die Kugelflichenfunktionen

84
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7 Wasserstoffatom

7.1 Hamiltonian

e Vom Zweikorper-Problem zum Einkorper-Problem

— Schwerpunkts- und Relativbewegung separieren

— Reduzierte Masse, im wesentlichen unverdndert

o Klassischer Hamiltonian

2 2
1
g-r € (319)
2m  Ameg /22 + y? + 22
Quantenmechanisch:
- n: [ o2 o? 0? 2 1
L e (320)
2m \0x? 0Oy*> 0z? dmeg /22 + y2 + 22
e Da V nur vom Radius |r| abhéngt, gehe in Kugelkoordinaten.
Damit 9
es 1
Vir) = — - 321
(r) dmeg T (321)

e Operator fiir kinetische Energie 7" in Kugelkoordinaten:

. 10 \> & 1 0/, 0 1 02
=50 (;W) " (m% <S”19%) o 99752) (822)

Merke: In Kugelkoordinaten ist Berechnung des Potentials einfacher, Berech-
nung der kinetischen Energie aber schwieriger.

° Mt 1 0 0 1 02
j2— _p2 Y (enpl 2
h (sin989 (Smeae) i sin298¢2) (323)
folgt
. B2 /10 \? 12 . 72
2m (r 87’T) * 2mr? Tt 2mr? (324)
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7.2

T,: Kinetische Energie der Radialbewegung

LZ
2mr2”

Somit ) ,
A L 1

H=1T. + _ ¢ =z

2mr?  Amweyr

Losung der Schrodinger-Gleichung

Lose R
Hip(r,0,¢) = E1(r.0,9)

Eigenfunktionen von Term 27’;“;2 bekannt: Kugelflichenfunktionen Y7,
Separationsansatz:
U(r,0,¢) = R(r)Yim (9, ¢)
Damit
12
T, +V(r) + QWZ) R(r)Yim(0, ) = E R(r)Yin (0, 0)
Mit . ,
L R+ 1)
22 R(T)}/lm<97 ¢) - WR(T>§/EWL(97 (b)
folgt
P2+ 1
(T4 V) 4 P ) ROMin(6,6) = B R()Yin(6.0)

Teile durch Y}, (6, ¢), ergibt Radialgleichung

(—h—Q G%«) PG Y vm) R(r) = E R(r)

2m 2mr?

eine gewOhnliche Differentialgleichung 2. Ordnung
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Kinetische Energie der Winkelbewegung, erinnere Zentrifugalbarriere

(325)

(326)

(327)

(328)

(329)

(330)
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e Transformation:

R(r) = A7) (332)

Technische Rechnung ergibt die {ibliche Form der eindimensionalen
Schrédinger-Gleichung

(—;—m% + Veﬂ(r)) u(r) = Fu(r) (333)

mit dem effektiven Potential der Radialbewegung

1 Kll+1)1

v _ -
Ameg T 2m 72

eff(T) =

(334)

ganz in Analogie zur Klassischen Mechanik mit abstoflendem Zentrifugalterm

Veﬁ(r) ‘

r

Abbildung 7.1

Lange technische Rechnung ergibt:
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e Energie-Eigenwerte:

1
E,=-Ry -, neN (335)
mit Rydberg-Konstante
4
e MpMe
Ry = ———— = 13.67¢V == 336
Y 32m2e3h? oA my + me (336)

Kugelsymmetrie: Energie-Eigenwerte unabhéngig von m

SO(4) Symmetrie des +-Potentials Energieeigenwerte auch unabhiingig von [

e Eigenfunktionen :

2
R = (anr) e 2 L2H ), a, = — (337)
nagp
mit Bohr’schem Atomradius ag
dmegh? .
ap = —2L = 5291710 m ~ 0.54 (338)
me
und den Laguerre-Polynomen
« k (m!)? k
Ly, (z) =) (=1)"* x (339)

Elk +s)(m—Fk —s)

B
Il

0

e Struktur der Radial-Wellenfunktionen: R,,;(r) o< e~ Polynom(r) mit n—1—1
Nullstellen

Radiale Wahrscheinlichkeitsdichte: r*R2(r)
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O
B n=1, =0
0
2
265 |-

Ok\ n=1, [=0 0 n=2, [=0
— 1 L
0 \ n=2,1=0 - 1k NO
5 S~— = 0
e 1& n=3. =0 = Of

L S

Ir 251 n=2, l=1

0 n=2, =1 0

I n=3, =1 4 n=3, =1

0 0
(a) ' ‘ | l (b) ! | ! !

0 4 3 12 16 20 0 4 8 12 16, 20

2KT 2KT

Abbildung 7.2

e Man zeigt leicht
(ry ocn?® fiir groBe n (340)

e Konvention: Eigenfunktionen zu l = 0,1, 2, 3 werden als s-, p-, d- und {-Orbitale
bezeichnet

e Insgesamt:

7pnlm(r; 97 Cb) - Aannl(T)Yim(e, ¢) (341)

mit Normierungsfaktor A,

p ((n—z—n!ag) o)

2n((n + 1)1)3

e Aus Normierungsfaktor folgt, beachte: 0! =1

n—I01—1>0, resp. [<n-—1 (343)
Damit ergibt sich fiir die Quantenzahlen
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n 1 m Entartungsgrad
1 0 0 1
2 0 0
1 0, £1 4-fach
0 0
3 1 0, £1 9-fach
2 0, £1, £2
4 ... ... 16-fach

Fiir den Entartungsgrad g, gilt:

gn =Y (2l+1)=n’ (344)

Spektroskopie am Wasserstoffatom

e Spektroskopie misst Energiedifferenzen zwischen Zustéanden
Ephoton = w = ABAtom = Ei — Ef (345)
folgt

11
hw = Ry (——2 + —2> (346)

e Wichtigste Fille

ng=1 n;=2,3,... Lyman-Serie im UV
ng=2 n;=3,4,... Balmer-Serie im Sichtbaren
ng=3 n; =4,5,... Paschen-Serie im Infrarot

Die Serien waren lange vor der Quantenmechanik experimentell bekannt

Abschlulbemerkungen:

e Dass es drei Quantenzahlen gibt, sollte nicht iiberraschen, da es sich um ein
drei-dimensionales Problem handelt

e Wie gehabt: Grundzustand mit Unschérferelation vertréglich
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e Korrekturen

e Klassischer Grenzfall: Es lassen sich "kohérente” Wellenpakete konstruieren,
die lokalisiert sind und dem 3. Kepler’schen Gesetz T2 o< r® gehorchen

— Feinstrukturkonstante:

62

e 1
" he 137

(347)
Term und Spin-Bahn-Kopplung. Effektgrofe: o?

— Relativistische Korrekturen ergeben Feinstruktur, Stichworte: Darwin-

— Quantenfeldtheorie: Lamb-Verschiebung. EffektgroBe: o log o

me/my =~ 1/1500

— Wechselwirkung Elektron und Kernspin: Hyperfeinstruktur. Effektgrofie:

\

n=2, [=0,1 Feinstruktur + Lamb-Verschiebg. + Hyperfein-

struktur
\ ‘\ 2P3/7 *
\ e ———————— sz " 93
I‘ T T
10950 ‘S —
\ e 177
I‘ - T
V251 )Pl/vl . P 1057
‘ ‘Y. 1/2
4
Abbildung 7.3

— Theorie und Experiment: Beliebig gute Ubereinstimmung
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Lessons learned:

Separationsansatz nach Winkeln und Radius

Winkelanteil aus L2 Eigenfunktionen

Losung Radialgleichung technisch

Quantisierung der Hauptquantenzahl n aus Radialgleichung
Hauptquantenzahlen sind entartet

[-Entartungen werden durch relativistische, quantenfeldtheoretische und
Kernspin-Effekte aufgehoben.

m-Entartungen durch externes Magnetfeld, Zeeman-Effekt

8

Spin

Stern-Gerlach Versuch: Elektron hat ”inneren Drehimpuls”, genannt Spin, der
nur die Werte +h/2 (spin up) und —A/2 (spin down) annehmen kann

Beachte: Bahndrehimpuls war mit A l(l + 1) ganz-zahlig

Spin ist messbar, es muss also einen selbstadjungierten Spinoperator S =
(Sz, Sy, S») geben, der ein Drehimpulsoperator ist.

Sei € Einheitsvektor, so gilt

- h
S-éle L) = :I:§ |€) £) (348)
Sei 0.B.d.A: € = €. Bezeichnungsweise
2., 4) ::{ IB (349)

Eigenwertgleichung fiir S, lautet dann:
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N | St

(1) -3 (50) -

mit der Pauli-Spinmatrix o,

(0 2) (1) =3 (

o, = < - ) (351)

Fiir Spin s = 1 hat S? den Eigenwert A

§1) = Ws(s + 1) 1) = S 1| ) (352)

Da S, hermitesch, sind die zu verschiedenen Eigenwerten gehérenden Zusténde
| 1) und | |) orthogonal

(t1h=0 (353)
Normierung auf 1

(TIn=uM)=1 (354)

Bestimmung der Pauli-Spinmatrizen o, und o,

Mit Leiteroperatoren

1 1
Sy =S5, +£1S,, entsprechend S, = §(S+ +5.) S, = Z(SJr —S_) (355)
folgt mit [ = % und m = :I:%
Sty = 0. S |H=h|l) (356)
Sl = A, S |h=0 (357)

Damit Darstellung der Spinoperatoren in der Basis der Zusténde | 1) und | )

(@IS (@1Sel D)
Si‘(msm <usiu>) (358)

93



Mit Gln. (356, 357) folgt

o O

) :n((l) 8) (359)

und damit mit Gl. (355) und § = 25 die Pauli-Spinmatrizen

(1) e (0T) (3 8) w

e Allgemeiner Spinzustand, ein Spinor, | ) in Basis {| 1), | |)}

Spinoren

Y=ay| D +a|l), ay,a_€C, mit|a]*+]a|?*=1 (361)

e Darstellung des allgemeinen Zustandes | ) durch Spinor y, dessen Komponenten
sich durch Projektion auf Basissystem ergeben

x:(‘“) = (1) =) (362)

a_

Polarisation von Photonen
e Photonen haben Spin 1, Spin 1 ist normaler Weise 3-komponentig
e Da Licht transversale Welle, geht ein Freiheitsgrad verloren
e Den jeweils zwei mal drei Moglichkeiten von Spin % Teilchen entspricht

— Horizontal / vertikal, entspricht Eigenzustidnden zu o,

1 0
m=(y). w-(1) (363)
— +45° polarisiert, entspricht Eigenzustidnden zu o,
1 1 1
+45°%) = — =—(|h) +|v
o) = (1) A

o 1 1 _
—a) = (L) = 5 -1
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— rechts/links zirkular polarisiert, entspricht Eigenzustédnden zu o,

B = (1) =50+ i)
= (L) =50

Lessons learned:

e Spin rein quantenmechanisches Phéinomen
e Bahndrehimpuls immer ganzzahlig
e Spin halbzahlig

e Photonen, obwohl Spin 1, dquivalent zu massiven Spin %—Teilchen

9 Vielteilchen Systeme

9.1 Symmetrie der Vielteilchenwellenfunktionen

Betrachte zunachst unterscheidbare Teilchen
Dann Gesamtwellenfunktion Produkt der Ein-Teilchenzustande:

U(r1,72) = Galr1)p(ra) (364)
In Quantenmechanik Ununterscheidbarkeit fundamental

e Betrachte zwei ununterscheidbare Teilchen mit Gesamtwellenfunktion ¥ (rq, rs)
und Permutionsoperator P:

A

P(ry,m2) = (e, 11) (365)
Nochmalige Anwendung:

A

Py(ry,m1) = (ri,12) (366)
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damit R R
Vb : P2)(ry,mg) = (11, 1) = P? =1 (367)
Folglich hat P Eigenwerte A = +1. Zudem ist [P, H] = 0

Gemeinsame Eigenzusténde zu H und P definieren offensichtlich zwei Arten
von Teilchen

Spin-Statistik Theorem!®, Pauli, 1940

— Bosonen, Spin ganz-zahlig, S = 0, 1, ..., besitzen eine symmetrische Viel-
teilchenwellenfunktion: ¢g = ﬁws

Besetzungszahlen kénnen alle Werte 0,1, ... 0o annehmen

— Fermionen, Spin halb-zahlig, S = %, %, ..., besitzen eine anti-symmetrische

Vielteilchenwellenfunktion: ¢4 = —Pw A
Besetzungszahlen konnen die Werte 0, 1 annehmen

Zusammenfassend: R
P(ry,re) = (—=1)*°¢(ra, 1) (368)
Folge: Reiner Produktansatz
Y(r1,m2) = Galr1)dp(r2) (369)

geht fiir ununterscheidbare Teilchen nicht durch.

(Anti)symmetrisierung:

Ys(ri,re) = (Pa(r1)Pn(ra) + da(ra)dp(r1))

1
V2
1

r1,7e) = —= (Pa(r r9) — Gu(r r

Ya(ri,r2) \/5@ (r1)e(rz) — Galr2)dn(r1))

Folge: Pauli-Prinzip: Fiir identische Einteilchen-Wellenfunktionen verschwindet
die antisymmetrische Gesamtwellenfunktion

ba=0¢ == Ya=0 (370)

Zwei Elektronen konnen nicht im selben Zustand sein. Hierbei ist der Spin zu
beriicksichtigen.

Beispiel Wasserstoffatom

10T eseempfehlung: R.F. Streater, A.S. Wightman. PCT, Spin and Statistics, and All That
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9.2

Bosonen koénnen fitr 77 — 0 alle in den Grundzustand gehen:
Bose-Einstein Kondensation. Makroskopischer Quantenzustand

Verallgemeinert auf N Teilchen

Dichtematrix

Reine Zustande

Bisher haben wir nur reine Zustédnde [¢) betrachtet. Diese lassen sich
durch Wellenfunktionen beschreiben, z.B. ”Elektron befindet sich in Zustand
|n,l,m)”

Viele Teilchen mit Zustand |¢)): Reine Gesamtheit oder Reines Ensemble

Beachte: Die Superposition von zwei reinen Zustdnden gibt wieder einen rei-
nen Zustand, d.h. ldsst sich wieder durch Wellenfunktion |¢) = ali;) + b|is)
beschreiben.

Definition: Sei |n) ein vollstdndiges Orthonormalsystem. Dann ist die Spur der
Matrix M definiert als

Sp (M) = (n|M]|n) (371)

n

Spur ist unabhéngig von der Basis, im Eigenvektorsystem von M besonders
anschaulich

Definition Dichtematrix!! p fiir reine Zusténde:

p =) (Y] (372)

Fiir Observable A kann Erwartungswert (A) mit Dichtematrix berechnet wer-
den. Sei |n) Orthonormalsystem. Trick: Einschieben der Eins

(A) = @A) =Y (W|An)(nly)
= D (nle)wlAn)

n

= > (nlpAln) = Sp (pA)

n

HEigentlich Dichteoperator, wird in einer Basis zur Matrix
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Es gilt
Spp=1 : Y (n¥){@ln) = (@n)nle) = (@) =1
PP=p O] = [¥)(Y

Fiir reine Zustédnde ist das reine Spielerei

Gemischte Zustande oder Gemischte Gesamtheit oder Gemischtes Ensemble

e Betrachte Ensemble von N Teilchen, von denen sich N; im Zustand |1;) befin-
den

e Wahrscheinlichkeit, das sich ein zufillig herausgegriffenes Teilchen im Zustand
|1;) befindet, ist

N;
Pi= Zpi =1 (373)
e (Gemischter Zustand lasst sich nicht durch Wellenfunktion beschreiben

39 |¢) mit |¢) = Zp2|wz (374)

aber durch eine Dichtematrix

e Definition Dichtematrix p fiir gemischte Zustéinde:
p = Zpi|1/’i><¢i| = Zpipi (375)
Es gilt wieder (A) = Sp (pA):
(A) = D _pdwilAl) =D 3 pi(ilAln) (nfy)
= Z > (nlpii) (Wil Aln)
= > (nlpAln) = Sp(pA)

n

Es gilt immer noch
Spp=1 (376)
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aber nun

p>#p und Sp p® <1, falls p; # 0 fiir mehr als ein i (377)

Beweis 1. Aussage:
Wiéhle Operator A =1

p = ZZ [pits) ¢z‘pﬂ/}j % ZZ pzp]|¢l <¢l‘¢]><d}]| #p (378)

Beweis der 2. Aussage:
Sp p* = Z Z(”m%)wz ;) (hjIn)
= DD i (Wl) (sl (mlbs)

n 4

Zpipj|<¢i|¢j>|2 < Zpizpj -1

Es gilt: Sp p? ist zeitunabhiingig
Beweis: Zyklische Invarianz der Spur, erinnere Zeitentwicklungsoperator U (t,ty) =
exp (—%]fl(t - t0)> und Unitaritit UTU = 1

Sp p(t) = Sp Up(to)UTUp(to)UT = Sp p*(to) (379)

Damit folgt: Einmal rein, immer rein. Einmal gemischt, immer gemischt
Merke:

e Unterscheidung reiner und gemischter Zustand an Hand von p2;p und Sp p?<1
e Auch fiir Dichtematrix Dynamik analog zur Schrodinger-Gleichung

e Dichtematrix-Formalismus allgemeiner als Wellenfunktion, da sich gemischte
Zustande nicht durch Wellenfunktionen, wohl aber durch Dichtematrizen be-
schreiben lassen.

Beispiel
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e Reiner Zustand: Betrachte Zwei-Niveau-System, z.B. Spin, mit | 1) und | |)

e Befindet sich System in einem der Zustédnde, gilt fiir Wellenfunktion und Dich-

tematrix
10
w=1t-p=1101= g o)
00 (380)
oder [u) =14 o= 1401= (¢ 1)
e Kohérente Superposition der Zusténde, z.B.:
1 1/2 1/2
) =50+ 1) == (15 Vs ) (381)
ergibt wieder einen reinen Zustand, da p* = p und Sp p? = 1.
e Gemisch der Zustinde mit p; = py = 0.5 ergibt
1 1 (12 0
p=5I 001+ g1061=( 0 ) (38)

A R b T R R A R P IR EICN)
= NN = 50

e Off-Diagonalelemente des reinen Zustands in GIl. (381) beschreiben die
Kohérenz zwischen | 1) und | |), die im Gemisch nicht existiert.

e Last not least: Es gibt keine Wellenfunktion, die die Dichtematrix des gemisch-
ten Zustands ergeben wiirde.
Terminl2

9.3 Verschriankte Zustinde
Ubergang von Ein-Teilchen zu N-Teilchen Fall
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e Klassische Mechanik:
Zustandsraum ist Phasenraum (q, p)

Phasenraum von N Teilchen ist das kartesische Produkt der Einteilchen-
Phasenrdume, fiir zwei Teilchen: (qi, g2, p1, p2)

Dimensionen addieren sich

e Quantenmechanik:
Zustandsraum ist Hilbertraum, ein Vektorraum.

Fiir Vektorrdume ist Produktraum fiir NV Teilchen das Tensorprodukt der Aus-
gangsvektorraume

Beispiel: Zwei Spin 1 Teilchen
| = 1) [0) [1) und | —1) [0) [1)
Basis:
|_1>’_1> = |_17_1>7 ’_170>7 |_171>

|0,—1), 0,0), 0,1)
|17_1>7 |170>’ |171>

Dimensionen multiplizieren sich

Fiihrt zu verschrankten Zustédnden, die gleich relevant werden

Lessons learned

e Ununterscheidbarkeit quantenmechanischer Teilchen hat Konsequenzen:

— Bosonen: symmetrische Wellenfunktionen

— Fermionen: anti-symmetrische Wellenfunktionen
e Dichtematrix als allgemeine Beschreibung quantenmechanischer Zusténde

e Verschrinkte Zustiande auf Grund des Tensorproduktes
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10 Einstein-Podolsky-Rosen — Paradoxon

Ubung: Fassen Sie EPR paper stichwortartig zusammen

10.1 Theorien verborgener Parameter

Natiirliche Erwartung an eine physikalische Theorie
e Lokal, die 1.: keine Informationsiibertragung schneller als Lichtgeschwindigkeit

e Lokal, die 2.: Messung am Orte A sollte Messung am Orte B zu gleicher Zeit
in keiner Weise beeinflussen

e Deterministisch: Zustand gibt eindeutiges Messergebnis

e Real: Theorie und Realitdt in 1 zu 1 Verhéltnis
Klassische Physik:

e Alles im griinen Bereich
Quantenmechanik:

e Lokal, die 1.: O.K.

e Lokal, die 2.: Wir werden sehen

e Deterministisch: Nein

e Real: Nein, Wellenfunktion

Theorien verborgener Parameter

e Klassische Statistische Physik von 10%* Teilchen

— Im Prinzip alle (deterministischen) Trajektorien ermittelbar

— Aber: Praktisch nicht machbar und inhaltlich nicht relevant
e Ubertragung auf die Quantenmechanik

— Es gibt eine zu Grunde liegende lokale, deterministische, reale Theorie,
die die individuellen Messergebnisse festlegt

— Nur kennen wir sie nicht
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— Beispiel: Spin-Messung
Quantenmechanik: Bei Messung von S, im Eigenzustand S.: Fiir jedes
Teilchen 50 % Wahrscheinlichkeit fiir +5,/2

Theorie verborgener Parameter legt fiir jedes Teilchen vorher fest, ob +#/2
oder —h/2 resultiert, so dass in je 50 % der Félle £//2 vorkommt

Einstein, Podolsky, Rosen ” Can'? Quantum-Mechanical Description of Physical Rea-
lity Be Considered Complete 7”7, 1935, modernisiert fiir Photonen von Bohm, 1951

e Betrachte 2 Spin 1/2 Teilchen im (verschrénkten) Singulett-Zustand

a—— %u B~ 111 (383)

Préaparation:

— Spin 1/2 Teilchen: Zweiatomigen Molekiil mit Gesamtspin 0 mit Laser in
2 Spin 1/2 Teilchen zerschielen

— Polarisierte Photonen: Parametrische Fluoreszenz von nichtlinear opti-
schen Kristallen. Aus einem Photon der Energie E werden zwei ver-
schriankte der Energie F /2

e Teilchen bewegen sich von einander weg.

e Misst man die z-Komponenten der Spins und findet bei Teilchen 1 Spin up, so
ergibt sich fiir Teilchen 2 spin down.

e Misst man stattdessen die z-Komponenten, so impliziert +%/2 bei Teilchen 1
—h/2 bei Teilchen 2

e Messung an einem Teilchen legt Ergebnis fiir das andere fest, auch wenn die-
ses raum-zeitlich getrennt ist, d.h. keine Information mit Lichtgeschwindigkeit
ausgetauscht werden konnte. Nicht-lokal, die 2.: "spooky action at a distance”

e Aber: Kein Widerspruch zur speziellen Relativitatstheorie, lokal, die 1., da
keine Information iibermittelt werden kann

e EPR: Da Teilchen separiert, kann es keine Beeinflussung der Teilchen geben.
Deshalb miissen die Werte von S, S,, usw. schon vor der Messung festgelegen
haben.

2Fehlender Artikel wird auf schlechstes English des Russen Podolsky zuriickgefiihrt
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e Forderung nach einer vollstéandigen, lokalen, deterministischen, realen Theorie
mit verborgenen Parameter

10.2 Bell’sche Ungleichungen
Kausale Inferenz
e Beobachtbar sind nur Korrelationen
e Von Korrelationen auf Kausalitédten schlieen geht nicht

e Aber man kann auf Grund von Korrelationen bestimmte Kausalstrukturen aus-
schlief3en: Kausale Inferenz

Zwei widerstreitende Theorien
e Einigt Euch auf ein Experiment
e Berechnet Vorhersagen basierend auf den beiden Theorien
e Am Ende entscheidet das Experiment :-)

Quantenmechanische Vorhersage:

e Messung Spinkomponente S,, des ersten Teilchens in z-Richtung

Messung Spinkomponente Sy, des zweiten Teilchen in Winkel ¢ zur z-Achse

e Falls erste Messung +g ergibt, ist S., notwendiger Weise —g, Spinor:

= ( (1) ) (384)

Spinoperator 3¢, mit Winkel ¢ zu z-Achse ist gegeben durch, erinnere Pauli-
Spinmatrizen

§¢:§Zcos¢+§$sin¢:g<cos¢ sin.¢ ) (385)

sing —cos¢

e Eigenwerte: +h/2, Eigenvektoren von §¢

m=() =) (356)

S1n 5 COS b)
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Die ¢/2 haben es in sich.
Entwicklung der Wellenfunktion x_ nach Eigenvektoren von ,§¢

0 . ¢ [ cos? ¢ ( —sin?
(1):Sln§(siné)+cosi< cos§2 (387)

e Wahrscheinlichkeit, dass nach spin up (4+) Messung an Teilchen 1, auch an
Teilchen 2 spin up gemessen wird, ist:

Py (¢) = sin” 7 (388)
Die anderen méglichen Ergebnisse

P, _(¢) = cos® g, P_,(¢) = cos® %, P__(¢) = sin® g (389)

o Mittelwert des Produktes S, S4,: Kovarianzkoeffizient C(¢)

Coul@) = & (Pra() = Pu() = P(0) + P—_(9)
T,
= Z (Sln 5 — COS §>
Coul) =~ coste)  (300)

Vorhersage von Theorien verborgener Parameter
e Parameter A legt Werte von 5., und Sy, fest. Beide Teilchen wissen A lokal

e Jedes Teilchenpaar hat bestimmten Wert von A. Das einzige, was wir dariiber
wissen:

/d/\ p(\) =1 (391)
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o Kovarianzkoeflizient:
Cinl@) = [ AN PSS () (392)

e Betrachte weiteres Experiment mit Winkel 6 zur z-Achse

C(o) - C(0) = /ClA PA)(S2 (A) 56, (A) = 52, (A)Sp, (A)) (393)

Es gilt
S0 () = — S (V) (304)
Damit
C(o)—C(B) = — / dA p(N) ey (V) (Ser () + S0, (V)
mit (5, (V) =

C0) =€) = — [ pN5. (500 (1+ 50 50
e Betragsmassige Abschéitzung
4
C(6) O < [ arxpVISL (S )] (14 7550 VSu)) (395

o Mit |S.,(A\)Ss, (A)] = 2

co)-col < [ans (5 +satisn)

_ hf / dA p(N) S, (V) S, (N)

Korrelation héngen nur von relativer Orientierung der Messungen ab, Integral
ergibt: C'(6 — ¢)

Damit die Bell’'sche Ungleichung

Conl) = ConlB)] = Chaf— ) < - (306)
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e Folgt notwendig aus jeder lokalen, deterministischen, realen Theorie verborge-
ner Parameter

Vergleich mit Vorhersage der Quantenmechanik. Betrachte Fall: 6 = 2¢
e Gl. (390) ergibt:

h? h?
Com(9) = — cos o, Com(8) = — cos 20 (397)
In GL (396) eingesetzt
h? h?
Z(|cos¢— cos 2¢| + cos ¢) < T (398)
tlcwl—clzcb!l—(:ﬂcb)

=
™

Abbildung 10.1: Bell’sche Ungleichung fiir QM und eine Theorie verborgener Va-
riablen

e Fiir 0 < ¢ < m/2 ist die Ungleichung verletzt, maximale Verletzung bei ¢ =
7/3, Cosinus-Terme ergeben dort 3/2.

e Ergo: Quantenmechanik im Widerspruch zu verborgenen Parametern
e Tiefer Grund: SU(2) ist die zweifache Uberlagerung der SO(3) ... erinnere ¢/2

Vergleich mit dem Experiment

e Bell, 1962
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Freedman, Clauser, 1972: Erster Bericht iiber Verletzung der Bell’schen Un-
gleichung

Aspect, 1982: Deutlicher Hinweis auf Verletzung

Kritik an den Experimenten: Loopholes

— Effizienz der Detektoren

— wirkliche raum-zeitliche Trennung der Detektoren

Final ausgerdumt Dezember 2015

Rekord fir ”Groie” von verschranktem Zustand > 100 km

Lessons learned:

e Quantenmechanische Messungen stellen Eigenschaften nicht fest, sondern her

e Wir stehen selbst enttduscht und sehn betroffen
den Vorhang zu und alle Fragen offen

Bertolt Brecht: Der gute Mensch von Sezuan

Das hier war die Schul-Meinung: ” Kopenhagener Interpretation”

Alternative Interpretationen:

e SG ist linear: Nichtlineare Erweiterungen, um Kollaps in die Dynamik mit
aufzunehmen.

e SG ist deterministisch: Stochastische Erweiterungen, um Zufilligkeiten intern
dynamisch zu erkldaren

e Dekohirenz durch Wechselwirkung: Erklart Verschwinden von Diagonalelemen-
ten, aber nicht Kollaps der Wellenfunktion

e Viele-Welten Theorie: Jede Moglichkeit wird realisiert.

— Leichte Probleme mit der Energieerhaltung

— experimentell nicht testbar
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— erklért nicht, warum die Wahrscheinlichkeiten in meinem jeweiligen Uni-
versum richtig hinkommen.

— Intrinsich nicht widerlegbar, bar jeder Plausibilitit

e Bohm’sche Interpretation: Am Donnerstag
Terminl3
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Local realism is the worldview in which physical properties of objects exist independently of
measurement and where physical influences cannot travel faster than the speed of light. Bell’s theorem
states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in
Bell’s inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every
experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a
Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source
of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a
violation of a Bell inequality with high statistical significance. The purely statistical probability of our
results to occur under local realism does not exceed 3.74 x 103!, corresponding to an 11.5 standard

deviation effect.

DOIL: 10.1103/PhysRevLett.115.250401

Einstein, Podolsky, and Rosen (EPR) argued that the
quantum mechanical wave function is an incomplete
description of physical reality [1]. They started their
discussion by noting that quantum mechanics predicts
perfect correlations between the outcomes of measurements
on two distant entangled particles. This is best discussed
considering Bohm’s example of two entangled spin-1/2
atoms [2,3], which are emitted from a single spin-0
molecule and distributed to two distant observers, now
commonly referred to as Alice and Bob. By angular
momentum conservation, the two spins are always found
to be opposite. Alice measures the spin of atom 1 in a freely
chosen direction. The result obtained allows her to predict
with certainty the outcome of Bob should he measure atom
2 along the same direction. Since Alice could have chosen
any possible direction and since there is no interaction
between Alice and Bob anymore, one may conclude that
the results of all possible measurements by Bob must have

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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PACS numbers: 03.65.Ud, 42.50.Xa

been predetermined. However, these predeterminate values
did not enter the quantum mechanical description via the
wave function. This is the essence of the argument by EPR
that the quantum state is an incomplete description of
physical reality [1].

Bell’s theorem states that quantum mechanics is incom-
patible with local realism. He showed that if we assume, in
line with Einstein’s theory of relativity, that there are no
physical influences traveling faster than the speed of light
(the assumption of locality) and that objects have physical
properties independent of measurement (the assumption of
realism), then correlations in measurement outcomes from
two distant observers must necessarily obey an inequality
[4]. Quantum mechanics, however, predicts a violation of
the inequality for the results of certain measurements
on entangled particles. Thus, Bell’s inequality is a tool to
rule out philosophical standpoints based on experimental
results. Indeed, violations have been measured.

Do these experimental violations invalidate local real-
ism? That is not the only logical possibility. The exper-
imental tests of Bell’s inequality thus far required extra
assumptions, and therefore left open loopholes that still
allow, at least in principle, for a local realist explanation
of the measured data. (Note that empirically closing a

Published by the American Physical Society
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‘We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all
relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using
fast random number generators and high-speed polarization measurements. A high-quality polarization-
entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us
to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we
compute p values as small as 5.9 x 10~° for our Bell violation while maintaining the spacelike separation
of our events. We estimate the degree to which a local realistic system could predict our measurement
choices. Accounting for this predictability, our smallest adjusted p value is 2.3 x 10~7. We therefore reject
the hypothesis that local realism governs our experiment.
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But if [a hidden variable theory] is local it will not agree
with quantum mechanics, and if it agrees with quantum
mechanics it will not be local. This is what the theorem
says. —JOHN STEWART BELL [1].

systems are controlled by variables, possibly hidden from
us [2], that determine the outcomes of measurements. If we
had direct access to these hidden variables, then the
outcomes of all measurements performed on quantum
systems could be predicted with certainty. The 1927
pilot-wave theory of de Broglie was a first attempt at
formulating a hidden variable theory of quantum physics
[3]; it was completed in 1952 by Bohm [4,5]. While the
pilot-wave theory can reproduce all of the predictions of
quantum mechanics, it has the curious feature that hidden
variables in one location can instantly change values
because of events happening in distant locations. This
seemingly violates the locality principle from relativity,
which says that objects cannot signal one another faster
than the speed of light. In 1935 the nonlocal feature of
quantum systems was popularized by Einstein, Podolsky,
and Rosen [6], and is something Einstein later referred to as
“spooky actions at a distance” [7]. But in 1964 Bell showed

Quantum mechanics at its heart is a statistical theory. It
cannot, with certainty, predict the outcome of all single
events, but instead it predicts probabilities of outcomes.
This probabilistic nature of quantum theory is at odds with
the determinism inherent in Newtonian physics and rela-
tivity, where outcomes can be exactly predicted given
sufficient knowledge of a system. Einstein and others felt
that quantum mechanics was incomplete. Perhaps quantum

“This work includes contributions of the National Institute of
Standards and Technology, which are not subject to U.S. copy-
right.
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that it is impossible to construct a hidden variable theory
that obeys locality and simultaneously reproduces all of the
predictions of quantum mechanics [8]. Bell’s theorem

Published by the American Physical Society
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w Keine Ausreden mehr!

Drei Experimente schlieBen durch Verletzung der Bellschen Ungleichungen lokal-realistische Modelle aus.

U /i J enn zwei Verdichtige bei
einem Verhor dieselbe Ge-
schichte erzahlen, kann es dafr
verschiedene Griinde geben. Der
eine kann von der Version des
anderen erfahren haben und seine
Darstellung des Geschehens danach
ausgerichtet haben. Oder es gibt
eine gemeinsame Ursache fiir die
Ubereinstimmung: Im besten Fall
erziahlen beide nichts als die Wahr-
heit; sie konnen sich aber auch im
Vorhinein abgesprochen haben.
Finden die Verhore gleichzeitig an
verschiedenen Orten statt, liegt eine
gemeinsame Ursache nahe.

Das illustriert, wie natiirlich es
ist, bei Korrelationen eine gemein-
same Ursache anzunehmen. Das
ist auch als Reichenbach-Prinzip
bekannt. Gilt dieses Prinzip auch in
der Physik? In der Quantenmecha-
nik kann es starke Korrelationen
zwischen weit entfernten Teilchen
geben, falls sie miteinander ver-
schrinkt sind. Méchte man diese
durch gemeinsame Ursachen er-
kldren, stof3t man auf das Problem,
dass dies nicht im Formalismus
der Quantenmechanik vorgesehen
ist. Muss sie also durch zusitzliche
Parameter vervollstindigt werden,
die die Messresultate im Voraus
festlegen? Oder muss man akzeptie-
ren, dass es in der Quantenmecha-
nik so etwas wie eine ,,spukhafte”
Fernwirkung gibt? Das ist einer der
Punkte beim Gedankenexperiment
von Einstein, Podolsky und Rosen
[1]. Sie waren der Meinung, dass der
Formalismus der Quantenmecha-
nik durch eine vollstindigere Be-
schreibung ersetzt werden soll.

Vor etwas mehr als fiinfzig Jah-
ren hat der irische Physiker John
Bell jedoch gezeigt, dass eine solche
Komplettierung nicht ohne Wei-
teres moglich ist [2]. Er betrachtete
dabei eine beliebige physikalische
Theorie, die folgende Bedingungen
erfiillt: Physikalische Effekte breiten
sich nicht instantan im Raum aus
(Lokalitét), physikalische Eigen-
schaften sind unabhingig von einer
Messung und liegen bereits davor
fest (Realismus), und ein Experi-
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Der irische Physiker John Bell, hier im
Jahr 1982 am CERN, zeigte 1964 mathe-
matisch, dass sich die Quantenmechanik

mentator kann frei wihlen, welche
Messungen er an einem System
durchfiihrt. Solche Theorien hei-
f3en lokal-realistisch.

Nun wird die Situation betrach-
tet, bei der zwei Parteien, meist
Alice und Bob genannt, Messungen
an zwei Teilchen durchfiihren.
Beide haben je zwei Messungen A,
A, und B, B, mit den Resultaten +1
oder -1 zur Verfiigung. Dann gilt
unter den obigen Annahmen die
Bellsche Ungleichung

(B) = (ABy) + (A1 By)
+(A:B) -(A;By) <2,

die in der Quantenmechanik mit
(B) = 2V2 verletzt werden kann.
Deshalb ist in der Quantenmecha-
nik mindestens eine der obigen
Annahmen nicht erfillt.

Wie lasst sich diese Ungleichung
experimentell iberpriifen? Bisher
hat es verschiedene Versuche mit
polarisierten Photonen und in
Fallen gefangenen lonen oder neu-
tralen Atome gegeben. Dabei lie3
sich eine Verletzung beobachten,
aber noch nicht so, dass alle An-
hinger des lokalen Realismus ihre
Uberzeugungen aufgeben mussten.
Dabei gibt es im Wesentlichen zwei
Schlupflécher (3]: Zum einen sind
in einigen Experimenten die Mes-
sungen von Alice und Bob nicht
raumartig im Sinne der Relativi-
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nicht auf eine lokal-realistische Theorie
zurlickflihren lasst, wie es sich beispiels-
weise Albert Einstein erhofft hatte.

titstheorie getrennt. Damit ist es
im Prinzip moéglich, dass Alice von
Bobs Wahl der Messung erfihrt
und ihr Messergebnis von Bobs
Wahl abhdngt. Ein anderes Schlupf-
loch bilden die Detektoren, die
nur einen Bruchteil aller Teilchen
nachweisen. Dann muss man an-
nehmen, dass die nicht detektierten
Teilchen sich genauso verhalten wie
die detektierten. Natiirlich sind sol-
che Zusatzannahmen im Rahmen
der Quantenmechanik begriindbar.
Allerdings ist das Ziel eines Bell-
Experiments nicht, die Quanten-
mechanik zu bestitigen, sondern
die Klasse aller lokal-realistischen
Theorien auszuschlieflen. Deshalb
ist das Schlieflen aller Schlupflécher
wichtig. In drei aktuellen Experi-
menten ist das nun gelungen.

Das erste Experiment haben
Bas Hensen und Kollegen an der
TU Delft durchgefiihrt [4]. Dabei
kamen Stickstoff-Fehlstellen-
Zentren (NV-Zentren) in Diamant
als Quantensystem zum Einsatz, die
sich effektiv wie ein quantenmecha-
nisches Spin-1-System verhalten.
Die Energieniveaus m, = -1 = |{)
und m, = 0 = |T) dienen als Quan-
tenbits. Im Experiment waren Alice
und Bob 1280 Meter voneinander
entfernt und besaflen beide einen
Diamantkristall mit NV-Zentrum.

Um die Verschriankung zwischen
beiden Parteien herzustellen, be-



