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0 Einleitung

Technicalities:

• Skript ist dünn, ersetzt nicht das Studium von Lehrbüchern !

Hierarchie

– Vorlesung: Konzepte

– Bücher: Konzepte und Details, Empfehlung: Filk Buch

– Übungen: Rechnen & Verständnis, Themen, die wir in der Vorlesung nicht
schaffen

Viele Stunden darauf verwenden. Nicht versuchen, es mit Google zu lösen.
Wird zu Katastrophe führen.

Abgeben in 2er-Gruppen.

Fragen zu den Übungen an Christian Tönsing

• Scheinkriterium, 50 % der Übungspunkte, Bestehen der Klausur

• Bemerkung Vektorpfeile und Nomenklatur

• Wer hat nicht Mathe als zweites Fach ?

• Wenn etwas unklar: Fragen ! In der Vorlesung, bitte keine mails.

• Münsterführung

Literatur:

• Schwabl. Quantenmechanik

• Grawert. Quantenmechanik

• Greiner ...

• Cohen-Tannoudji ...

Unterschiede der Bücher:

• Verhältnis Text zu Gleichungen

• Der Einstieg, Beispiel Griffiths
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1 Prolegomena

QM auf nüchternen Magen schwer verdaulich, hier etwas Frühstück

Zwei Arten von physikalischen Theorien, i.e. Axiomen

• Von Phänomenen zu Axiomen

Beispiele

– Newton’sche Mechanik

– Quantenmechanik

Bedingungen der Möglichkeiten

Beide sagen natürlich auch neue Phänomene vorher

• Von Axiomen zur Vorhersage von Phänomen

Beispiele

– Spezielle Relativitätstheorie: Lichtgeschwindigkeit in allen Interialsyste-
men gleich

Vorhersagen: Längenkontraktion, Zeitdilatation

– Allgemeine Relativitätstheorie (1914): Schwere Masse = Träge Masse

Vorhersagen, u.a.: Lichtablenkung an der Sonne (1919), Gravitation be-
einflusst Uhren (GPS), Gravitationswellen (2015)

Newton:

• 1. Axiom genial, aber auch gewöhnungsbedürftig

SRT:

• c = const. auch nicht anschaulich

QM:

• Die Axiome erschlagen einen erst mal

• Die Phänomene erzwingen sie

• zwangsläufig oder zwanglos
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• Wenn QM Ihnen - wie auch Einstein - nicht gefällt machen Sie einen Vorschlag :-
)

Drei Zugänge zu Quantenmechanik

• Schrödinger: ”Platonischer Zugang”

– Abstrakter Formulierung der Klassischen Mechanik: Hamilton-Jacobi For-
malismus

– Näherung der Wellengleichung zur geometrischen/Strahlenoptik: Eikonal-
gleichung

– Äquivalenz Hamilton-Jakobi/Eikonalgleichung

– Geniale Spekulation

Mechanik E-Dynamik

Wellenmechanik Wellenoptik
”Entnäherung” ⇑ ⇓ Näherung

Klassische Mechanik Geometrische Optik
Hamilton-Jacobi ⇐⇒ Eikonal-Gleichung

• Heisenberg: ”Aristotelischer” Zugang

– Abstrakt: In dieser Arbeit soll versucht werden, Grundlagen zu gewinnen
für eine quantentheoretische Mechanik, die ausschließlich auf Beziehungen
zwischen prinzipiell beobachtbaren Größen basiert ist.

– Ein Jahr später: Schrödinger zeigt Äuquivalenz beider Zugänge

• Nichtrelativistische Dispersionsrelation massiver Teilchen
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2 Die Schrödinger-Gleichung

Zeitabhängige Schrödinger-Gleichung

i~
∂

∂t
ψ(~x, t) =

(
− ~2

2m
∆ + V (~x, t)

)
ψ(~x, t), ∆ =

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

(1)

Eigenschaften:

• Partielle Differentialgleichung

• Linear

• Keine konstanten Koeffizienten

• Wesentlich komplex, Kap. 2.2

Keine andere fundamentale Gleichung der Physik ist komplex

• Wellenfunktion ψ, Bedeutung von ψ vor der Hand unklar

Zeitunabhängige Schrödinger-Gleichung, siehe Original-paper auf ILIAS(
− ~2

2m
∆ + V (~x)

)
ψ(~x) = E ψ(~x) (2)

• Eigenwert-Gleichung

• Energie E lässt sich berechnen, ohne dass man wissen muss, was ψ(~x) bedeutet

• Beachte: Wo vorher Zeit war ist jetzt Energie, erinnere Noether-Theorem

2.1 Die Ausgangslage

• Stabilität von Atomen

Klassisches Bild

– Elektron rotiert um Atomkern

– Beschleunigte Bewegung

– Elektrodynamik: Energie wird abgestrahlt

– Klassische Mechanik: Elektron spiralisiert in Kern

– (Deutlicher) Widerspruch zur Erfahrung
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• Ultraviolett-Katastrophe, Planck 14.12.1900

• Klassisches Licht: Elekromagnetische Welle

– Charakteristische Welleneigenschaft: Interferenz

– Doppelspalt-Experiment

Abbildung 2.1

Aber auch Teilcheneigenschaften: Photonen

– Einstein, 1905: Photo-Effekt (Nobelpreis):

Elektromagnetische Wellen verhalten sich wie Teilchen mit Energie E =
~ω
Energie E des herausgeschlagenen Elektrons:

E = ~ω − A, A : Ablösearbeit (3)

Energie E nicht abhängig von Intensität des Lichtes

– Comptom-Effekt, 1922

Stoß von Photonen auf freie Elektronen führt zur Abnahme der Energie,
E = ~ω, d.h. Zunahme der Wellenlänge

∆λ =
h

mc
(1− cosφ), Compton-Wellenlänge λC =

h

mc
(4)

Für λ� λC gilt klassisches Streuverhalten
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• Klassische Teilchen: Punktförmig mit (x, p)

– Charakteristische Teilcheneigenschaft: Energieübertrag bei Stoß

– Doppelspaltexperiment Billiard-Kugeln

Abbildung 2.2

Aber auch Welleneigenschaften

– de Broglie, 1924: Impuls ~p = ~~k, Wellenzahl |~k| = 2π
λ

, λ = h
p

– Doppelspaltexperiment Elektronen

Abbildung 2.3
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– Kein Interferenzmuster, wenn man annimmt, dass Elektron entweder
durch Spalt 1 oder Spalt 2 geht

– Auf dem Schirm werden immer nur ”ganze” Elektronen beobachtet, Elek-
tron ”teilt” sich nicht

– Interferenzmuster verschwindet, wenn durch zusätzliche Messung be-
stimmt wird, durch welchen Spalt das Elektron geflogen ist Termin1

– Quanteneffekte für mirkoskopische Systeme

∗ kleine Massen

∗ niedrige Temperaturen

∗ kleine Längen

– Quanteneffekte für markoskopische Systeme

∗ Supraleitung

∗ Magnetismus

∗ Spezifische Wärme

∗ Schwarz-Körper Strahlung, Planck 14.12.1900, Geburtsstunde QM

∗ Verschränkte Zustände, km-Skala, Kap. 9.3

• Welle-Teilchen Dualismus

– Sowohl Licht als auch masive Teilchen zeigen sowohl Wellen- als auch
Teilcheneigenschaften

– Ungewohnt, weil um 1800

∗ ”klassisches Licht” Welleneigenschaften zeigte

∗ ”klassische Teilchen” Teilcheneigenschaften zeigten

– Welleneigenschaften, wenn es um Ausbreitung geht

– Teilcheneigenschaften, wenn es um Wechselwirkung geht

– Dualismus, kein Widerspruch, da nicht in der selben Hinsicht

• Elektrisches Feld ~E

– Quadrierte Größe | ~E|2 ∝ Anzahl der Photonen

– Nicht-quadrierte Größe ~E ist physikalisch: Kraft

– Erinnere dies für die Interpretation der Wellenfunktion ψ
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• Quantenmechanik

– In Einklang mit allen experimentellen Fakten, teilweise mit Genauigkeit
10−10, gyromagnetischer Faktor

– Grundlage für ca. 40% unseres Bruttosozialproduktes

– In gewisser Weise bis heute nicht verstanden, Kap. 10

– Alle Gründerväter der Quantenmechanik haben sie am Ende ihres Lebens
gehasst

2.2 Motivation über Dispersionsrelation

Zeitabhängige Schrödiger-Gleichung soll folgende Eigenschaften haben

• linear, damit Superpositionsprinzip gilt

• Wellenlösungen, damit Interferenz möglich ist

• Dispersionsrelation für Materie erfüllen1

Dispersionsrelationen

• Erinnere
E = ~ω, ~p = ~~k (5)

In ω = 2π
T

steckt die Zeit, in Wellenvektor |~k| = 2π
λ

steckt der Raum

• Dispersionsrelationen beschreiben Beziehung zwischen Impuls und Energie oder
entsprechend Wellenlänge und Frequenz

• Allgemein: Beschreiben Zusammenhang zwischen räumlichem und zeitlichen
Verhalten

• Beispiele

– Elektromagnetische Wellen, Photonen

E = cp, lineare Abhängigkeit (6)

1In vielen Büchern steht auch noch, dass die Gleichung erster Ordnung Zeitableitung haben soll,
damit durch den Anfangszustand die Zeitentwicklung festgelegt ist. Das ist aber Quatsch, wie man
an der elektromagnetischen Wellengleichung sieht.
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– Nicht-relativistische Materie

E =
1

2m
p2, quadratische Abhängigkeit (7)

– Relativistische Materie, Ruhemasse m0

E2 = (m0c
2)2 + c2p2, oder E =

√
(m0c2)2 + c2p2 (8)

Übung

– Phononen im Festkörper

Übung

Erinnere Elektrodynamik

• Aus Maxwell-Gleichungen folgte Wellengleichung für’s elektromagnetische Feld
im Vakuum, hier mal B, weil E grade benutzt :-)

1

c2

∂2

∂t2
B =

∂2

∂x2
B (9)

Lösung
B(x, t) = Boe

−i(ωt−kx) (10)

• Intuition:

– In ω steckt Energie E, in k Impuls p

– Ableiten nach der Zeit holt ω und damit E aus dem Exponenten

Ableiten nach dem Ort holt k und damit p aus dem Exponenten

– Dispersionsrelation: E = cp

=⇒
Es muss gleich häufig nach t und nach x abgeleitet werden

– Einfachste Möglichkeit:
1

c

∂

∂t
B = − ∂

∂x
B (11)

Beweis durch Einsetzen

iω

c
B0e

−i(ωt−kx) = ikB0e
−i(ωt−kx), ω = ck E = cp (12)

Beachte: Nicht jede PDE mit einer zeitlichen- und einer räumlichen Ab-
leitung ergibt Wellengleichung, sondern nur obige. Notwendig und hinrei-
chend.
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– Dass in der elektromagnetischen Wellengleichung je zweimal und nicht nur
je einmal abgeleitet wird, sagen die Maxwell’schen Gleichungen

Betrachte nun nicht-relativistisches, freies, massives Teilchen:

E =
1

2m
p2 (13)

• Wellenansatz

ψ(x, t) = A exp(−i(ωt− kx)) = A exp

((
−iE

~
t

)
+
(
i
p

~
x
))

(14)

∂

∂t
ψ =

−iE
~

A exp

((
−iE

~
t

)
+
(
i
p

~
x
))

=⇒
(
i~
∂

∂t

)
ψ = Eψ

∂

∂x
ψ =

ip

~
A exp

((
−iE

~
t

)
+
(
i
p

~
x
))

=⇒
(
~
i

∂

∂x

)
ψ = pψ

Definition Operator: Frißt etwas, spuckt etwas aus

Der Energie E wird der Energie-Operator Ê

E  Ê = i~
∂

∂t
(15)

dem Impuls p der Impuls-Operator p̂

p p̂ =
~
i

∂

∂x
(16)

zugeordnet:

Korrespondenz-Prinzip: Den klassischen physikalischen Größen werden in der Quan-
temechanik Operatoren zugeordnet

• Da die Dispersionsrelation quadratisch ist, muss Energie-Operator einmal, der
Impuls-Operator zweimal angewendet werden, ergänze noch 1

2m(
i~
∂

∂t

)
ψ =

(
− ~2

2m

∂2

∂x2

)
ψ (17)

die freie zeitabhängige Schrödinger-Gleichung
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• Merke

i unumgänglich auf Grund der Dispersionsrelation für nicht-relativistische Materie

Aber: Dies ist nur die einfachste Möglichkeit. Erinnere elektromagnetische Wel-
lengleichung: Dort wurde die einfachste Möglichkeit nicht genutzt.

Übung: Wie sieht das im relativistischen Falle aus ?

• Hamiltonfunktion allgemein

H(x, p, t) =
1

2m
p2 + V (x, t) (18)

Potential V taucht in Argument der Wellenfunktion nicht auf, ergibt einfach
addititven Beitrag(

i~
∂

∂t

)
ψ(x, t) =

(
− ~2

2m

∂2

∂x2
+ V (x, t)

)
ψ(x, t) (19)

die zeitabhängige Schrödinger-Gleichung

• Mit Hamilton-Operator

Ĥ = − ~2

2m

∂2

∂x2
+ V (x, z) (20)

• Von der zeitabhängigen zur zeitunabhängigen Schrödinger-Gleichung

Hängt Potential V (x) nicht von der Zeit ab, wähle Separationsansatz

ψ(x, t) = ψu(x) exp

(
−iE

~
t

)
(21)

Eingesetzt:

Eψu(x) exp

(
−iE

~
t

)
= Ĥψu(x) exp

(
−iE

~
t

)
(22)

Teile durch exp
(
−iE~ t

)
, ergibt zeitunabhängige Schrödinger-Gleichung

Ĥψ(x) =

(
− ~2

2m

∂2

∂x2
+ V (x)

)
ψ(x) = Eψ(x) (23)
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eine gewöhnliche Differentialgleichung

Lösungen sind die stationären Zustände des Systems

Beachte:
Ĥψ(x) = E ψ(x) (24)

ist die natürliche Formulierung, nicht

E ψ(x) = Ĥψ(x) (25)

Interpretation von ψ

• |ψ(x, t)|2dx = ψ∗(x, t)ψ(x, t)dx ist die Wahrscheinlichkeit, das Teilchen zum
Zeitpunkt t am Orte (x, x+ dx) zu detektieren

• Es gilt ∫
dx|ψ(x, t)|2 = 1 (26)

• Beachte: Die Wellenfunktion fasst Welleneigenschaften (bei Ausbreitung) und
Teilcheneigenschaften (bei Detektion) von Quantenobjekten zusammen.

Vergleich klassischer Physik und Quantenmechanik für Punktteilchen

klassisch quantenmechanisch
Beschreibung des (~x, ~p), Element Wellenfunktion ψ(~x, t),
Zustands durch eines 6-dimensionalen Raumes Element eines unendlich-
(Kinematik) dimensionalen Vektorraums über C
Zeitentwicklung Bewegungsgleichung, Schrödinger-Gleichung,
(Dynamik) gewöhnliche, i.a. nicht-lineare lineare partielle

Differentialgleichung Differentialgleichung
Ergebnis einer Messung völlig bestimmt nur Wahrscheinlichkeits-
bei bekanntem Zustand aussagen
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Lessons learned:

• Um Wellenphänomene erklären zu können, braucht es eine partielle Differen-
tialgleichung

• Korrespondenz-Prinzip: Klassischen Größen werden (Differential-)Operatoren
zugeordnet

• Grundlage der QM ist klassische Theorie, was merkwürdig ist.

• i in zeitabhängiger Schrödinger-Gleichung ”folgt” aus (nicht-relativistischer)
Dispersionsrelation für Materie

Termin2

3 Formalisierung

Wir werden uns der Sache spiralisierend nähern

3.1 Physikalische Formalisierung

• Keine physikalische Theorie ist beweisbar, am Ende entscheidet das Experiment

• Physikalische Theorien sind motivierbar2

• Formuliere sie durch Axiome, um sie auf den Punkt zu bringen

Die Axiome der klassischen Mechanik, Hamilton’sche Variante

1. Der Zustand ist durch einen Punkt (x, p) im Phasenraum P gegeben

2. Eine Observable ist eine reellwertige Funktion f : P → R auf dem Phasenraum

3. Die Zeitentwicklung im Phasenraum ist durch die Hamilton’schen Gleichungen
gegeben

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
(27)

2Für Genießer: Maxwell-Gleichungen durch Newton’sches Argumentieren motiviert, aber am
Ende Lorentz- nicht Galilei-invariant.
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Daraus folgt Zeitentwicklung der Observable

ḟ(x, p) = {f(x, p), H(x, p)} (28)

mit Poisson-Klammer

{a, b} =
∑
i

(
∂a

∂qi

∂b

∂pi
− ∂a

∂pi

∂b

∂qi

)
(29)

Die Axiome der Quantenmechanik3

1. Der Zustand ist durch einen Vektor |ψ〉 in einem (unendlich-dimensionalen)
Hilbertraum H gegeben.

2. Eine ObservableA entspricht einem hermiteschen/selbstadjungierten linearen Operator

Â : H → H mit Eigenfunktionen |n〉 und Eigenwerten an.

3. Sei |ψ〉 =
∑

n cn|n〉. Die Wahrscheinlichkeit P der Messung von an ist

P (Messung von Â an |ψ〉 ergibt an) = |cn|2 = 〈ψ|P̂|n〉|ψ〉 (30)

mit P̂|n〉 = |n〉〈n| dem Projektor auf |n〉

Daraus folgt: Der Erwartungswert von A ist

〈A〉 = 〈ψ|Â|ψ〉 (31)

4. Die Messung von an führt zu einem Kollaps der Wellenfunktion |ψ〉 → |n〉

5. Zeitentwicklung von |ψ〉 für geschlossene Systeme ist gegeben durch
Schrödinger-Gleichung

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉 (32)

Zentral:

• Zufall des Messausgangs liegt nicht an Unkenntnis des Zustands

• Im Unterschied zur Statistischen Physik

3Unterstrichen ist, was wir im Folgenden lernen werden
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• Der Kollaps der Wellenfunktion kann nicht durch eine Schrödinger-Gleichung
beschrieben werden. Schon allein deshalb, weil er zufällig ist, nicht wie
Schrödinger-Gleichung deterministisch

Betrachte zeitunabhängige Schrödinger-Gleichung

Ĥψ(x) = Eψ(x) (33)

Zwei Aufbaustücke:

• Operator Ĥ

– ”Frißt” ψ(x) und gibt Eψ(x) aus

– Eigenwert-Problem, der Eigenwert E muss reell sein

– Frage: Welche Eigenschaften müssen Operatoren in der Quantenmechanik
erfüllen ?

– Wie wird eine Messung mathematisch abgebildet ?

• Wellenfunktion ψ(x)

– In welchen Raum leben die Wellenfunktionen ψ(x) ?

3.1.1 Zustände

• Schrödinger-Gleichung ist linear =⇒ Wellenfunktionen bilden Vektorraum

• Für Wellenfunktion ψ(x) muss gelten∫
dx|ψ(x)|2 = 1 (34)

D.h., sie liegen im Raum der quadratintegrablen Funktionen L2

•
∫
dx|ψ(x)|2 stellt ein Skalarprodukt dar

• Wir brauchen Vektorraum mit Skalarprodukt: Einen Hilbertraum
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3.1.2 Operatoren

Zeit-abhängige Schrödinger-Gleichung

Êψ(x, t) = Ĥψ(x, t)(
i~
∂

∂t

)
ψ(x, t) =

(
− ~2

2m

∂2

∂x2
+ V (x, t)

)
ψ(x, t)

• Verallgemeinertes Eigenwert-Problem

Operator1ψ = Operator2ψ (35)

• Beispiel: Harmonischer Oszillator:(
i~
∂

∂t

)
ψ(x, t) =

(
− ~2

2m

∂2

∂x2
+
mω2

2
x2

)
ψ(x, t)

Êψ(x, t) = Ĥkinψ(x, t) + Ĥpotψ(x, t)

mit

– Energie-Operator Ê

ψ(x, t) nach

(
i~
∂

∂t

)
ψ(x, t) (36)

Zeitableitung

– Kinetischer Energie Operator Ĥkin

ψ(x, t) nach − ~2

2m

∂2

∂x2
ψ(x, t) (37)

Ortsableitung

– Potentieller4 Energie Operator Ĥpot

ψ(x, t) nach const. x2ψ(x, t) (38)

Multiplikation mit x2

– Alle diese Operatoren O sind linear im Sinne von:

O(αψ1 + βψ2) = αO(ψ1) + βO(ψ2) (39)

• Wir müssen über lineare Operatoren mit reellen Eigenwerten nachdenken, die
in Hilberträumen wirken 1/2

2. Wo-
che

4:-)
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3.1.3 Observable

Ausflug: Klassische Statistik

• Definition Zufallsvariable X

– Etwas, das eine Wahrscheinlichkeitsdichte pX(x) hat

– Wahrscheinlichkeit, eine Realisierung x in (x, x + dx) zu beobachten, ist
pX(x)dx

– pX(x) ≥ 0,
∫
pX(x) dx = 1

Abbildung 3.1

• Prominentes Beispiel:

Gaußverteilung oder Normalverteilung:

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (40)

Bezeichnung: N(µ, σ2)

Wichtig wegen Zentralem Grenzwertsatz: Die Summe von beliebigen Zufalls-
variablen (mit endlichen Momenten) konvergiert gegen eine Gaußverteilung.
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• Physikalisch entsteht Zufall entweder durch

– Chaos, bei Würfel und in der Statistischen Physik realisiert

– viele Einflüsse á la Brownian Motion

– Quantenmechanik

• Erwartungswert 〈f(x)〉, bitte für unten merken

〈f(x)〉 =

∫
dx f(x) p(x) (41)

Beachte: Erwartungswert ist eine Zahl

• Beispiele: Momente

µk = 〈xk〉 =

∫
xk p(x) dx (42)

1. Moment: Mittelwert

µ1 = x̄ = µ = 〈x〉 =

∫
x p(x) dx (43)

2. Moment

µ2 = 〈x2〉 =

∫
x2 p(x) dx (44)

Varianz σ2

σ2 = 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2 = µ2 − µ2
1 (45)

• Wie Erwartungswert in der Quantenmechanik definieren ?

Wir haben:

– Wellenfunktion ψ(x)

– Wahrscheinlichkeit Teilchen in (x, x+dx) zu finden: p(x)dx = |ψ(x)|2dx =
ψ(x)∗ψ(x)dx

– Zu Observablen A gehören Operatoren Â, die Wellenfunktionen fressen
wollen
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– Naive Analogie zu Gl. (41):

〈A〉 =

∫ ∞
−∞

dx Â |ψ(x)|2 =

∫ ∞
−∞

dx Â (ψ(x)∗ψ(x)) (46)

geht nicht

– Einzige vernünftige Möglichkeit

〈A〉 =

∫ ∞
−∞

dx ψ∗(x)Â ψ(x) (47)

Da 〈A〉 reell sein muss, müssen Eigenwerte von Â reell sein.

– Wir müssen über hermitesche/selbstadjungierte Operatoren nachdenken

3.1.4 Messungen

• ψ(x) ist ”irgendwie”

• Messung gibt zufälligen Wert für Observable

• ”Sofortige” zweite Messung ergibt denselben Wert

• Messung muss ψ(x) verändert haben

• Wir müssen über die mathematische Formulierung einer Messung nachdenken

Quantenmechanik hat die Mathematik sehr befruchtet, Funktionalanalysis.

• δ-Distribution

• 1930 von Physiker Dirac lax eingeführt

• 1945 von Mathematiker Schwartz rigoros behandelt, Übung

3.2 Mathematische Formalisierung

3.2.1 Hilbert-Raum

Wellenfunktionen leben im Hilbert-Raum H

1. H ist ein Vektorraum über C
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• Kommutativ-Gesetz

• Assoziativ-Gesetz

• Existenz des Null-Vektors

• Die üblichen Vektor-Gesetze

2. Es existiert ein Skalarprodukt: 〈a|b〉

• Bra- und Ket-Vektoren, von bra-ket: Klammer, c© Dirac

• Ket-Vektoren: ”normale” Vektoren

Im endlich-dimensionalen:

|b〉 :=

 b1
...
bn

 (48)

• Bra-Vektoren leben im Dualraum: Operatoren, lineare Funktionale: Wer-
fen Vektor auf Zahlen

Im endlich-dimensionalen, mit ∗ komplexe Konjugation:

〈a| := (a∗1, . . . , a
∗
n) (49)

Bilden auch einen Vektorraum, aber einen ganz anderen

• Es gelten die üblichen Gesetze für das Skalarprodukt

• Die Norm ist durch
| |a〉 | :=

√
〈a|a〉 (50)

gegeben.

Es gilt die Cauchy-Schwarze Ungleichung

|〈a|b〉| ≤ | |a〉 | · | |b〉 | oder |〈a|b〉|2 ≤ 〈a|a〉〈b|b〉 (51)

• Hier besonders wichtig: Der abzählbar unendlich-dimensionale L2-Raum
der quadratintegrablen Funktionen

〈ψ|ψ〉 =

∫
dx ψ∗(x)ψ(x) (52)
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Bra-Vektoren: ∫
dx ψ∗(x) (53)

warten auf ein ψ(x), fressen es und geben eine Zahl aus∫
dx ψ∗(x) : C→ R (54)

3. Es gibt eine abzählbare Menge von paarweise orthogonalen Vektoren, deren
lineare Hülle dicht in H ist. Diese bilden eine Basis

4. Hilbert-Raum ist vollständig: Zu jeder Cauchy-Folge in H existiert ein Grenz-
element in H

Bemerkungen

• Für endlich-dimensionale Hilbert-Räume folgen 3. und 4. aus 1. und 2. Für
Quantenmechanik aber (abzählbar-)unendlich dimensionale Vektorräume von
besonderem Interesse

Wichtige Definitionen:

• Orthogonalität von Vektoren

Zwei Vektoren |a〉 und |b〉 heißen orthogonal, wenn gilt:

〈a|b〉 = 0 (55)

• Orthonormalsystem

Menge {|an〉} von Vektoren heißt Orthonormalsystem, wenn gilt

〈an|am〉 = δnm (56)

• Vollständiges Orthonormalsystem

Orthonormalsystem {|an〉} heißt vollständig, wenn jeder Vektor |b〉 darin aus-
gedrückt werden kann:

|b〉 =
∑
n

cn|an〉 (57)
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mit
cm = 〈am|b〉 = 〈am|

∑
n

cn|an〉 (58)

Vollständiges System von Basisvektoren kann stets in ein orthonormiertes Sys-
tem überführt werden

Bras und Kets revisited, Nomenklatur flexibel halten

• Mit {|ψi〉} ein VOS (ab jetzt immer), eine Basis

|φ〉 =
∑
i

ci|ψi〉 (59)

folgt für normierte Zustände

1 = 〈φ|φ〉 =
∑
ij

〈ψj|c∗jci|ψi〉 =
∑
i

|ci|2 (60)

also ∑
i

|ci|2 = 1 (61)

Für später: Interpretation: |ci|2 ist Wahrscheinlichkeit, dass bei einer Messung
von |φ〉 der Basiszustand |ψi〉 gemessen wird

• Vollständigkeitsrelation und Projektoren

Betrachte

|φ〉 =
∑
i

〈ψi|φ〉|ψi〉

=
∑
i

|ψi〉〈ψi|φ〉

=

(∑
i

|ψi〉〈ψi|

)
|φ〉

→
∑
i

|ψi〉〈ψi| = 1 Vollständigkeitsrelation

Einschieben der Eins oft sehr nützlich
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Betrachte einen Summanden ergibt Projektionsoperator Pj

Pj = |ψj〉〈ψj| (62)

Warum ?

Pj|φ〉 =
∑
i

|ψj〉〈ψj|〈ψi|φ〉|ψi〉 = 〈ψj|φ〉|ψj〉 = cj|ψj〉 (63)

Das j-te Element wird herausprojeziert

Allgemein: |a〉〈b| ist aus der linearen Algebra als dyadisches Produkt bekannt.
Im endlich-dimensionalen: a1

...
an

 · (b∗1, . . . , b∗n) =

 a1b
∗
1 . . . a1b

∗
n

...
...

anb
∗
1 . . . anb

∗
n

 (64)

Es gilt

P 2
j = |ψj〉〈ψj|ψj〉〈ψj| = Pj (65)

Projektsoperator ist idempotent

Eigenwerte des Projektionsoperators sind 0 und 1

Sei

Pjψ = λψ (66)

dann
P 2
j ψ = λ2ψ = Pjψ = λψ, λ2 = λ λ = 0, 1 (67)

Interpretation:

– λ = 0 : ψ im Kern von Pj

– λ = 1 : ψ im Bild von Pj

Summen von Projektionsoperatoren projezieren auf Teilräume
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• Basistransformationen

Zustand |φ〉 sei in Basis {|ψi〉} gegeben

|φ〉 =
∑
i

ci|ψi〉, mit ci = 〈ψi|φ〉 (68)

Um in eine andere Basis {|an〉}zu gelangen, Eins einschieben

|φ〉 =
∑
i

〈ψi|φ〉
∑
n

|an〉〈an|ψi〉

=
∑
n

∑
i

〈ψi|φ〉〈an|ψi〉︸ ︷︷ ︸
=kn

|an〉 =
∑
n

kn|an〉

• Kontinuierliche Basen

Bisher: Diskrete Basiszustände |ψi〉 mit (un-) endlicher abzählbarer Dimension

Betrachte freie zeitunabhängige Schrödinger-Gleichung

− ~2

2m

d2

dx
ψ(x) = E ψ(x) (69)

Lösung:

ψ(x) =
1√
2π~

eipx/~ =: |p〉, p ∈ R (70)

Sicher nicht normierbar, uneigentlicher Zustandsvektor

Gesamtheit der ebenen Wellen definieren auch eine Basis:

|φ〉 =

∫
dp c(p)|p〉 (71)

Basis ist überabzählbar unendlich dimensional

Normierung

〈p|p′〉 =
1

2π~

∫
dp ei(p−p

′)x/~ = δ(p− p′) (72)
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Von diskreter Basis zu kontinuierlicher Basis:

i → p∑
i

→
∫
dp

δij → δ(p− p′)
Termin3

3.2.2 Lineare Operatoren im Hilbert-Raum

Definition

• Ein Operator f̂ bildet einen Zustand |ψ〉 auf einen Zustand |φ〉 ab:

|φ〉 = f̂(|ψ〉) (73)

In der Quantenmechanik sind lineare Operatoren A von Interesse.

• Definition:

Für lineare Operatoren Â gilt:

Â(c1|ψ1〉+ c2|ψ2〉) = c1Â|ψ1〉+ c2Â|ψ2〉 (74)

Beispiel: Der Impuls-Operator p̂ = ~
i
d
dx

ist linear

Darstellung von Operatoren

• Endlich-dimensionaler Fall

Stellen wir Bras 〈ψ| und Kets |ψ〉 in einer Basis |i〉 dar

〈ψ| = (ψ∗1, . . . , ψ
∗
n) =

∑
i

ψ∗i 〈i|

|ψ〉 =

 ψ1
...
ψn

 =
∑
i

ψi|i〉

so ist Operator A eine Matrix mit Elementen
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Aij = 〈i|Â|j〉 (75)

Es folgt

Â =
∑
ij

Aij|i〉〈j| (76)

• Ist |i〉 Eigenbasis von A
Â|i〉 = λi|i〉 (77)

so folgt der Spektralsatz

Â =
∑
i

λi|i〉〈i| (78)

Sehr wichtig:

– Â hat Diagonalgestalt

– In Eigenbasis zerfällt das i.A. hoch-dimensionale Problem in viele ein-
dimensionale Probleme

– Spektralsatz auch im unendlich-dimensionalen formulierbar, siehe Übung.

Hermitesche/selbstadjungierte Operatoren

• Der zu Operator A5 adjungierte Operator A† ist definiert durch

〈A†φ|ψ〉 = 〈φ|Aψ〉 (79)

Adjungierter Operator A† wälzt Wirkung von A auf Ket-Vektor auf Bra-Vektor
um

• Wegen 〈φ|ψ〉 = 〈ψ|φ〉∗ gilt

〈φ|Aψ〉 = 〈A†φ|ψ〉 = 〈ψ|A†φ〉∗ (80)

In Dirac-Notation

〈φ|A|ψ〉 = 〈ψ|A†|φ〉∗ (81)

5Das ”Dach” ist ab jetzt mitunter unterdrückt
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• Endlich dimensionaler Vektorraum

Sei A eine n× n Matrix, dargestellt in einer Basis, so gilt:

Adjungierte Matrix ergibt sich durch Transposition und komplexe Konjugation

• Definition:

Ein Operator ist hermitesch, wenn gilt

A† = A (82)

• Sind ferner Definitionsbereiche von A und A† identisch, heißt A
selbstadjungiert6.

• Beispiele:

– Endlich dimensionaler Vektorraum

Eine n×n Matrix ist selbstadjungiert, wenn sie reell und symmetrisch ist

– Der Ortsoperator ist (trivial) hermitesch∫ ∞
−∞

dx ψ∗(xψ) =

∫ ∞
−∞

dx (xψ)∗ψ (83)

– Der Impulsoperator p̂ = ~
i
d
dx

ist hermitesch∫ ∞
−∞

dx ψ∗
(
~
i

d

dx

)
ψ =

~
i

∫ ∞
−∞

dx ψ∗
dψ

dx

=
~
i
ψ∗ψ|∞−∞ −

~
i

∫ ∞
−∞

dx
dψ∗

dx
ψ

=

∫ ∞
−∞

dx

(
~
i

d

dx
ψ

)∗
ψ

– Damit folgt: Hamilton-Operator

H = − ~2

2m

∂2

∂x2
+ V (x, t) (84)

ist auch hermitesch

6Nur im unendlich-dimensionalen relevant. Wir werden die Begriffe synonym verwenden
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• Es gilt

(A†)† = A

(λA)† = λ∗A†

(A+B)† = A† +B†

(AB)† = B†A†

Übersetzung in die Physik

• (Fast) alle Operatoren der Quantenmechanik sind hermitesch, wichtige Aus-
nahme siehe Kap. 5.4

• Schrödinger-Gleichung ist Eigenwert-Problem, betrachte zeitunabhängigen Fall

Ĥψ = Eψ (85)

Im endlich-dimensionalen Falle führt dies auf den bekannten Fall aus der linea-
ren Algebra  h11 . . . h1n

...
. . .

...
hn1 . . . hnn


 ψ1

...
ψn

 = E

 ψ1
...
ψn

 (86)

Im allgemeinen hat Gl. (85) unendlich viele Lösungen i = 1, 2, . . .

Ĥψi = Eiψi (87)

• Wir müssen über Eigenwerte und Eigenfunktionen hermitescher Operatoren
nachdenken

Wichtige Eigenschaften hermitescher Operatoren

(i) Die Eigenwerte hermitescher Operatoren sind reell

Beweis:

– Sei a Eigenwert von Â
Âψ = aψ (88)

– Dann gilt

a =
〈ψ|Aψ〉
〈ψ|ψ〉

=
〈Aψ|ψ〉
〈ψ|ψ〉

= a∗ (89)
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(ii) Die Eigenfunktionen hermitescher Operatoren sind orthogonal

Beweis:

– Multipliziere

Âψn = anψn (90)

mit ψ∗m, ergibt

ψ∗mÂψn = anψ
∗
mψn (91)

Entsprechend
Âψm = amψm (92)

mit ψ∗n, ergibt

ψ∗nÂψm = amψ
∗
nψm (93)

– Subtrahiere Gl. (93) komplex konjugiert von Gl. (91) und integriere

∫ ∞
−∞

dx
(
ψ∗mÂψn − (Â†ψm)∗ψn

)
=

∫ ∞
−∞

dx (anψ
∗
mψn − a∗mψ∗mψn) (94)

Â hermitesch =⇒ linke Seite = 0, damit

(an − a∗m)

∫ ∞
−∞

dx ψ∗mψn = 0 (95)

– Drei Fälle :

1. n = m

∗ Eigenwerte sind reell.

∗ Gleichung trivial erfüllt

2. n 6= m, nicht entartete Eigenwerte an 6= am
∗ Es folgt ∫ ∞

−∞
dx ψ∗mψn = 0 (96)

∗ Mit der richtigen Normierung

〈ψm|ψn〉 =

∫ ∞
−∞

dx ψ∗mψn = δmn (97)
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∗ Eigenfunktionen eines hermitschen Operators zu verschiedenen
nicht-entarteten Eigenwerten sind orthogonal

3. Betrachte n 6= m, entartete Eigenwerte an = am
∗ Zugehörige Eigenfunktionen nicht notwendiger Weise orthogonal

∗ Orthogonalisierung durch Bildung von Linearkombinationen

∗ Entartung physikalisch relevant, da mit Symmetrien des Problems
verbunden

(iii) Die Eigenfunktionen hermitescher Operatoren sind vollständig

Beweis:

– Eigenfuntionen {ψn} vollständig bedeutet für beliebige Wellenfunktion φ:

φ(x) =
∞∑
n=1

cnψn(x) (98)

φ läßt sich nach ψn entwickeln

– Zur Berechnung der cn, multipliziere mit ψ∗m und integriere∫ ∞
−∞

dx ψ∗mφ =
∑
n

cn

∫ ∞
−∞

dx ψ∗mψn︸ ︷︷ ︸
=δnm

= cm (99)

ergo

cm =

∫ ∞
−∞

dx ψ∗m(x)φ(x) (100)

– φ sei normiert, so folgt

1 =

∫ ∞
−∞

dx φ∗φ =

∫ ∞
−∞

dx
∑
nm

c∗ncmψ
∗
nψm =

∑
nm

c∗ncmδnm (101)

und damit

1 =
∞∑
n=1

|cn|2 (102)

{cn} ist unendlich-dimensionaler Vektor der Länge 1.

– Es besteht ein-eindeutiger Zusammenhang zwischen φ(x) und cn

Berechnung von Erwartungswerten
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• Betrachte beliebige Wellenfunktion φ(x) und Operator Â mit seinem orthogo-
nalen, vollständigen und normierten System von Eigenfunktionen ψn(x)

Âψn(x) = anψn(x) (103)

• Frage: Wie lautet Erwartungswert von A ?

〈A〉 =

∫ ∞
−∞

dx φ∗(x)Âφ(x) (104)

Mit {ψn} Eigenfunktionen von Â

φ(x) =
∞∑
n=1

cnψn(x), cn = 〈ψn|φ〉 (105)

folgt

〈A〉 =

∫ ∞
−∞

dx
∑
nm

c∗mcnψ
∗
m Âψn︸︷︷︸

=anψn

=
∑
nm

c∗mcnan

∫ ∞
−∞

dx ψ∗mψn︸ ︷︷ ︸
=δnm

=
∑
n

c∗ncnan

Ergo

〈A〉 =
∞∑
n=1

|cn|2an (106)

• Interpretation

– Erwartungswert von A ist Summe über Eigenwerte von Â gewichtet mit
|cn|2, dem quadrierten Überlapp |〈ψn|φ〉|2 von ψn und φ

– Ist φ Eigenfunktion von Â, d.h. φ = ψk, so gilt ck = 1 und cl = 0 für l 6= k

Dann
〈Â〉 = ak (107)

eine scharfe Messung

34



Korrespondenz-Prinzip revisited:

• Observablen werden hermitesche Operatoren zugeordnet

A(x, p) Â(x̂, p̂) (108)

Das ist nicht eindeutig:

– Trivial nicht eindeutig:

p2x2  


p̂2x̂2 nicht hermitesch
1
2
(p̂2x̂2 + x̂2p̂2) hermitesch

1
4
(p̂x̂+ x̂p̂)2 hermitesch

(109)

– Tiefsinnig nicht eindeutig

Groenewald-van-Hove Theorem, 1946, 1951

Quantisierung ist nicht konsistent für Potenzen > 2

• FAPP (For all practical purposes), Ort, Impuls, Energie, Drehimpuls, geht alles
gut.

Inverser Operator

• Definition:

Wenn für |φ〉 = A|ψ〉 ein Operator A−1 mit A−1|φ〉 = |ψ〉 existiert, so heißt
dieser inverser Operator

• Es gilt
A−1A = AA−1 = 1 (110)

Unitäre Operatoren

• Definition: Ein Operator U ist unitär, wenn gilt

U † = U−1 (111)

und damit
U †U = UU † = 1 (112)

• Betrachte unitäre Transformation U eines
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– Zustandes:
|ψ′〉 = U |ψ〉 (113)

– Operators:
A′ = UAU † (114)

so bleiben experimentell messbare Größen invariant:

– Skalarprodukte
〈φ|ψ〉 = 〈φ|U †U |ψ〉 = 〈φ′|ψ′〉 (115)

– Erwartungswerte:

〈ψ|A|ψ〉 = 〈ψ|U †UAU †U |ψ〉 = 〈ψ′|A′|ψ′〉 (116)

– Eigenwerte:

Sei
Uψ = λψ (117)

dann gilt

〈ψ|ψ〉 = 〈ψ|U †Uψ〉 = 〈Uψ|Uψ〉 = |λ|2〈ψ|ψ〉 =⇒ |λ|2 = 1 (118)

Alle Eigenwerte eines unitären Operators sind vom Betrage eins.

Beispiel: Zeitentwicklungsoperator

– Betrachte zeitabhängige Schrödinger-Gleichung, zeitunabhängiges Poten-
tial

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉 (119)

Formale Lösung:

|ψ(t)〉 = U(t− t0)|ψ(t0)〉
U(t, t0) = e−

i
~ Ĥ(t−t0)

e−
i
~ Ĥ(t−t0) definiert über Potenzreihe7

eÂt =
∞∑
n=0

Ântn

n!
= 1+ Ât+

1

2
Â2t2 + . . . (120)

7Wunderschöner Artikel: Moler & van Loan. Nineteen Dubious Ways to Compute the Exponen-
tial of a Matrix, Twenty-Five Years Later, SIAM Review, 2003, 45(1), 3-49.
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– Zeitentwicklungsoperator U(t, t0) ist unitär:

U †(t, t0) = e
i
~H(t−t0) = U(t0, t) = U−1(t, t0) (121)

und erhält somit die Norm der Wellenfunktion

〈ψ(t)|ψ(t)〉 = 〈ψ(t0)|U †(t, t0)U(t, t0)|ψ(t0)〉 = 〈ψ(t0)|ψ(t0)〉 (122)

Termin4

3.2.3 Kommutatoren

• Betrachte zwei Operatoren A und B. Der Kommutator [., .] ist definiert als

[A,B] := AB −BA (123)

Kommutator misst, ob zwei Operatoren vertauschen

• Erinnere endlich-dimensionalen Fall: Für Matrizen A und B gilt in der Regel:

[A,B] = AB −BA 6= 0 (124)

• Betrachte Kommutator von Orts- und Impulsoperator

[x̂, p̂] =

[
x,

~
i

d

dx

]
=

~
i

(
x
d

dx
− d

dx
x

)
(125)

Beachte: Operatoren wollen auf Zustände angewandt werden

Daher
d

dx
xψ = 1ψ + x

d

dx
ψ =

(
1 + x

d

dx

)
ψ (126)

Somit

[x̂, p̂] =
~
i

(
x
d

dx
− 1− x d

dx

)
= −~

i
(127)

oder

[x̂, p̂] = i~ (128)
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• Beachte: Orts- und Impulsoperator bezüglich verschiedener Komponenten ver-
tauschen

[x̂i, p̂j] =

[
xi,

~
i

∂

∂xj

]
=

~
i

(
xi

∂

∂xj
− ∂

∂xj
xi

)
, i 6= j (129)

Wegen:
∂

∂xj
xiψ = xi

∂

∂xj
ψ (130)

folgt
[x̂i, p̂j] = 0 (131)

• Übung: Berechne diverse Kommutatoren

• Definition: Antikommutator

[A,B]+ := AB +BA (132)

• Frage: Wann ergibt das Produkt zweier hermitescher Operatoren wieder einen
hermiteschen Operator ?

Übung:

Verschwindet der Kommutator, [A,B] = 0, ist das Produkt AB hermitesch

Wichtiger Satz:

• Zwei Operatoren Â und B̂ kommutieren genau dann, wenn ein Satz von ge-
meinsamen Eigenfunktionen beider Operatoren existiert.

• Gemeinsame Eigenfunktionen =⇒ Â und B̂ kommutieren

Beweis:

Sei ψn gemeinsame Eigenfunktion von Â und B̂, dann folgt:

ABψn = Abnψn = anbnψn = bnanψn = Banψn = BAψn, ∀ψn (133)

=⇒ [A,B] = 0 (134)
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• Â und B̂ kommutieren =⇒ Es existiert gemeinsames Eigensystem

Annahme: Eigenwerte seien nicht entartet, Satz gilt aber auch sonst.

Beweis:

Sei

Âψn = anψn (135)

Dann gilt
B̂Âψn = anB̂ψn (136)

Mit Kommutativität:
B̂Âψn = ÂB̂ψn (137)

Damit zusammen
Â(B̂ψn) = an(B̂ψn) (138)

=⇒ φn = B̂ψn ist auch Eigenfunktion von Â mit Eigenwert an

Da Eigenwerte nicht-entartet sind, sind Eigenfunktionen eindeutig =⇒ φn ∝ ψn

B̂ψn = bnψn (139)

ψn ist Eigenfunktion von B̂ zum Eigenwert bn.

• Dieses wird später, Kap. 7, wichtig zur Definition von Quantenzahlen.

3.3 Zurück zur Physik

3.3.1 Die Messung

Der Ablauf, Axiome der Quantenmechanik revisited

• Zeitentwicklung von ψ(x, t) durch Schrödinger-Gleichung gegeben

• Observable A durch hermiteschen Operator Â gegeben

• Bestimme Eigenfunktionen |n〉 mit Eigenwerten an von Â

• Messung zum Zeitpunkt t: Projeziere ψ(x, t) auf |n〉

cn = 〈n|ψ(x, t)〉 (140)
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• |cn|2 gibt Wahrscheinlichkeit, dass an gemessen wird.

Beachte:

|cn|2 = 〈n|ψ(x, t)〉∗ 〈n|ψ(x, t)〉, mit 〈n|ψ(x, t)〉∗ = 〈ψ(x, t)|n〉
= 〈ψ(x, t) |n〉〈n|︸ ︷︷ ︸

Projektor

ψ(x, t)〉

• Wird an gemessen, geht Zustand |ψ(x, t)〉 in Zustand |n〉 über.

Kollaps der Wellenfunktion.

Wird direkt danach noch mal gemessen, ist System immer noch in Zustand |n〉,
Messung ergibt wieder an

• Falls nicht, ist |n〉 Anfangswert für Zeitentwicklung mit Schrödinger-Gleichung

• Wird mehrfach an identisch präpariertem Zustand |ψ(x, t)〉 gemessen, erinnere
Gl. (106), so gilt:

〈A〉 =
∞∑
n=1

|cn|2an (141)

Interpretation

• Erwartungswert von A ist Summe über Eigenwerte von Â gewichtet mit |cn|2,
der Wahrscheinlichkeit, dass an auftritt

|cn|2 ergibt sich aus Überlapp von |ψ(x, t)〉 und |n〉

• Ist ψ Eigenfunktion von Â, d.h. ψ = |k〉, so gilt ck = 1 und cl = 0 für l 6= k

Dann
〈Â〉 = ak (142)

eine scharfe Messung

• Ist ψ nicht Eigenfunktion von Â, so wird eine einzelne Messung einen der
Eigenwerte an liefern und zwar mit Wahrscheinlichkeit |cn|2.

• Ergebnis einer einzelnen Messung ist also unbestimmt8.

8und zwar in einem sehr tiefen Sinne, siehe Kap. 10
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• Merke: Die Zeitentwicklung des Zustandes ist deterministisch. Zustand be-
stimmt aber nicht deterministisch Ergebnis einer Messung

Zentral:

• Zufall des Messausgangs liegt nicht an Unkenntnis des Zustands

• Im Unterschied zur Statistischen Physik

• Der Kollaps der Wellenfunktion kann nicht durch eine Schrödinger-Gleichung
beschrieben werden.

3.3.2 Ehrenfest Theorem

Die klassische Mechanik muß als Grenzfall in der Quantenmechanik enthalten sein.

• Betrachte Schrödinger-Gleichung und die komplex konjugierte, adjungierte

∂

∂t
ψ(x, t) = − i

~
Hψ(x, t)

∂

∂t
ψ∗(x, t) =

i

~
H∗ψ∗(x, t) =

i

~
Hψ∗(x, t)

Für Operator A ist der Erwartungswert

〈A〉(t) =

∫
dxψ∗(x, t)A(t)ψ(x, t) (143)

• Zeitliche Ableitung, alle Argumente unterdrückt

d

dt
〈A〉 =

∫
dx

 ∂ψ∗

∂t︸︷︷︸
= i

~Hψ
∗

Aψ + ψ∗
∂A

∂t
ψ + ψ∗A

∂ψ

∂t︸︷︷︸
=− i

~Hψ


=

∫
dx

(
i

~
(Hψ∗Aψ − ψ∗AHψ) + ψ∗

∂A

∂t
ψ

)
=

∫
dx

(
i

~
(ψ∗HAψ − ψ∗AHψ) + ψ∗

∂A

∂t
ψ

)
=

∫
dx

(
i

~
(ψ∗(HA− AH)ψ) + ψ∗

∂A

∂t
ψ

)
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Ergibt
d

dt
〈A〉 =

i

~
〈[H,A]〉+

〈
∂A

∂t

〉
(144)

• Vergleich mit klassischer Mechanik

d

dt
f = {H, f}+

∂f

∂t
(145)

mit Poisson-Klammer

{f, g} =
∂f

∂p

∂g

∂q
− ∂g

∂p

∂f

∂q
(146)

Andere Formulierung des Korrespondenz-Prinzips:

Klassische Poisson-Klammer entspricht quantenmechanischem Kommutator
multipliziert mit i

~

• Zwei wichtige Kommutatoren, Beweise als Übung

[H, xi] =

[∑
j

p2
j

2m
,xi

]
= −i~ pi

m
(147)

[H, pi] =

[
V (x),

~
i

∂

∂xi

]
= i~

∂V

∂xi
(148)

• Anwendung von Gl. (144) auf x und p, mit Kraft: F (x) = −∇V (x)

d

dt
〈x〉 =

1

m
〈p〉

d

dt
〈p〉 = −〈∇V (x)〉 = 〈F (x)〉

Fasse zusammmen:

m
d2

dt2
〈x〉 = 〈F (x)〉 erscheint bekannt (149)

• Ehrenfest Theorem: Die klassischen Gleichungen gelten für die Mittelwerte

• ABER: Das bedeutet nicht, dass die Mittelwerte 〈x〉 und 〈p〉 den klassischen
Bewegungsgleichungen genügen.
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• Dazu muss man Mittelwert der Kraft

〈F (x)〉 =

∫
dxψ∗(x, t)F (x)ψ(x, t) (150)

durch ihren Wert F (〈x〉) an der Stelle 〈x〉 ersetzen dürfen

• Wann gilt dies ? Betrachte Taylor-Entwicklung

F (x) = F (〈x〉) + F ′(〈x〉)(x− 〈x〉) +
1

2
F ′′(〈x〉)(x− 〈x〉)2 + . . . (151)

Wegen 〈(x− 〈x〉)〉 = 0 entfällt 2. Term

F (x) = F (〈x〉) +
1

2
F ′′(〈x〉) (x− 〈x〉)2︸ ︷︷ ︸

=∆x2

+ . . . (152)

Ersetzen von 〈F (x)〉 durch F (〈x〉) ist exakt, wenn zweite und höhere Ableitun-
gen verschwinden. Näherungsweise gut, wenn Wellenfunktion so gut lokalisiert
ist, dass sich F (x) im Bereich ihrer Ausdehnung nur wenig ändert

(∆x)2F ′′(〈x〉)
F (〈x〉)

� 1 (153)
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Lessons learned

• Die Axiome der Quantenmechanik:

– Zustände leben im Hilbertraum

– Observable durch selbstadjungierte Operatoren repräsentiert

– Messung: Projektion der Wellenfunktion auf Eigenzustände des selbstad-
jungierten Operators

– Eigenwert als zufälliges Messergebnis

– Wahrscheinlichkeit durch Überlapp von Wellenfunktion mit Eigen-
zuständen gegeben

– Kollaps der Wellenfunktion auf zugehörigen Eigenzustand

• Drei wichtige Eigenschaften selbstadjungierter Operatoren:

– Eigenwerte sind reell

– Eigenzustände sind orthogonal

– Eigenzustände sind vollständig

• Groenewald-van-Hove Theorem: Korrespondenz-Prinzip nicht konsistent

• Kommutatoren messen Vertauschbarkeit von Operatoren

• Ehrenfest-Theorem: Klassische Mechanik als Grenzfall der Quantenmechanik

Termin5

4 Unschärferelationen

• Erinnere Cauchy-Schwarz’sche Ungleichung:

〈φ|φ〉〈ψ|ψ〉 ≥ |〈φ|ψ〉|2 (154)

• Betrachte zwei hermitesche Operatoren Â und B̂ und Zustand ψ

Definiere Operatoren A und B durch Abziehen des Mittelwertes im Zustand ψ

A = Â− 〈Â〉 = Â− 〈|ψ|Â|ψ〉 (155)
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B entsprechend

• Setze Aψ und Bψ in Cauchy-Schwarz’sche Ungleichung ein

〈Aψ|Aψ〉〈Bψ|Bψ〉 ≥ |〈Aψ|Bψ〉|2 (156)

Hermitezität ausnutzen

〈ψ|A2|ψ〉〈ψ|B2|ψ〉 ≥ |〈ψ|AB|ψ〉|2 (157)

• Mit Antikommutator
[A,B]+ = AB +BA (158)

zerlege AB in hermiteschen und einen anti-hermiteschen Anteil

AB =
1

2
[A,B]+ +

1

2
[A,B] (159)

mit

[A,B]†+ = [A,B]+ hermitesch

〈ψ|[A,B]+|ψ〉 ∈ R

und

[A,B]† = −[A,B] anti-hermitesch

Kommutator von A und B = iC, A,B,C hermitesch

〈ψ|[A,B]|ψ〉 rein imaginär

• Zerlegung eines Operators in einen hermiteschen und einen antihermiteschen
bedeutet für Erwartungswert Zerlegung in Real- und Imaginärteil

Damit gilt für Betragsquadrat:

|〈ψ|AB|ψ〉|2 =
1

4
〈ψ|[A,B]+|ψ〉2 +

1

4
|〈ψ|[A,B]|ψ〉|2 (160)

• Die Mittelwerte 〈Â〉 und 〈B̂〉 sind Zahlen, kommutieren mit allem.

Daher gilt
[Â, B̂] = [A,B] (161)
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Damit folgt bei Vernachlässigung des ersten Terms in Gl. (160)

|〈ψ|AB|ψ〉|2 ≥ 1

4
|〈ψ|[Â, B̂]|ψ〉|2 (162)

Warum nicht den zweiten statt des ersten Terms vernachlässigen? Über kom-
mutierende Operatoren wissen wir was :-)

• Die Unschärfe ∆A ist die Standardabweichung von Â, Wurzel aus der Varianz

(∆A)2 = 〈ψ|(Â− 〈Â〉)2|ψ〉 (163)

∆B entsprechend

• Somit folgt für das Produkt der Unschärfen mit Gln. (157, 162)

∆A∆B ≥ 1

2
|〈[Â, B̂]〉| (164)

die allgemeine Unschärfe-Relation:

Observablen von nicht-kommutierenden Operatoren sind nicht simultan scharf messbar

• Betrachte : Â = x̂i und B̂ = p̂j

Erinnere:
[x̂i, p̂j] = i~ δij (165)

Es folgt der wichtige Spezialfall der Orts-Impulsunschärfe:

∆xi∆pj ≥
~
2
δij , (166)

die Heisenberg’sche Unschärfe-Relation.

Kurzklausur
Physikalisch/mathematische Interpretation

• Kommutierende Operatoren

– Erinnere: Kommutieren zwei Operatoren A und B, so haben sie die glei-
chen Eigenfunktionen |n〉

– Messung von A überführt Wellenfunktion |ψ〉 in Eigenfunktion |n〉 und
ergibt Eigenwert an als Messwert
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– Unmittelbar anschließende Messung von B lässt Eigenfunktion |n〉 un-
verändert und ergibt bn als Messwert

– Erneute Messung von A ergibt wieder |n〉 and an

– Dieses lässt beliebig häufig wiederholen

– ∆t→ 0

– Ergo: Man kann von simultanen scharfen Messwerten sprechen

• Nicht-kommutierende Operatoren

– Messung von A überführt Wellenfunktion |ψ〉 in Eigenfunktion |n〉 ergibt
Eigenwert an

– |n〉 ist nicht Eigenfunktion von B

– Messung von B lässt |n〉 in Eigenfunktion |m〉 von B kollabieren und
ergibt bm

– |m〉 ist keine Eigenfunktion von A

– Erneute Messung von A ergibt Kollaps in Eigenfunktion |n′〉 und Eigen-
wert an′

– Diese wechselseitigen Zerstörung der Eigenfunktionen iteriert

– Die Messwerte ändern sich ständig

– Ergo: Man kann nicht von scharfen Messwerten sprechen

• Gilt alles im zeit-abhängigen wie im zeit-unabhängigen Falle

Unschärferelation ist eine Ungleichung
Unter welchen Bedingungen an die Wellenfunktion wird das Gleichheitszeichen an-
genommen ?

• Gleichheitszeichen bei Cauchy-Schwarz’scher Ungleichung

〈Aψ|Aψ〉〈Bψ|Bψ〉 ≥ |〈Aψ|Bψ〉|2 (167)

wird angenommen für
Bψ = zAψ, z ∈ C (168)

Gleichheitszeichen in Gl. (162)

|〈ψ|AB|ψ〉|2 ≥ 1

4
|〈ψ|[Â, B̂]|ψ〉|2 (169)
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wird angenommen, wenn Erwartungswert des Antikommutators verschwindet

〈ψ|AB|ψ〉+ 〈ψ|BA|ψ〉 = 〈Aψ|Bψ〉+ 〈Bψ|Aψ〉 = 0 (170)

Gl. (168) eingesetzt

0 = 〈Aψ|zAψ〉+ 〈zAψ|Aψ〉 = 〈Aψ|zAψ〉+ 〈Aψ|zAψ〉∗ = (z + z∗)〈Aψ|Aψ〉
(171)

Ergo: z muss rein imaginär sein

• Eingesetzt in Gl. (168)
Bψ = iλAψ, λ reell (172)

• Für A = x̂ und B = p̂ ergibt sich die Differentialgleichung(
~
i

∂

∂x
− 〈p〉

)
ψ = iλ(x− 〈x〉)ψ (173)

Lösung: Gauß’sches Wellenpaket, siehe Kap. 5.1. Beweis als Übung

Beweis der Orts-Impuls Unschärfe auf Grund der Fourier-Transformation

• Sei ψ(x) eine quadrat-integrable Funktion

• Dann ist9

ψ̃(k) =
1√
2π

∫ ∞
−∞

dx ψ(x)e−ikx (174)

die Fourier-Transformierte von ψ(x)

• Sei ferner

(∆x)2 =

∫ ∞
−∞

dx ψ∗(x)(x− 〈x〉)2ψ(x)

(∆k)2 =

∫ ∞
−∞

dk ψ̃∗(k)(k − 〈k〉)2ψ̃(k)

dann gilt

∆x∆k ≥ 1

2
(175)

9mal wieder nomenklatorisch flexibel bleiben :-)
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• Beweis als Übung

• Mit de Broglie-Beziehung p = ~k folgt

∆x∆p ≥ ~
2

(176)

Termin6
Energie-Zeit Unschärfe

• Betrachte ψ(t) und Fourier-Transformierte

ψ̃(ω) =
1√
2π

∫ ∞
−∞

dt ψ(t)e−iωt (177)

und

(∆t)2 =

∫ ∞
−∞

dt ψ∗(t)(t− 〈t〉)2ψ(t)

(∆ω)2 =

∫ ∞
−∞

dω ψ̃∗(ω)(ω − 〈ω〉)2ψ̃(ω)

Es folgt analog

∆ω∆t ≥ 1

2
(178)

und mit E = ~ω folgt

∆E∆t ≥ ~
2

(179)

• Aber: Die Zeit t ist in der Quantenmechanik keine Observable, nur ein Para-
meter. Es gibt keinen Zeit-Operator

• Daher lässt Zeit-Energie Unschärfe sich nicht aus Kommutator-Relation ablei-
ten

• Bedeutung von ∆t: Zeitdauer, keine Standardabweichung in obigem Sinne

• Anwendungsbeispiele

49



– Durchgangsdauer und Energieunschärfe

Etwas hand-waving :-)

Energieunschärfe eines freien Wellenpaketes mit p0 und ∆p

∆E ≈ p0∆p

m
(180)

Zeitunschärfe ∆t: Zeit, die das Teilchen an Stelle x gefunden werden kann,
d.h. die Zeit, die das Wellenpaket mit Ausdehnung ∆x für Durchgang
durch Ort x benötigt

∆t ≈ ∆x

v0

=
m∆x

p0

(181)

Somit

∆E∆t ≈ ∆x∆p ≥ ~
2

(182)

– Energie-Zeit-Unschärfe hat praktische Konsequenzen in der Spektrosko-
pie:

∗ Hat ein angeregter Zustand die Lebensdauer ∆t, dann ist die Frequenz
nur bis auf ∆ω, resp. die Energie auf ∆E bestimmt.

∗ Endliche Lebensdauern führen zu verbreiterten Emissionslinien im
Spektrum

Lessons learned

• Observable, die zu nicht kommutierenden Operatoren gehören, sind nicht si-
multan scharf messbar

• Die Zeit ist in der Quantenmechanik keine Observable, es gibt keinen ”Zeit-
Operator”

• Energie-Zeit Unschärfe in besonderem Sinne

5 Erste Anwendungen

”Shut up and calculate”

Überblick
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• Zentral ist der Hamilton-Operator:

Ĥ = − ~2

2m

∂2

∂x2
+ V (x, t) (183)

• Zeitunabhängig (
− ~2

2m

∂2

∂x2
+ V (x)

)
ψ(x) = Eψ(x) (184)

• Das heißt, die Fragestellungen klassifizieren sich nach dem Potential V (x)

– Freies Teilchen

– Potentialbarriere

– Kastenpotential

– Harmonischer Oszillator

– Periodische Potentiale

• Bestimme Eigenfunktionen und Eigenwerte, das Energiespektrum, von Ĥ

5.1 Freies Teilchen

• V (x) = 0

− ~2

2m

d2

dx2
ψ(x) = Eψ(x) (185)

Lösung: trigonometische Funktionen

Ansatz: ψ(x) = Ae±ikx

• Es folgt

− ~2

2m
A(−k2)e±ikx = EAe±ikx (186)

mit Energie E

E =
~2k2

2m
(187)

bzw.

k =
1

~
√

2mE (188)
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• Für jede Energie E existieren zwei Lösungen, jeder Eigenwerte ist zweifach
entartet

ψ±(x) = Ae±ikx (189)

Jeder Wert E ≥ 0 ist Eigenwert, keine Quantisierung, sondern kontinuierliches
Spektrum

• Energie kann scharf gemessen werden ∆E = 0

• Zeitabhängige Lösung

ψ±(x, t) = Ae±ikxe−i/~Et (190)

ergibt mit ω = E/~

ψ+(x, t) = Aei(kx−ωt) rechtslaufende Welle

ψ−(x, t) = Aei(−kx−ωt) linkslaufende Welle

Allgemeine Lösung: Linearkombination

ψ(x, t) =
(
Aeikx +Be−ikx

)
e−iωt (191)

• Quantenmechanische Wahrscheinlichkeitsamplitude für freies Teilchen ist eine
Welle.

Dies erlaubt Effekte wie Interferenz, so war es konstruiert.

Wellenpakete

• Konstruiere lokalisierte Lösung durch Superposition

ψ(x, t) =
1√
2π

∫ ∞
−∞

dk a(k)ei(kx−ω(k)t) (192)

Anfangsbedingung, t = 0

ψ(x, 0) =
1√
2π

∫ ∞
−∞

dk a(k)eikx (193)

a(k) ist (inverse) Fouriertransformierte von ψ(x, 0)
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• Beachte: Wellenpaket ist keine Eigenfunktion von Ĥ

Zerfliessen von freien Wellenpakten

• Quantenmechanische Dispersion

• Betrachte Gauß’sches Wellenpaket

a(k) = Ce−α(k−k0)2 (194)

α legt Breite fest, C sorgt für Normierung

• Ganz allgemein, gilt auch für elektromagnetische Wellen.

• Erinnere unterschiedliche Dispersionsrelationen

ω =
~2k2

2m
QM

ω = ck ED

Entwickele ω(k) um k0

ω(k) = ω(k0) +
dω

dk

∣∣∣∣
k0

(k − k0) +
1

2

d2ω

dk2

∣∣∣∣
k0

(k − k0)2 + . . .

ω(k) = ω0 + vG(k − k0) + β(k − k0)2 + . . .

vG: Gruppengeschwindigkeit, β: Dispersionsparameter

• Hier: Entwicklung bricht (spätestens) nach quadratischem Term ab

Eingesetzt in Gl. (192)

ψ(x, t) =
C√
2π

∫
dke−α(k−k0)2eikxe−i(ω0+vG(k−k0)+β(k−k0)2)t

=
C√

2

1√
α + iβt

ei(k0x−ω0t) exp

(
−(x− vGt)2

4(α + iβt)

)

Beweis als Übung
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Damit Wahrscheinlichkeitsdichte

|ψ(x, t)|2 =
|C|2

2
√
α2 + β2t2

exp

(
− α(x− vGt)2

2(α2 + β2t2)

)
(195)

Erinnere Varianz von Gauß-Verteilung

pG(x) =
1√

2πσ2
exp

(
−(x− 〈x〉)2

2σ2

)
(196)

σ2 =
α2 + β2t2

α
= (∆x)2 (197)

Abbildung 5.1

• Für Impulsunschärfe gilt

∆p =
~

2
√
α

(198)

• Damit folgt für die Unschärferelation

∆x∆p =
~
2

√
1 +

β2t2

α2
≥ ~

2
(199)

Beachte: Für t = 0 gilt minimale Unschärfe.
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• Quantenmechanischer Fall:

vG =
dω

dk

∣∣∣∣
k0

=
~k0

m
, β =

~
2m

(200)

Dispersion gilt für jede Art von freien Wellenpaketen.

• Elektrodynamischer Fall: im Vakuum keine Dispersion, da

vG = c, β = 0 (201)

5.2 Potentialbarriere und Tunneleffekt

• Betrachte Teilchen mit Energie E und eine Potentialbarriere V (x)

V (x) =


0 für x < −a
V0 für − a ≤ x ≤ a 0 < E < V0

0 für x > a
(202)

Abbildung 5.2

• Klassisch: Teilchen kann Barriere nicht überwinden

• Quantenmechanisch: Es gibt endliche Tunnelwahrscheinlichkeit T (E), ein von
links kommendes Teilchen rechts der Barriere zu finden

• Intuition, Faktor e−iωt im Folgenden unterdrückt:
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– Rechts und links der Barriere: freies Teilchen

ψ(x) ∝ e±ikx, k =
1

~
√

2mE (203)

– In der Barriere, Schrödinger-Gleichung(
− ~2

2m

d2

dx2
+ V0

)
ψ(x) = Eψ(x) (204)

oder

− ~2

2m

d2

dx2
ψ(x) = (E − V0)︸ ︷︷ ︸

<0

ψ(x) (205)

Lösung: Exponentielles Verhalten

ψ(x) ∝ e±gx, g =
1

~
√

2m(V0 − E) (206)

Allgemeine Lösung

ψ(x) =


Aeikx +Be−ikx für x < −a
Ce−gx +Degx für − a ≤ x ≤ a
Feikx +Ge−ikx für x > a

(207)

Abbildung 5.3: Von links ein laufendes Teilchen
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• Bei x = −a und x = a müssen die Wellenfunktionen für endliches Potential V0

stetig und differenzierbar aneinander anschließen

Beweise:

– Intuitiv

∗ Angenommen ψ(x) oder ψ′(x) wären unstetig, dann bewirkt

ψ(x) ∝ Θ(x− a) für ψ′′(x) ∝ δ′(x− a)

ψ′(x) ∝ Θ(x− a) für ψ′′(x) ∝ δ(x− a)

∗ ψ′′(±a) hat aber höchstens endliche Sprungstelle

∗ Widerspruch

∗ Analoge Argumentation: Bei unendlichen Sprüngen von V (x) bleibt
ψ(x) stetig, aber ψ′(x) wird unstetig

– Physikalisch: ψ′(x) entspricht Impuls, dieser kann nicht unendlich sein,
daher muss ψ(x) stetig sein.

– Mathematisch

∗ Integriere Schrödinger-Gleichung über das Intervall [a− ε, a+ ε]

− ~2

2m

∫ a+ε

a−ε
dx

d2

dx2
ψ(x) =

∫ a+ε

a−ε
dx Eψ(x)−

∫ a+ε

a−ε
dx V (x)ψ(x) (208)

− ~2

2m
(ψ′(a+ ε)− ψ′(a− ε)) =

∫ a+ε

a−ε
dx Eψ(x)−

∫ a+ε

a−ε
dx V (x)ψ(x)

(209)

∗ Für ε→ 0 folgt verschwindet 1. Integral auf jeden Fall, zweites, wenn
Sprung in V (x) endlich

• Anschlußbedingung bei x = −a
Stetigkeit

Ae−ika +Beika = Cega +De−ga (210)

Differenzierbarkeit

ik(Ae−ika −Beika) = −g(Cega −De−ga) (211)
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Beginn Heimarbeit

In Matrixschreibweise(
e−ika eika

e−ika −eika
)(

A
B

)
=

(
ega e−ga
ig
k
ega − ig

k
e−ga

)(
C
D

)
(212)

Umgestellt(
A
B

)
=

1

2

(
eika eika

e−ika −e−ika
)(

ega e−ga
ig
k
ega − ig

k
e−ga

)(
C
D

)
(213)

Ergibt (
A
B

)
= M(a)

(
C
D

)
(214)

mit

M(a) =
1

2

( (
1 + ig

k

)
ega+ika

(
1− ig

k

)
e−ga+ika(

1− ig
k

)
ega−ika

(
1 + ig

k

)
e−ga−ika

)
(215)

• Anschlußbedingung bei x = a

Analoge Rechnung (
F
G

)
= M(−a)

(
C
D

)
(216)

• Zusammenhang

(
A
B

)
und

(
F
G

)
:(

A
B

)
= M(a)M(−a)−1

(
F
G

)
(217)

mit

M(−a)−1 =
1

2

 (
1− ik

g

)
ega+ika

(
1 + ik

g

)
ega−ika(

1 + ik
g

)
e−ga−ika

(
1 + ik

g

)
e−ga−ika

 (218)

Ergibt(
A
B

)
=

(
(cosh 2ga+ iε

2
sinh 2ga)e2ika iη

s
sinh 2ga

− iη
2

sinh 2ga (cosh 2ga− iε
2

sinh 2ga)e−2ika

)(
F
G

)
(219)
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mit

ε =
g

k
− k

g

η =
g

k
+
k

g

• Ende Heimarbeit Termin7

Betrachte von links einlaufendes Teilchen, d.h. G = 0. Dann

A = F (cosh 2ga+
iε

2
sinh 2ga)e2ika

B = −F iη
2

sinh 2ga

Abbildung 5.4: Wellenfunktion

• Definiere Transmissionsamplitude S(E):

S(E) :=
F

A
=

e−2ika

cosh 2ga+ iε
2

sinh 2ga
(220)

Definiere Tunnelwahrscheinlichkeit T (E) = |S(E)|2, dass Teilchen, das auf
Schwelle trifft, diese durchdringt:

T (E) :=
1

1 + (1 + (ε2/4)) sinh2 2ga
(221)
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• Betrachte Grenzfall einer sehr hohen und breiten Barriere: ga� 1

Beginn Heimarbeit

Dann gilt

sinh 2ga =
1

2
(e2ga − e−2ga) ≈ 1

2
e2ga � 1 (222)

Damit

T (E) ≈
(

1 +
ε2

4

)−1

4e−4ga =
16(gk)2

(g2 + k2)2
e−4ga (223)

Mit k = 1
~

√
2mE und g = 1

~

√
2m(V0 − E)

T (E) ≈ 16E(V0 − E)

V 2
0

exp
(
−4

a

~
√

2m(V0 − E)
)

(224)

Ziehe Vorfaktor in den Exponenten

T (E) ≈ exp

(
−4

a

~
√

2m(V0 − E) + log

(
16E(V0 − E)

V 2
0

))
(225)

Logarithmus wächst viel langsamer als Wurzel, vernachlässige ihn

T (E) ≈ exp
(
−4

a

~
√

2m(V0 − E)
)

(226)

Ergebnis: Für sehr hohe und breite Barriere, ga� 0

Ende Heimarbeit

T (E) ≈ e−β

β =
4a

~
√

2m(V0 − E)

Tunnelwahrscheinlichkeit nimmt exponentiell ab mit der

– Breite der Barriere

– Wurzel der Masse
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– Wurzel aus der Energiedifferenz

• Tunneleffekt ist ein Wellenphänomen. Geht auch mit elektromagnetischen Wel-
len: Evaneszente Wellen, lateinisch: evanescere: verschwinden. Z.B. bei Total-
reflexion

Abbildung 5.5

• Technisch: Grundlage des Rastertunnelmikroskopes, Nobelpreis 1986 für
G. Binnig und H. Rohrer
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– Halte Metallspitze über abzutastender Oberfläche

– Zwischenraum entspricht Potentialbarriere

– Lege Spannung zwischen Metallspitze und Oberfläche an

– Strom misst den Abstand

– Quantitative Beziehung zwischen Abstand und Strom schwierig

– Praxis: Halte Strom konstant und variiere Abstand durch Piezokristalle

– Abstand ∝ Spannung an Piezokristall

Übung: α-Zerfall

5.3 Potentialtopf

Unendlich hoher Potentialtopf

• Sei

V (x) =

{
0 für 0 < x < L
∞ sonst

(227)

• Lösung muss im Außenbereich verschwinden, sonst wäre Erwartungswert der
potentiellen Energie

〈V 〉 =

∫ ∞
−∞

dx V (x)|ψ(x)|2 (228)

unendlich

• Schrödinger-Gleichung im Innenbereich

− ~2

2m

d2

dx2
ψ(x) = Eψ(x) (229)

Allgemeine Lösung

ψ(x) = A sin(kx) +B cos(kx) (230)

• Wellenfunktion muss stetig sein: ψ(0) = ψ(L) = 0

ψn(x) = A sin(knx), kn =
nπ

L
, n = 1, 2, . . . (231)
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Richtig normiert:

ψn(x) =

√
2

L
sin
(πnx
L

)
(232)

• Wellenfunktion ist an x = 0 und x = L nicht differenzierbar

Abbildung 5.6

• Energiespektrum durch Einsetzen in Schrödinger-Gleichung

En =
π2~2

2mL2
n2, n = 1, 2, . . . (233)

En ∝ n2 mag zunächst überraschen, da Energielücken zwischen benachbarten
Energie-Eigenwerten damit auch groß werden.

Aber relativ werden Abstände kleiner

∆En
En

=
En+1 − En

En
=

2n+ 1

n2
→ 2

n
(234)

• Fünf Beobachtungen

– Tiefster Energiewert liegt nicht bei Null
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– Es gibt nur diskrete Energiewerte.

Es gilt allgemein: Lokalisierte Lösungen führen über Randbedingungen zu
diskreten Energieeigenwerten

– Für große Massen und breite Töpfe ergibt sich Quasi-Kontinuum, der
klassische Grenzfall

– Für große n oszilliert ψn(x) sehr schnell. Wahrscheinlichkeit p∆x(x) Teil-
chen in [x, x+ ∆x] zu finden

p∆x(x) =
2

L

∫ x+∆x

x

dx sin2
(nπ
L
x
)
≈ ∆x

L
, für

L

n
� ∆x (235)

– Verringerung von L erhöht die Energie: Es gibt einen Druck

• E1 6= 0 ist in Übereinstimmung mit der Unschärferelation

– Wäre E1 = 0 wäre p scharf bestimmt. Dann müsste ∆x =∞ gelten. Geht
aber bei beschränktem System nicht

– Überschlagsrechnung

∆x ≈ L, damit ∆p ≈ ~/L
Dazu gehört E = ~2

2mL2 , bis auf Faktor π2 die Grundzustandsenergie

• Beachte:

– Durch Potential-Randbedingungen wird aus überabzählbar unend-
lich dimensionalem Lösungsraum der freien Schrödinger-Gleichung ein
abzählbar unendlicher Lösungsraum

– Die ganze Rechnung geht, ohne dass man über ψ nachdenken muss

Endlicher Potentialtopf als Übung

• Nicht-triviale Anschlussbedingungen analog zur Potential-Barriere

• V (x) ist endlich, ψ(x) verschwindet außerhalb des Potentialtopfes nicht

• V (x) macht bei x = ±a einen Sprung, also auch V (x)ψ(x)

• Also macht d2

dx2
ψ(x) einen endlichen Sprung

• Damit hat erste Ableitung einen Knick.

• ψ(x) einmal stetig differenzierbar
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5.4 Harmonischer Oszillator

• Hamilton-Funktion des klassischen harmonischen Oszillators:

H =
p2

2m
+
mω2

2
x2 (236)

• Zeitunabhängige Schrödinger-Gleichung:(
− ~2

2m

d2

dx2
+
mω2

2
x2

)
ψ(x) = Eψ(x) (237)

mit charakteristischer Länge

x0 =

√
~
ωm

(238)

5.4.1 Lösung per Leiteroperatoren, algebraische Methode

Fast alleˆunterdrückt

• Definiere Leiter-Operatoren a und a†, seinen adjungierten Operator

a =
ωmx+ ip√

2ωm~

a† =
ωmx− ip√

2ωm~

Beachte: a und a† sind nicht hermitesch, Beweis als Übung

• In Umkehrung

x =

√
~

2ωm
(a+ a†) (239)

p = −i
√

~ωm
2

(a− a†) (240)

• Es gilt, Übung

[a, a†] = 1 (241)
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• Mit charakteristischer Länge x0 =
√

~
ωm

a =
1√
2

(
x

x0

+ x0
d

dx

)
a† =

1√
2

(
x

x0

− x0
d

dx

)

Mit Gln. (239, 240) ergibt sich Hamilton-Operator des harmonischen Oszilla-
tors, Übung :

H =
1

2
~ω(a†a+ aa†) (242)

• Addiere a†a− a†a, unter Benutzung des Kommutators, Gl. (241), folgt

H =
1

2
~ω(a†a+ a†a+ aa† − a†a︸ ︷︷ ︸

=1

) = ~ω
(
a†a+

1

2

)
= ~ω

(
n̂+

1

2

)
(243)

mit hermiteschen Besetzungszahloperator n̂ := a†a

• Aufgabe: Finde Eigenwerte und Eigenfunktionen, die sogenannten
Fockzustände, des Besetzungszahloperators.

• Es sei ψν Eigenfunktion zum Eigenwert ν von n̂

n̂ψν = νψν (244)

• Berechnung von ψ0

Aus
ν〈ψν |ψν〉 = 〈ψν |n̂ψν〉 = 〈ψν |a†aψν〉 = 〈aψν |aψν〉 ≥ 0 (245)

folgt
ν ≥ 0 (246)

Kleinstmöglicher Eigenwert: ν = 0

Um zugehörige Eigenfunktion zu berechnen, beachte, dass Norm von aψ0 ver-
schwinden muss:
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aψ0 = 0 (247)

d.h. (
x

x0

+ x0
d

dx

)
ψ0 = 0 (248)

Normierte Lösung dieser Differentialgleichung

ψ0(x) =

(
1√
πx0

)−1/2

exp

(
−1

2

(
x

x0

)2
)

(249)

• Berechnung der übrigen Eigenfunktionen

Es gilt, Übung

[n̂, a†] = a† und [n̂, a] = −a (250)

Behauptung: a†ψν ist Eigenfunktion von n̂ zum Eigenwert ν + 1

Beweis:

Addiere geschickt eine Null:

n̂a†ψν = (a†n̂+ n̂a† − a†n̂︸ ︷︷ ︸
a†

)ψν = (a†n̂+ a†)ψν = (ν + 1)a†ψν (251)

Damit
ψν+1 ∝ a†ψν (252)

Normierung, wieder geschickt Null addieren, erinnere [a, a†] = 1

〈a†ψν |a†ψν〉 = 〈ψν |aa†ψν〉 = 〈ψν |(aa† − a†a+ a†a)ψν〉
= 〈ψν |(a†a+ 1)ψν〉 = 〈ψν |(n̂+ 1)ψν〉 =

= (ν + 1)〈ψν |ψν〉 > 0

Somit gilt für normierte ψν und ψν+1

ψν+1 =
1√
ν + 1

a†ψν (253)
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Iteriere

ψν =
1√
ν
a†ψν−1 =

1√
ν!

(a†)νψ0 (254)

Merke: Mit a† geht es die Leiter eins hoch Termin8

• Behauptung: aψν ist Eigenfunktion von n̂ zum Eigenwert ν − 1

Beweis:
n̂aψν = (an̂+ n̂a− an̂︸ ︷︷ ︸

−a

)ψν = (an̂− a)ψν = (ν − 1)aψν (255)

Damit
ψν−1 ∝ aψν (256)

Normierung:

〈aψν |aψν〉 = 〈ψν |a†aψν〉 = 〈ψν |n̂ψν〉 = ν〈ψν |ψν〉 (257)

ν = 0 hatten wir schon oben, Gl. (247)

Für ν ≥ 1

ψν−1 =
1√
ν
aψν (258)

Merke: Mit a geht es die Leiter eins runter

• Behauptung: Mit ψν , ν = 0, 1, 2, . . . sind alle Eigenfunktionen gefunden

Beweis durch Widerspruch:

Nehme an, es gäbe einen Eigenwert ν = n+ α mit 0 < α < 1 und n ∈ N

n̂ψν = (n+ α)ψν (259)

Dann folgt mit Gl. (255)
n̂(anψν) = α(anψν) (260)

und

n̂(an+1ψν) = (α− 1)(an+1ψν) (261)

Norm von an+1ψν existiert, aber α− 1 ist negativ. Widerspruch zur Positivität
der Eigenwerte
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• Zusammengefasst:

Ĥ =

(
n̂+

1

2

)
(262)

Zustand n E
Grundzustand ψ0 0 ~ω/2
1. angeregter Zustand ψ1 = a†ψ0 1 3~ω/2
2. angeregter Zustand ψ2 = (a†)2ψ0 2 5~ω/2
...

...
...

En =

(
n+

1

2

)
, n = 0, 1, 2, . . . (263)

• a† erhöht Energieeigenwert um ~ω =⇒ Erzeugungsoperator eines Energiequan-
tums

a erniedrigt Energieeigenwert um ~ω =⇒ Vernichtungsoperator eines Energie-
quantums

– a† und a zentral in der Quantenfeldtheorie

– Dort werden auch die Felder quantisiert

– Felder haben Moden, das sind im wesentlichen harmonische Oszillatoren

– Diese können angeregt, erzeugt, und abgeregt, vernichtet werden.

– Stichwort: Zweite Quantisierung

• Berechnung der Wellenfunktionen, Faktoren unterdrückt

ψν =
1√
ν
a†ψν−1 =

1√
ν!

(a†)νψ0 (264)

– Grundzustand: Von oben

ψ0 ∝ e−x
2/2 (265)

– Erster angeregter Zustand

ψ1 ∝ a†ψ0 ∝
(
x− d

dx

)
e−x

2/2 = xe−x
2/2 − (−xe−x2/2) = 2xe−x

2/2 (266)
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– Zweiter angeregter Zustand

ψ2 ∝ a†ψ1 ∝
(
x− d

dx

)
2xe−x

2/2 = (4x2 − 2) e−x
2/2 (267)

– Allgemein
ψn ∝ Hn(x) e−x

2/2 (268)

Mit den Hermite-Polynomen Hn(x)

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

Fingerübungen damit als Übung

– In aller Schönheit:

Eigenfunktionen des harmonischen Oszillators

ψn(x) =
1
√
x0

π−1/4

√
2nn!

Hn

(
x

x0

)
exp

(
− x2

2x2
0

)
(269)

Abbildung 5.7: Eigenfunktionen des harmonischen Oszillators
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5.4.2 Nullpunktsenergie

• Analog zum Potentialtopf: Klassisch ist niedrigste Energie des harmonischen
Oszillators: E = 0

Quantenmechanisch: E = ~ω
2

• Berechnung des Unschärfeprodukts ∆x∆p

• Mittelwert und Varianz des Ortes

〈x〉 = 〈ψn|xψn〉 ∝ 〈ψn|(a+ a†)ψn〉 ∝ 〈ψn|ψn−1〉+ 〈ψn|ψn+1〉 = 0 (270)

und

(∆x)2 = 〈x2〉 =
~

2ωm
〈ψn|(a2 + aa† + a†a︸ ︷︷ ︸

=2n̂+1

+a†2)ψn〉 = x2
0(n+ 1/2) (271)

• Analog für den Impuls

〈p〉 ∝ 〈ψn|(a− a†)ψn〉 = 0, (∆p)2 = 〈p2〉 =
~2

x2
0

(n+ 1/2) (272)

Aus Unschärferelation

(∆x)2(∆p)2 = 〈p2〉〈x2〉 ≥ ~2

4
(273)

folgt Ungleichung für Energie

E = 〈H〉 =
〈p2〉
2m

+
mω2

2
〈x2〉 ≥ 〈p

2〉
2m

+
mω2

2

~2

4

1

〈p2〉
(274)

• Ableitung nach 〈p2〉 liefert Bedingung für Minimum

1

2m
− mω2~2

8

1

〈p2〉2min

!
= 0 (275)

Somit:

〈p2〉min =
m~ω

2
(276)
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Für die Energie gilt

E ≥ m~ω
4m

+
mω2~2

8

2

m~ω
=

~ω
2

(277)

Ergo: Nullpunktsenergie ist der kleinste Energiewert, der mit der
Unschärferelation vereinbar ist.

5.4.3 Vergleich mit klassischem harmonischem Oszilllator

• Für große Werte von n ist die Wellenfunktion ψn(x) an den Rändern größer als
in der Mitte

• Das entspricht klassischem Fall

• Berechnung der klassischen Aufenthaltswahrscheinlichkeit

x(t) = A sinωt,
dx

dt
= ωA cosωt (278)

Mit A2 cos2 ωt+ A2 sin2 ωt = A2

dx = ωA cosωt dt = ω
√
A2 − A2 sin2 ωt dt = ω

√
A2 − x(t)2 dt (279)

oder

dt =
dx

ω
√
A2 − x(t)2

(280)

• Mit Periode T = 2π
ω

folgt für relative Zeitspanne, die das Teilchen während
einer Periode im Intervall dx ist, Faktor 2 für hin und zurück

dt

T
=

dx

π
√
A2 − x(t)2

(281)
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Abbildung 5.8

Lessons learned:

• Quantenmechanische Dispersion: freie Wellenpakete zerfliessen

• Tunneleffekt als Wellenphänomen

• Diskrete Energien im Potentialtopf und beim harmonischen Oszillator

• Jeweils Nullpunktsenergien in Übereinstimmung mit der Unschärferelation

• Harmonischer Oszillator: (Nicht-hermitesche) Erzeugungs- und Vernichtungs-
operatoren werden wichtig in Quantenfeldtheorie

• Harmonischer Oszillator und klassischer Grenzfall

6 Drehimpuls

• In ≥ 2 Dimensionen zusätzlich zu Translation auch Rotation. Speziell wichtig
für Atomphysik.
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• Klassischer Drehimpuls

~L = m~r × ~v = ~r × ~p (282)

• Rotation in x-y -Ebene

Lz = xpy − ypx (283)

6.1 Der quantenmechanische Drehimpuls

Betrachte Lz

• Korrespondenz-Prinzip: Ersetze die klassischen Impulse durch die entsprechen-
den Operatoren

p̂x =
~
i

∂

∂x
, p̂y =

~
i

∂

∂y
(284)

• Damit Operator L̂z

L̂z =
~
i

(
x
∂

∂y
− y ∂

∂x

)
(285)

• Entsprechend

L̂x =
~
i

(
y
∂

∂z
− z ∂

∂y

)
, L̂y =

~
i

(
z
∂

∂x
− x ∂

∂z

)
(286)

Kommutatoren

• Kommutator [L̂x, L̂y] = L̂xL̂y − L̂xL̂y

L̂xL̂y = −~2

(
y
∂

∂z
− z ∂

∂y

)(
z
∂

∂x
− x ∂

∂z

)

= −~2

y ∂

∂z
z︸︷︷︸

=1+z ∂
∂z

∂

∂x
− y ∂

∂z
x
∂

∂z
− z ∂

∂y
z
∂

∂x
+ z

∂

∂y
x
∂

∂z


= −~2

(
y
∂

∂x
+ yz

∂

∂z

∂

∂x
− yx ∂

2

∂z2
− z2 ∂

∂y

∂

∂x
+ zx

∂

∂y

∂

∂z

)
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und

L̂yL̂x = −~2

(
z
∂

∂x
− x ∂

∂z

)(
y
∂

∂z
− z ∂

∂y

)
= −~2

(
zy

∂

∂x

∂

∂z
− z2 ∂

∂x

∂

∂y
− xy ∂

2

∂z2
+ x

∂

∂y
+ xz

∂

∂z

∂

∂y

)

• Damit Kommutator

[L̂x, L̂y] = L̂xL̂y − L̂xL̂y

= −~2

(
y
∂

∂x
− x ∂

∂y

)
= i~

~
i

(
x
∂

∂y
− y ∂

∂x

)
= i~L̂z

• Entsprechend

[L̂y, L̂z] = i~L̂x
[L̂z, L̂x] = i~L̂y

Dies impliziert Unschärferelationen

Da die L̂i nicht kommutieren, kann immer nur eine Komponente des Drehim-
pulses scharf gemessen werden.

• Wie in Klassischer Mechanik: Drehungen um verschiedene Achsen vertauschen
nicht

Termin9
Betrachte Quadrat des Drehimpulsoperators L̂2

• L̂2:

L̂2 = ~̂L · ~̂L = L̂2
x + L̂2

y + L̂2
z (287)

• Es gilt

[L̂2, L̂x] = [L̂2, L̂y] = [L̂2, L̂z] = 0 (288)

• L̂2 und L̂i kommutieren. Daher können L̂2 und einer der L̂is simultan diago-
nalisiert und ohne Unschärfe gemessen werden.
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• Alle Kommutator-Relationen gelten auch für den Spin von Elementarteilchen,
siehe Kap. 8

Kugel- und Zylinder-Koordinaten

• Azimutwinkel φ: 0 ≤ φ ≤ 2π

• Polarwinkel θ : 0 ≤ θ ≤ π

• Radius r:
√
x2 + y2 + z2

Abbildung 6.1

• Kugelkoordinaten:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

• Zylinderkoordinaten in x-y-Ebene

x = r cosφ

y = r sinφ

z = z

mit r =
√
x2 + y2
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Berechnung von L̂z in Zylinderkoordinaten

• Ausgangspunkt: L̂z in kartesischen Koordinaten

L̂z =
~
i

(
x
∂

∂y
− y ∂

∂x

)
(289)

• Für Funktion f(x, y) = f(x(φ), y(φ)) gilt

df

dφ
=
∂f

∂x

∂x

∂φ
+
∂f

∂y

∂y

∂φ
(290)

• Mit

∂x

∂φ
= −r sinφ = −y

∂y

∂φ
= r cosφ = x

folgt
∂f

∂φ
= −y∂f

∂x
+ x

∂f

∂y
(291)

und damit
∂

∂φ
= x

∂

∂y
− y ∂

∂x
(292)

Folglich, L̂z in Zylinder- (und Kugel-) Koordinaten:

L̂z =
~
i

∂

∂φ
(293)

• Übung: Zeige, dass in Kugelkoordinaten gilt:

L̂2 = −~2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

)
(294)

Übung: Auf Grund von welchem mathematisch-intuitiven Argument kommu-
tieren L̂2 und L̂z ?
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6.2 Eigenfunktionen von L̂z

Betrachte Eigenwert-Gleichung von L̂z, Beispiel für Quantisierung

•
L̂zψ(φ) =

~
i

∂

∂φ
ψ(φ) = λψ(φ) (295)

• Lösung durch Hingucken

ψ(φ) = Ae
i
~λφ (296)

• Es muss gelten

ψ(φ+ 2π) = e
i
~λ2πψ(φ) = ψ(φ) (297)

Dies führt zur Quantisierung:

e
i
~λ2π = 1 = ei2πm → i

~
λ2π = i2πm, m = 0,±1,±2, . . . (298)

• Damit Eigenwerte λ und Eigenfunktionen ψm von L̂z

λ = m~, m = 0,±1,±2, . . .

ψm(φ) = Ame
imφ

Energie der zweidimensionalen Bewegung

• Klassische Formel der Rotationsenergie in der x-y-Ebene

H =
L2
z

2mr2
=

1

2I
L2
z, I = mr2 das Trägheitsmoment (299)

Siehe Analogie zur freien Bewegung: E = p2

2m

• Quantenmechanisch:

Ĥ =
1

2I
L̂2
z (300)

• Eigenwertgleichung:
1

2I
L̂2
z ψ = E ψ (301)

Aus
L̂z ψ = m~ψ (302)
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folgt

L̂2
z ψ = m2~2 ψ (303)

• Ergo: Die Eigenfunktionen ψ(φ) von L̂z sind auch Eigenfunktionen von Ĥ mit
den Eigenwerten

Em =
~2

2I
m2 (304)

Merke:

• Drehimpuls-Eigenfunktionen sind auch Energie-Eigenfunktionen

• Zustände mit m 6= 0 sind zweifach entartet, die beiden Eigenfunktionen ent-
sprechen den entgegengesetzen Drehsinnen

• Aufenthaltswahrscheinlichkeit im Drehimpulseigenzustand ist |ψm(φ)|2 =
|Am|2, damit unabhängig von φ =⇒Kenntnis von Drehimpuls schließt Kenntins
des Winkels aus.

• Unschärferelation

Winkeloperator Φ̂
Φ̂ψ(φ) = φψ(φ) (305)

Damit Kommutator
[Φ̂, L̂] = i~ (306)

und Unschärferelation

6.3 Eigenfunktionen von L̂2

• Die Eigenwert-Gleichnung des Operators L̂2 ergibt:

L̂2 Ylm(θ, φ) = ~2l(l + 1)Ylm(θ, φ), l ≥ 0 (307)

mit

L̂2 = −~2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

)
(308)

79



• Ergebnis

Ylm(θ, φ) =

(
2l + 1

4π

l − |m|!
l + |m|!

)1/2

P
|m|
l (cos θ) eimφ

Pm
l (x) = (1− x2)m/2

dm

dxm
Pl(x)

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l

mit

l = 0, 1, 2, . . . Drehimpulsquantenzahl

m = −l, . . . , 0, . . . , l magnetische Quantenzahl

und

– Ylm(θ, φ) : Kugelflächenfunktionen

– Pm
l (x) : Legendre-Funktionen

– Pl(x) : Legendre-Polynome

Übung zu Legendre-Polynomen

• Es gilt
Yl,−m(θ, φ) = Y ∗lm(θ, φ) (309)

und
L̂zYlm(θ, φ) = m~ Ylm(θ, φ) (310)

Ylm sind Eigenfunktionen von L̂z und L̂2. Das geht & muss so sein, da L̂z und
L̂2 kommutieren.

• Drehimpulseigenfunktionen Ylm bilden orthonormales und vollständiges System
von Eigenfunktionen∫ 2π

0

dφ

∫ 1

0

d cos θ Y ∗lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ (311)

• Quantenmechanischer Drehimpuls wird durch die Quantenzahlen l und m be-
schrieben:

– l legt Betrag des Drehimlupses fest: L2 = l(l + 1)~2
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– m legt Projektion auf z-Achse fest: Lz = m~
– Beispiel l = 2

L

~
=
√

2(2 + 1) =
√

6, m = −2,−1, 0, 1, 2 (312)

Abbildung 6.2

Das ergibt folgende Eigenfunktionen

• l = 0, m = 0 liefert Y00 = 1/
√

4π

Kugelförmige Wellenfunktion, genannt s-Orbital. Radialabhängigkeit nächstes
Kapitel
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Abbildung 6.3

• l = 1, m = 0 liefert Y10 =
√

3/4π cos θ

Das pz-Orbital

Abbildung 6.4
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• l = 1, m = ±1 liefert Y1,±1 = −
√

3/8π sin θe±iφ

Durch Linearkombination zu reellen Orbitalen

− 1√
2

(Y11 + Y1,−1) =

√
3

4π
sin θ cosφ px −Orbital

− 1√
2

(Y11 − Y1,−1) =

√
3

4π
sin θ sinφ py −Orbital

Abbildung 6.5

Energie der drei-dimensionalen Rotation

• Klassisch

H =
1

2mr2
L2 =

1

2I
L2 (313)

Ergibt quantenmechanisch

Ĥ =
1

2I
L̂2 (314)

• Eigenfunktionen Ylm sind also auch Eigenfunktionen der Schrödinger-Gleichung
für die drei-dimensionale Rotation

ĤYlm =
~2

2I
l(l + 1)Ylm (315)

Die Energieeigenwerte

El =
~2

2I
l(l + 1) (316)
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hängen nicht von m ab, sind damit unabhängig von Orientierung von ~L zur
z-Achse

• Wegen m = −l, . . . , 0, . . . l gibt es zu jedem Eigenwert 2l + 1 Eigenfunktionen,
El ist 2(l + 1)-fach entartet

Rotationsspektroskopie

• Durch elektromagnetische Strahlung der Energie ~ω, Bereich Mikrowellen,
können Übergänge zwischen benachbarten Rotationsniveaus induziert werden

~ω = El+1−El =
~2

2I
(l+1)(l+2)− ~2

2I
l(l+1) =

~2

I
(l+1), l = 0, 1, 2, . . . (317)

Absorptionsspektroskopie: Aus einer Richtung kommend, in alle Richtungen
abstrahlen

• Rotationsspektrum weist äquidistante Linien bei

~ω =
~2

I
, 2

~2

I
, 3

~2

I
, . . . (318)

auf

Damit läßt sich Trägheitsmoment I eines Moleküls bestimmen

Lessons learned:

• [Lx, Ly] = i~Lz und zyklisch

• [Li, L
2] = 0, simultan diagonalisierbar, gleichzeitig scharf messbar, gleiche

Eigenfunktionen

• Eigenfunktionen von L2 sind die Kugelflächenfunktionen

Termin10
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7 Wasserstoffatom

7.1 Hamiltonian

• Vom Zweikörper-Problem zum Einkörper-Problem

– Schwerpunkts- und Relativbewegung separieren

– Reduzierte Masse, im wesentlichen unverändert

• Klassischer Hamiltonian

H =
p2

2m
− e2

4πε0

1√
x2 + y2 + z2

(319)

Quantenmechanisch:

Ĥ = − ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− e2

4πε0

1√
x2 + y2 + z2

(320)

• Da V nur vom Radius |r| abhängt, gehe in Kugelkoordinaten.

Damit

V (r) = − e2

4πε0

1

r
(321)

• Operator für kinetische Energie T̂ in Kugelkoordinaten:

T̂ = − ~2

2m

(
1

r

∂

∂r
r

)2

− ~2

2mr2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

)
(322)

Merke: In Kugelkoordinaten ist Berechnung des Potentials einfacher, Berech-
nung der kinetischen Energie aber schwieriger.

• Mit

L̂2 = −~2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

)
(323)

folgt

T̂ = − ~2

2m

(
1

r

∂

∂r
r

)2

+
L̂2

2mr2
= T̂r +

L̂2

2mr2
(324)
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Tr: Kinetische Energie der Radialbewegung

L̂2

2mr2
: Kinetische Energie der Winkelbewegung, erinnere Zentrifugalbarriere

• Somit

Ĥ = T̂r +
L̂2

2mr2
− e2

4πε0

1

r
(325)

7.2 Lösung der Schrödinger-Gleichung

• Löse
Ĥψ(r, θ, φ) = E ψ(r, θ, φ) (326)

Eigenfunktionen von Term L̂2

2mr2
bekannt: Kugelflächenfunktionen Ylm

• Separationsansatz:
ψ(r, θ, φ) = R(r)Ylm(θ, φ) (327)

Damit (
Tr + V (r) +

L̂2

2mr2

)
R(r)Ylm(θ, φ) = E R(r)Ylm(θ, φ) (328)

• Mit
L̂2

2mr2
R(r)Ylm(θ, φ) =

~2 l(l + 1)

2mr2
R(r)Ylm(θ, φ) (329)

folgt (
Tr + V (r) +

~2 l(l + 1)

2mr2

)
R(r)Ylm(θ, φ) = E R(r)Ylm(θ, φ) (330)

Teile durch Ylm(θ, φ), ergibt Radialgleichung(
− ~2

2m

(
1

r

∂

∂r
r

)2

+
~2 l(l + 1)

2mr2
+ V (r)

)
R(r) = E R(r) (331)

eine gewöhnliche Differentialgleichung 2. Ordnung
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• Transformation:

R(r) =
u(r)

r
(332)

Technische Rechnung ergibt die übliche Form der eindimensionalen
Schrödinger-Gleichung(

− ~2

2m

d2

dr2
+ Veff(r)

)
u(r) = E u(r) (333)

mit dem effektiven Potential der Radialbewegung

Veff(r) = − e2

4πε0

1

r
+

~2 l(l + 1)

2m

1

r2
(334)

ganz in Analogie zur Klassischen Mechanik mit abstoßendem Zentrifugalterm

Abbildung 7.1

Lange technische Rechnung ergibt:
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• Energie-Eigenwerte:

En = −Ry
1

n2
, n ∈ N (335)

mit Rydberg-Konstante

Ry =
µe4

32π2ε20~2
= 13.67eV, µ =

mpme

mp +me

(336)

Kugelsymmetrie: Energie-Eigenwerte unabhängig von m

SO(4) Symmetrie des 1
r
-Potentials Energieeigenwerte auch unabhängig von l

• Eigenfunktionen :

Rnl = (αnr)
l e−αnr/2 L2l+1

n−l (αnr), αn =
2

na0

(337)

mit Bohr’schem Atomradius a0

a0 =
4πε0~2

me2
= 5.2917 · 10−11m ≈ 0.5Å (338)

und den Laguerre-Polynomen

Lsm(x) =
m−s∑
k=0

(−1)k+s (m!)2

k!(k + s)(m− k − s)
xk (339)

• Struktur der Radial-Wellenfunktionen: Rnl(r) ∝ e−r · Polynom(r) mit n− l−1
Nullstellen

Radiale Wahrscheinlichkeitsdichte: r2R2
nl(r)
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Abbildung 7.2

• Man zeigt leicht
〈r〉 ∝ n2, für große n (340)

• Konvention: Eigenfunktionen zu l = 0, 1, 2, 3 werden als s-, p-, d- und f-Orbitale
bezeichnet

• Insgesamt:

ψnlm(r, θ, φ) = AnlRnl(r)Ylm(θ, φ) (341)

mit Normierungsfaktor Anl

Anl =

(
(n− l − 1)!α3

n

2n((n+ l)!)3

)
(342)

• Aus Normierungsfaktor folgt, beachte: 0! = 1

n− l − 1 ≥ 0, resp. l ≤ n− 1 (343)

Damit ergibt sich für die Quantenzahlen
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n l m Entartungsgrad
1 0 0 1
2 0 0

1 0, ±1 4-fach
0 0

3 1 0, ±1 9-fach
2 0, ±1, ±2

4 . . . . . . 16-fach

Für den Entartungsgrad gn gilt:

gn =
n−1∑
l=0

(2l + 1) = n2 (344)

Spektroskopie am Wasserstoffatom

• Spektroskopie misst Energiedifferenzen zwischen Zuständen

EPhoton = ~ω = ∆EAtom = Ei − Ef (345)

folgt

~ω = Ry

(
− 1

n2
i

+
1

n2
f

)
(346)

• Wichtigste Fälle

nf = 1 ni = 2, 3, . . . Lyman-Serie im UV
nf = 2 ni = 3, 4, . . . Balmer-Serie im Sichtbaren
nf = 3 ni = 4, 5, . . . Paschen-Serie im Infrarot

Die Serien waren lange vor der Quantenmechanik experimentell bekannt

Abschlußbemerkungen:

• Dass es drei Quantenzahlen gibt, sollte nicht überraschen, da es sich um ein
drei-dimensionales Problem handelt

• Wie gehabt: Grundzustand mit Unschärferelation verträglich

90



• Klassischer Grenzfall: Es lassen sich ”kohärente” Wellenpakete konstruieren,
die lokalisiert sind und dem 3. Kepler’schen Gesetz T 2 ∝ r3 gehorchen

• Korrekturen

– Feinstrukturkonstante:

α =
e2

~c
≈ 1

137
(347)

– Relativistische Korrekturen ergeben Feinstruktur, Stichworte: Darwin-
Term und Spin-Bahn-Kopplung. Effektgröße: α2

– Quantenfeldtheorie: Lamb-Verschiebung. Effektgröße: α3 logα

– Wechselwirkung Elektron und Kernspin: Hyperfeinstruktur. Effektgröße:
me/mK ≈ 1/1500

Abbildung 7.3

– Theorie und Experiment: Beliebig gute Übereinstimmung
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Lessons learned:

• Separationsansatz nach Winkeln und Radius

• Winkelanteil aus L̂2 Eigenfunktionen

• Lösung Radialgleichung technisch

• Quantisierung der Hauptquantenzahl n aus Radialgleichung

• Hauptquantenzahlen sind entartet

• l-Entartungen werden durch relativistische, quantenfeldtheoretische und
Kernspin-Effekte aufgehoben.

• m-Entartungen durch externes Magnetfeld, Zeeman-Effekt

Termin11

8 Spin

• Stern-Gerlach Versuch: Elektron hat ”inneren Drehimpuls”, genannt Spin, der
nur die Werte +~/2 (spin up) und −~/2 (spin down) annehmen kann

• Beachte: Bahndrehimpuls war mit ~ l(l + 1) ganz-zahlig

• Spin ist messbar, es muss also einen selbstadjungierten Spinoperator ~S =
(Sx, Sy, Sz) geben, der ein Drehimpulsoperator ist.

• Sei ~e Einheitsvektor, so gilt

~S · ~e |~e,±〉 = ±~
2
|~e,±〉 (348)

Sei o.B.d.A: ~e = ~ez. Bezeichnungsweise

|~ez,±〉 =:

{
| ↑〉
| ↓〉 (349)

• Eigenwertgleichung für Sz lautet dann:
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Sz

(
| ↑〉
| ↓〉

)
=

~
2

(
+| ↑〉
−| ↓〉

)
=

~
2

(
1 0
0 −1

)(
| ↑〉
| ↓〉

)
=

~
2
σz

(
| ↑〉
| ↓〉

)
(350)

mit der Pauli-Spinmatrix σz

σz =

(
1 0
0 −1

)
(351)

• Für Spin s = 1
2

hat S2 den Eigenwert 3
4
~2

S2| ↑〉 = ~2s(s+ 1)| ↑〉 =
3

4
~2 | ↑〉 (352)

• Da Sz hermitesch, sind die zu verschiedenen Eigenwerten gehörenden Zustände
| ↑〉 und | ↓〉 orthogonal

〈↑ | ↓〉 = 0 (353)

Normierung auf 1
〈↑ | ↑〉 = 〈↓ | ↓〉 = 1 (354)

• Bestimmung der Pauli-Spinmatrizen σx und σy

Mit Leiteroperatoren

S± = Sx ± iSy, entsprechend Sx =
1

2
(S+ + S−) Sy =

1

2i
(S+ − S−) (355)

folgt mit l = 1
2

und m = ±1
2

S+| ↑〉 = 0, S−| ↑〉 = ~ | ↓〉 (356)

S+| ↓〉 = ~ | ↑〉, S−| ↓〉 = 0 (357)

Damit Darstellung der Spinoperatoren in der Basis der Zustände | ↑〉 und | ↓〉

S± =

(
〈↑ |S±| ↑〉 〈↑ |S±| ↓〉
〈↓ |S±| ↑〉 〈↓ |S±| ↓〉

)
(358)
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Mit Gln. (356, 357) folgt

S+ = ~
(

0 1
0 0

)
, S− = ~

(
0 0
1 0

)
(359)

und damit mit Gl. (355) und ~S = ~
2
~σ die Pauli-Spinmatrizen

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(360)

Spinoren

• Allgemeiner Spinzustand, ein Spinor, | 〉 in Basis {| ↑〉, | ↓〉}

| 〉 = a+| ↑〉+ a−| ↓〉, a+, a− ∈ C, mit |a+|2 + |a−|2 = 1 (361)

• Darstellung des allgemeinen Zustandes | 〉 durch Spinor χ, dessen Komponenten
sich durch Projektion auf Basissystem ergeben

χ =

(
a+

a−

)
, a+ = 〈↑ | 〉, a− = 〈↓ | 〉 (362)

Polarisation von Photonen

• Photonen haben Spin 1, Spin 1 ist normaler Weise 3-komponentig

• Da Licht transversale Welle, geht ein Freiheitsgrad verloren

• Den jeweils zwei mal drei Möglichkeiten von Spin 1
2

Teilchen entspricht

– Horizontal / vertikal, entspricht Eigenzuständen zu σz

|h〉 =

(
1
0

)
, |v〉 =

(
0
1

)
(363)

– ±45◦ polarisiert, entspricht Eigenzuständen zu σx

|+ 45◦〉 =
1√
2

(
1
1

)
=

1√
2

(|h〉+ |v〉)

| − 45◦〉 =
1√
2

(
1
−1

)
=

1√
2

(|h〉 − |v〉)
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– rechts/links zirkular polarisiert, entspricht Eigenzuständen zu σy

|R〉 =
1√
2

(
1
i

)
=

1√
2

(|h〉+ i|v〉)

|L〉 =
1√
2

(
1
−i

)
=

1√
2

(|h〉 − i|v〉)

Lessons learned:

• Spin rein quantenmechanisches Phänomen

• Bahndrehimpuls immer ganzzahlig

• Spin halbzahlig

• Photonen, obwohl Spin 1, äquivalent zu massiven Spin 1
2
-Teilchen

9 Vielteilchen Systeme

9.1 Symmetrie der Vielteilchenwellenfunktionen

Betrachte zunächst unterscheidbare Teilchen
Dann Gesamtwellenfunktion Produkt der Ein-Teilchenzustände:

ψ(r1, r2) = φa(r1)φb(r2) (364)

In Quantenmechanik Ununterscheidbarkeit fundamental

• Betrachte zwei ununterscheidbare Teilchen mit Gesamtwellenfunktion ψ(r1, r2)
und Permutionsoperator P̂ :

P̂ψ(r1, r2) = ψ(r2, r1) (365)

Nochmalige Anwendung:

P̂ψ(r2, r1) = ψ(r1, r2) (366)
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damit
∀ψ : P̂ 2ψ(r1, r2) = ψ(r1, r2) =⇒ P̂ 2 = 1 (367)

Folglich hat P̂ Eigenwerte λ = ±1. Zudem ist [P̂ , Ĥ] = 0

• Gemeinsame Eigenzustände zu Ĥ und P̂ definieren offensichtlich zwei Arten
von Teilchen

• Spin-Statistik Theorem10, Pauli, 1940

– Bosonen, Spin ganz-zahlig, S = 0, 1, . . ., besitzen eine symmetrische Viel-

teilchenwellenfunktion: ψS = P̂ψS
Besetzungszahlen können alle Werte 0, 1, . . .∞ annehmen

– Fermionen, Spin halb-zahlig, S = 1
2
, 3

2
, . . ., besitzen eine anti-symmetrische

Vielteilchenwellenfunktion: ψA = −P̂ψA
Besetzungszahlen können die Werte 0, 1 annehmen

Zusammenfassend:
P̂ψ(r1, r2) = (−1)2Sψ(r2, r1) (368)

Folge: Reiner Produktansatz

ψ(r1, r2) = φa(r1)φb(r2) (369)

geht für ununterscheidbare Teilchen nicht durch.

• (Anti)symmetrisierung:

ψS(r1, r2) =
1√
2

(φa(r1)φb(r2) + φa(r2)φb(r1))

ψA(r1, r2) =
1√
2

(φa(r1)φb(r2)− φa(r2)φb(r1))

Folge: Pauli-Prinzip: Für identische Einteilchen-Wellenfunktionen verschwindet
die antisymmetrische Gesamtwellenfunktion

φa = φb =⇒ ψA = 0 (370)

Zwei Elektronen können nicht im selben Zustand sein. Hierbei ist der Spin zu
berücksichtigen.

Beispiel Wasserstoffatom

10Leseempfehlung: R.F. Streater, A.S. Wightman. PCT, Spin and Statistics, and All That
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• Bosonen können fütr T → 0 alle in den Grundzustand gehen:
Bose-Einstein Kondensation. Makroskopischer Quantenzustand

• Verallgemeinert auf N Teilchen

9.2 Dichtematrix

Reine Zustände

• Bisher haben wir nur reine Zustände |ψ〉 betrachtet. Diese lassen sich
durch Wellenfunktionen beschreiben, z.B. ”Elektron befindet sich in Zustand
|n, l,m〉”

• Viele Teilchen mit Zustand |ψ〉: Reine Gesamtheit oder Reines Ensemble

• Beachte: Die Superposition von zwei reinen Zuständen gibt wieder einen rei-
nen Zustand, d.h. lässt sich wieder durch Wellenfunktion |φ〉 = a|ψ1〉 + b|ψ2〉
beschreiben.

• Definition: Sei |n〉 ein vollständiges Orthonormalsystem. Dann ist die Spur der
Matrix M definiert als

Sp (M) =
∑
n

〈n|M |n〉 (371)

Spur ist unabhängig von der Basis, im Eigenvektorsystem von M besonders
anschaulich

• Definition Dichtematrix11 ρ für reine Zustände:

ρ := |ψ〉〈ψ| (372)

• Für Observable A kann Erwartungswert 〈A〉 mit Dichtematrix berechnet wer-
den. Sei |n〉 Orthonormalsystem. Trick: Einschieben der Eins

〈A〉 = 〈ψ|A|ψ〉 =
∑
n

〈ψ|A|n〉〈n|ψ〉

=
∑
n

〈n|ψ〉〈ψ|A|n〉

=
∑
n

〈n|ρA|n〉 = Sp (ρA)

11Eigentlich Dichteoperator, wird in einer Basis zur Matrix
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Es gilt

Sp ρ = 1 :
∑
n

〈n|ψ〉〈ψ|n〉 =
∑
n

〈ψ|n〉〈n|ψ〉 = 〈ψ|ψ〉 = 1

ρ2 = ρ : |ψ〉〈ψ|ψ〉〈ψ| = |ψ〉〈ψ|

Für reine Zustände ist das reine Spielerei

Gemischte Zustände oder Gemischte Gesamtheit oder Gemischtes Ensemble

• Betrachte Ensemble von N Teilchen, von denen sich Ni im Zustand |ψi〉 befin-
den

• Wahrscheinlichkeit, das sich ein zufällig herausgegriffenes Teilchen im Zustand
|ψi〉 befindet, ist

pi =
Ni

N
,
∑
i

pi = 1 (373)

• Gemischter Zustand lässt sich nicht durch Wellenfunktion beschreiben

@ |φ〉 mit |φ〉 =
∑
i

pi|ψi〉 (374)

aber durch eine Dichtematrix

• Definition Dichtematrix ρ für gemischte Zustände:

ρ :=
∑
i

pi|ψi〉〈ψi| :=
∑
i

piρi (375)

Es gilt wieder 〈A〉 = Sp (ρA):

〈A〉 =
∑
i

pi〈ψi|A|ψi〉 =
∑
i

∑
n

pi〈ψi|A|n〉〈n|ψi〉

=
∑
i

∑
n

〈n|piψi〉〈ψi|A|n〉

=
∑
n

〈n|ρA|n〉 = Sp(ρA)

Es gilt immer noch
Sp ρ = 1 (376)
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aber nun

ρ2 6= ρ und Sp ρ2 < 1, falls pi 6= 0 für mehr als ein i (377)

Beweis 1. Aussage:

Wähle Operator A = 1

ρ2 =
∑
i

∑
j

= |piψi〉〈ψi|pjψj〉〈ψj| =
∑
i

∑
j

= pipj|ψi〉〈ψi|ψj〉〈ψj| 6= ρ (378)

Beweis der 2. Aussage:

Sp ρ2 =
∑
n

∑
ij

〈n|piψi〉〈ψi|pjψj〉〈ψj|n〉

=
∑
n

∑
ij

pipj〈ψi|ψj〉〈ψj|n〉〈n|ψi〉

=
∑
ij

pipj|〈ψi|ψj〉|2 <
∑
i

pi
∑
j

pj = 1

Es gilt: Sp ρ2 ist zeitunabhängig
Beweis: Zyklische Invarianz der Spur, erinnere Zeitentwicklungsoperator U(t, t0) =

exp
(
− i

~Ĥ(t− t0)
)

und Unitarität U †U = 1

Sp ρ2(t) = Sp Uρ(t0)U †Uρ(t0)U † = Sp ρ2(t0) (379)

Damit folgt: Einmal rein, immer rein. Einmal gemischt, immer gemischt
Merke:

• Unterscheidung reiner und gemischter Zustand an Hand von ρ2
=
6=ρ und Sp ρ2

=
<1

• Auch für Dichtematrix Dynamik analog zur Schrödinger-Gleichung

• Dichtematrix-Formalismus allgemeiner als Wellenfunktion, da sich gemischte
Zustände nicht durch Wellenfunktionen, wohl aber durch Dichtematrizen be-
schreiben lassen.

Beispiel
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• Reiner Zustand: Betrachte Zwei-Niveau-System, z.B. Spin, mit | ↑〉 und | ↓〉

• Befindet sich System in einem der Zustände, gilt für Wellenfunktion und Dich-
tematrix

|ψ〉 = | ↑〉 → ρ = | ↑〉〈↑ | =
(

1 0
0 0

)
oder |ψ〉 = | ↓〉 → ρ = | ↓〉〈↓ | =

(
0 0
0 1

) (380)

• Kohärente Superposition der Zustände, z.B.:

|ψ〉 =
1√
2

(| ↑〉+ | ↓〉)→ ρ =

(
1/2 1/2
1/2 1/2

)
(381)

ergibt wieder einen reinen Zustand, da ρ2 = ρ und Sp ρ2 = 1.

• Gemisch der Zustände mit p1 = p2 = 0.5 ergibt

ρ =
1

2
| ↑〉〈↑ |+ 1

2
| ↓〉〈↓ | =

(
1/2 0
0 1/2

)
(382)

ρ2 =
1

4
(| ↑〉〈↑ | ↑〉〈↑ |+ | ↓〉〈↓ | ↓〉〈↓ |+ | ↑〉〈↑ | ↓〉〈↓ |+ | ↓〉〈↓ | ↑〉〈↑ |)

=
1

4
| ↑〉〈↑ |+ 1

4
| ↓〉〈↓ | = 1

2
ρ 6= ρ

• Off-Diagonalelemente des reinen Zustands in Gl. (381) beschreiben die
Kohärenz zwischen | ↑〉 und | ↓〉, die im Gemisch nicht existiert.

• Last not least: Es gibt keine Wellenfunktion, die die Dichtematrix des gemisch-
ten Zustands ergeben würde.

Termin12

9.3 Verschränkte Zustände

Übergang von Ein-Teilchen zu N -Teilchen Fall
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• Klassische Mechanik:

Zustandsraum ist Phasenraum (q, p)

Phasenraum von N Teilchen ist das kartesische Produkt der Einteilchen-
Phasenräume, für zwei Teilchen: (q1, q2, p1, p2)

Dimensionen addieren sich

• Quantenmechanik:

Zustandsraum ist Hilbertraum, ein Vektorraum.

Für Vektorräume ist Produktraum für N Teilchen das Tensorprodukt der Aus-
gangsvektorräume

Beispiel: Zwei Spin 1 Teilchen

| − 1〉 |0〉 |1〉 und | − 1〉 |0〉 |1〉
Basis:

| − 1〉| − 1〉 =: | − 1,−1〉, | − 1, 0〉, | − 1, 1〉
|0,−1〉, |0, 0〉, |0, 1〉
|1,−1〉, |1, 0〉, |1, 1〉

Dimensionen multiplizieren sich

Führt zu verschränkten Zuständen, die gleich relevant werden

Lessons learned

• Ununterscheidbarkeit quantenmechanischer Teilchen hat Konsequenzen:

– Bosonen: symmetrische Wellenfunktionen

– Fermionen: anti-symmetrische Wellenfunktionen

• Dichtematrix als allgemeine Beschreibung quantenmechanischer Zustände

• Verschränkte Zustände auf Grund des Tensorproduktes
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10 Einstein-Podolsky-Rosen – Paradoxon

Übung: Fassen Sie EPR paper stichwortartig zusammen

10.1 Theorien verborgener Parameter

Natürliche Erwartung an eine physikalische Theorie

• Lokal, die 1.: keine Informationsübertragung schneller als Lichtgeschwindigkeit

• Lokal, die 2.: Messung am Orte A sollte Messung am Orte B zu gleicher Zeit
in keiner Weise beeinflussen

• Deterministisch: Zustand gibt eindeutiges Messergebnis

• Real: Theorie und Realität in 1 zu 1 Verhältnis

Klassische Physik:

• Alles im grünen Bereich

Quantenmechanik:

• Lokal, die 1.: O.K.

• Lokal, die 2.: Wir werden sehen

• Deterministisch: Nein

• Real: Nein, Wellenfunktion

Theorien verborgener Parameter

• Klassische Statistische Physik von 1023 Teilchen

– Im Prinzip alle (deterministischen) Trajektorien ermittelbar

– Aber: Praktisch nicht machbar und inhaltlich nicht relevant

• Übertragung auf die Quantenmechanik

– Es gibt eine zu Grunde liegende lokale, deterministische, reale Theorie,
die die individuellen Messergebnisse festlegt

– Nur kennen wir sie nicht
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– Beispiel: Spin-Messung

Quantenmechanik: Bei Messung von Sx im Eigenzustand Sz: Für jedes
Teilchen 50 % Wahrscheinlichkeit für ±~/2
Theorie verborgener Parameter legt für jedes Teilchen vorher fest, ob +~/2
oder −~/2 resultiert, so dass in je 50 % der Fälle ±~/2 vorkommt

Einstein, Podolsky, Rosen ” Can12 Quantum-Mechanical Description of Physical Rea-
lity Be Considered Complete ?”, 1935, modernisiert für Photonen von Bohm, 1951

• Betrachte 2 Spin 1/2 Teilchen im (verschränkten) Singulett-Zustand

ψEPR =
1√
2

(| ↑〉| ↓〉 − | ↓〉| ↑〉) (383)

Präparation:

– Spin 1/2 Teilchen: Zweiatomigen Molekül mit Gesamtspin 0 mit Laser in
2 Spin 1/2 Teilchen zerschießen

– Polarisierte Photonen: Parametrische Fluoreszenz von nichtlinear opti-
schen Kristallen. Aus einem Photon der Energie E werden zwei ver-
schränkte der Energie E/2

• Teilchen bewegen sich von einander weg.

• Misst man die z-Komponenten der Spins und findet bei Teilchen 1 Spin up, so
ergibt sich für Teilchen 2 spin down.

• Misst man stattdessen die x-Komponenten, so impliziert +~/2 bei Teilchen 1
−~/2 bei Teilchen 2

• Messung an einem Teilchen legt Ergebnis für das andere fest, auch wenn die-
ses raum-zeitlich getrennt ist, d.h. keine Information mit Lichtgeschwindigkeit
ausgetauscht werden konnte. Nicht-lokal, die 2.: ”spooky action at a distance”

• Aber: Kein Widerspruch zur speziellen Relativitätstheorie, lokal, die 1., da
keine Information übermittelt werden kann

• EPR: Da Teilchen separiert, kann es keine Beeinflussung der Teilchen geben.
Deshalb müssen die Werte von Sx, Sz, usw. schon vor der Messung festgelegen
haben.

12Fehlender Artikel wird auf schlechstes English des Russen Podolsky zurückgeführt

103



• Forderung nach einer vollständigen, lokalen, deterministischen, realen Theorie
mit verborgenen Parameter

10.2 Bell’sche Ungleichungen

Kausale Inferenz

• Beobachtbar sind nur Korrelationen

• Von Korrelationen auf Kausalitäten schließen geht nicht

• Aber man kann auf Grund von Korrelationen bestimmte Kausalstrukturen aus-
schließen: Kausale Inferenz

Zwei widerstreitende Theorien

• Einigt Euch auf ein Experiment

• Berechnet Vorhersagen basierend auf den beiden Theorien

• Am Ende entscheidet das Experiment :-)

Quantenmechanische Vorhersage:

• Messung Spinkomponente Sz1 des ersten Teilchens in z-Richtung

Messung Spinkomponente Sφ2 des zweiten Teilchen in Winkel φ zur z-Achse

• Falls erste Messung +~
2

ergibt, ist Sz2 notwendiger Weise −~
2
, Spinor:

χ− =

(
0
1

)
(384)

Spinoperator Ŝφ mit Winkel φ zu z-Achse ist gegeben durch, erinnere Pauli-
Spinmatrizen

Ŝφ = Ŝz cosφ+ Ŝx sinφ =
~
2

(
cosφ sinφ
sinφ − cosφ

)
(385)

• Eigenwerte: ±~/2, Eigenvektoren von Ŝφ

| ↑〉 =

(
cos φ

2

sin φ
2

)
, | ↓〉 =

(
− sin φ

2

cos φ
2

)
(386)
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Die φ/2 haben es in sich.

Entwicklung der Wellenfunktion χ− nach Eigenvektoren von Ŝφ(
0
1

)
= sin

φ

2

(
cos φ

2

sin φ
2

)
+ cos

φ

2

(
− sin φ

2

cos φ
2

)
(387)

• Wahrscheinlichkeit, dass nach spin up (+) Messung an Teilchen 1, auch an
Teilchen 2 spin up gemessen wird, ist:

P++(φ) = sin2 φ

2
(388)

Die anderen möglichen Ergebnisse

P+−(φ) = cos2 φ

2
, P−+(φ) = cos2 φ

2
, P−−(φ) = sin2 φ

2
(389)

• Mittelwert des Produktes Sz1Sφ2 : Kovarianzkoeffizient C(φ)

CQM(φ) =
~2

8
(P++(φ)− P+−(φ)− P−+(φ) + P−−(φ))

=
~2

4

(
sin2 φ

2
− cos2 φ

2

)

CQM(φ) = −~2

4
cos(φ) (390)

Vorhersage von Theorien verborgener Parameter

• Parameter λ legt Werte von Sz1 und Sφ2 fest. Beide Teilchen wissen λ lokal

• Jedes Teilchenpaar hat bestimmten Wert von λ. Das einzige, was wir darüber
wissen: ∫

dλ p(λ) = 1 (391)
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• Kovarianzkoeffizient:

Chv(φ) =

∫
dλ p(λ)Sz1(λ)Sφ2(λ) (392)

• Betrachte weiteres Experiment mit Winkel θ zur z-Achse

C(φ)− C(θ) =

∫
dλ p(λ)(Sz1(λ)Sφ2(λ)− Sz1(λ)Sθ2(λ)) (393)

Es gilt
Sφ1(λ) = −Sφ2(λ) (394)

Damit

C(φ)− C(θ) = −
∫
dλ p(λ)Sz1(λ)(Sφ1(λ) + Sθ2(λ))

mit (Sφ1(λ))2 =
~2

4

C(φ)− C(θ) = −
∫
dλ p(λ)Sz1(λ)Sφ1(λ)

(
1 +

4

~2
Sφ1(λ)Sθ2(λ)

)
• Betragsmässige Abschätzung

|C(φ)− C(θ)| ≤
∫
dλ p(λ)|Sz1(λ)Sφ1(λ)|

(
1 +

4

~2
Sφ1(λ)Sθ2(λ)

)
(395)

• Mit |Sz1(λ)Sφ1(λ)| = ~2
4

|C(φ)− C(θ)| ≤
∫
dλ p(λ)

(
~2

4
+ Sφ1(λ)Sθ1(λ)

)
=

~2

4
+

∫
dλ p(λ)Sφ1(λ)Sθ2(λ)

Korrelation hängen nur von relativer Orientierung der Messungen ab, Integral
ergibt: C(θ − φ)

Damit die Bell’sche Ungleichung

|Chv(φ)− Chv(θ)| − Chv(θ − φ) ≤ ~2

4
(396)
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• Folgt notwendig aus jeder lokalen, deterministischen, realen Theorie verborge-
ner Parameter

Vergleich mit Vorhersage der Quantenmechanik. Betrachte Fall: θ = 2φ

• Gl. (390) ergibt:

CQM(φ) = −~2

4
cosφ, CQM(θ) = −~2

4
cos 2φ (397)

In Gl. (396) eingesetzt

~2

4
(| cosφ− cos 2φ|+ cosφ) ≤ ~2

4
(398)

Abbildung 10.1: Bell’sche Ungleichung für QM und eine Theorie verborgener Va-
riablen

• Für 0 ≤ φ ≤ π/2 ist die Ungleichung verletzt, maximale Verletzung bei φ =
π/3, Cosinus-Terme ergeben dort 3/2.

• Ergo: Quantenmechanik im Widerspruch zu verborgenen Parametern

• Tiefer Grund: SU(2) ist die zweifache Überlagerung der SO(3) ... erinnere φ/2

Vergleich mit dem Experiment

• Bell, 1962
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• Freedman, Clauser, 1972: Erster Bericht über Verletzung der Bell’schen Un-
gleichung

• Aspect, 1982: Deutlicher Hinweis auf Verletzung

• Kritik an den Experimenten: Loopholes

– Effizienz der Detektoren

– wirkliche raum-zeitliche Trennung der Detektoren

• Final ausgeräumt Dezember 2015

• Rekord für ”Größe” von verschränktem Zustand > 100 km

Lessons learned:

• Quantenmechanische Messungen stellen Eigenschaften nicht fest, sondern her

• Wir stehen selbst enttäuscht und sehn betroffen
den Vorhang zu und alle Fragen offen

Bertolt Brecht: Der gute Mensch von Sezuan

Das hier war die Schul-Meinung: ”Kopenhagener Interpretation”

Alternative Interpretationen:

• SG ist linear: Nichtlineare Erweiterungen, um Kollaps in die Dynamik mit
aufzunehmen.

• SG ist deterministisch: Stochastische Erweiterungen, um Zufälligkeiten intern
dynamisch zu erklären

• Dekohärenz durch Wechselwirkung: Erklärt Verschwinden von Diagonalelemen-
ten, aber nicht Kollaps der Wellenfunktion

• Viele-Welten Theorie: Jede Möglichkeit wird realisiert.

– Leichte Probleme mit der Energieerhaltung

– experimentell nicht testbar
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– erklärt nicht, warum die Wahrscheinlichkeiten in meinem jeweiligen Uni-
versum richtig hinkommen.

– Intrinsich nicht widerlegbar, bar jeder Plausibilität

• Bohm’sche Interpretation: Am Donnerstag

Termin13
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