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1 Einleitung

Was bisher geschah:
Klassische Mechanik, E-Dynamik, Quantenmechanik haben deterministische Bewe-

gungsgleichungen. Machen die Physik quantitativ und pradiktiv.

And now for something completely different ...

e In der Statistischen Physik werden keine Bewegungsgleichungen, z.B. fiir die
Wiérme, abgeleitet

o Stattdessen: Verstdndnis des kollektiven Verhaltens vieler Teilchen

Beispiele:
e Neue Begriffe wie Temperatur & Druck

Wirkungsgrad von Warmemaschinen

Eis, Wasser, Gas: Phaseniibergénge

Fermionische und bosonische Systeme
e ...
Statistische Physik besteht aus
e Thermodynamik, allerdings nicht sehr dynamisch
e Statistische Mechanik
e Nicht-Gleichgewichtssysteme
e Stochastische Prozesse
Thermodynamik und Statistische Mechanik
e Gleichgewichtszustdnde
e Anzahl Teilchen makroskopischer Systeme ist in der Grokenordnung 10?3

e Orte und Impulse definieren Mikrozustand



Mikroskopische Dynamik ist chaotisch, i.e. nicht periodisch.
Frage: Chaos klar ?

Detailierte Losung der Bewegungsgleichungen hoffungslos ...

e ... und auch sinnlos, Anspielung auf Human Brain Project

Beobachtung: Makrozustand beschreibbar durch wenige Zustandsvariablen wie
Volumen, Druck, Temperatur, Energie

Thermodynamik:
e Theorie von Makrosystemen
e Beschreibt Abhéngigkeiten der Zustandsvariablen
e Beschreibt mogliche Zustandsdnderungen
e Partiell pradiktiv, partiell beschreibend
Statistische Mechanik:
e Stellt Zusammenhang zwischen Mikro- und Makrozustinden her

e Leitet makroskopische Eigenschaften aus mikroskopischen Figenschaf-
ten/Wechselwirkungen ab, Anspielung auf emergentes Verhalten

e Pridiktiv, obwohl statistisch

Bonbon: Es kann keine konsistente konsequent klassische Statistische Mechanik
nicht geben kann, essentiell quantenmechanisch

Stichworte
e Gibbs’sches Paradoxon
e Spezifische Wirme, speziell grofer Molekiile
e Normierung der Zustandssumme

e Planck’sches Strahlungsgesetz



2 Thermodynamische Systeme

Thermodynamisches System:

Eine

Menge von Materie - Gase, Fluide, Festkorper - deren physikalischen Ei-

genschaften eindeutig und vollstindig durch Angabe bestimmter makroskopischer
Variablen beschrieben werden kann.

Ein thermodynamisches System heifst

abgeschlossen oder isoliert, wenn es nichts mit Umwelt austauscht.

Gesamtenergie, Teilchenzahl und Volumen sind erhalten und damit zur Be-
schreibung des Systems geeignet.

Beispiel: Perfekte Thermoskanne

geschlossen, wenn es keine Materie mit Umwelt austauscht.
Energieaustausch ist erlaubt. Temperatur wird wichtige Grosse

Beispiel: Milchtiite

offen, sonst. Austausch von Energie und Teilchen erlaubt.

Chemisches Potential wird wichtige Grofe
homogen, wenn es in allen Bereichen gleich ist

inhomogen, wenn es verschiedene Phasen aufweist

Beispiel: fliissige und gasférmige Phase

Workhorse der Thermodynamik: Das ideale Gas

Zustandsgrofen sind makroskopische Variablen, die den Zustand des Systems cha-

rakterisieren.
Beispiele: Volumen, Energie, Entropie, Temperatur, Druck

Sie sind wegunabhingig, hingen nicht davon ab, wie das System in seinen
Zustand gekommen ist

extensiv: proportional zur Systemgrofe

Beispiele: Volumen, Energie

intensiv: unabhéngig von Systemgrofe

Beispiele: Temperatur, Druck



Thermodynamische Zustandsgleichungen

stellen Beziehungen zwischen Zustandsgrofsen dar

werden in der Thermodynamik meist empirisch bestimmt

haben eingeschrinkten Giiltigkeitsbereich

Systematische Ableitung in der Statistischen Mechanik

Thermodynamischer Limes:

N
N — o0, V — o0, V:p: const,.

Thermodynamisches Gleichgewicht:

e Die (makroskopischen) Zustandsgrofen dndern sich nicht.

e Die Mikrozustiande natiirlich dauernd.

3 Der 1. Hauptsatz der Thermodynamik

3.1 Thermodynamische Zustandsgleichungen

Thermische Zustandsgleichung setzt p, V', 7' und N in Beziehung

e Beispiel: Ideales Gas

— Boyle (1664) und Mariotte (1676): pV = const. fiir T = const.

— Gay-Lussac: (1802): ¥ = const. fiir p = const.

Zusammen, siche Ubung:

Vv
p? = const. « N, da extensiv

ergibt Gasgleichung:

pV = NET oder p=pkT



mit Boltzmann-Konstante

J
k=1.38-1072=
K

Gilt fiir geringe Driicke, geringe Dichte, hohe Temperaturen und im thermody-
namischen Limes

e Beispiel: Reales Gas

Ideales Gas vernachléssigt:

— Eigenvolumen b der Teilchen

V=V —-Nb

Kleiner Effekt

— Attraktive Wechselwirkung der Teilchen bewirkt Druckminderung ppinnen

Proportional zur quadrierten Dichte : (%)2

N 2
Pideal = Preal T Pbinnen, P —> P+ (V) a

Relevanter Effekt
— Ergibt van der Waals Gleichung (1873), siche Ubung

<p+ <g)2a> (V — Nb) = NkT

Systematische Herleitung in Statistischer Mechanik

Kalorische Zustandsgleichung: Eine Energiegleichung

Betrachte Ideales Gas in abgeschlossenem System:

e Im thermischen Gleichgewicht dndern sich die Geschwindigkeiten der Teilchen
standig

e Aber im Mittel werden immer gleich viele Teilchen in einem Geschwindigkeits-
kubus d3v vorliegen



Geschwindigkeits-Verteilung f(v) &ndert sich nicht
Es gilt [*_ f(¢¥)d*v =1 und Anzahl dN von Teilchen im Kubus d®v

dN = N f(v)d*v

Druck entsteht durch Impulsiibertrag bei Reflexion an Wénden

Sei x—Achse senkrecht zu Wand-Flachenelement O, Impulsiibertrag: 2muw,

Frage: Wieviele Teilchen mit Geschwindigkeit ¢ treffen in dt auf O ?

vpdt

Anzahl der Teilchen in Parallelepiped

dv
dN = N<- f(@)d*v

mit dV/V Bruchteil des Volumens des Epipeds vom Gesamtvolumen mit dV =
Ov,dt

Damit Kraftstofs dFp auf Flache O

, Odt
dFpdt = 2mv.dN = 2Nmv? f(ﬁ)cz%O7

"Kiirze” dt und sammele alle Teilchen mit positiver Geschwindigkeit v, auf:

1 N oo o0 oo
p= 5/dFOIV/O dvx/_oodvy/_oodvzf(ﬁﬂmvz
8



Beachte: f(7) kann nicht von Richtung von ¢ abhéngen, nur von ||

Folge:
Damit

Integral: Mittlere quadradratische Geschwindigkeit senkrecht zur Fliche

Wegen Isotropie

/_ T Puf (0 = (2 = () = (0?)

Wegen
0? =0l + vl + vl
gilt
(02) = ()
x 3
und

1 2
pV = mNg(Uz) = §N<€km>, (€gin) : mittlere kinetische Energie eines Teilchens

Mit pV = NkT und E = N{€;,) erhalten wir

E = -NET

Beachte: f(¥) muss nicht bekannt sein

Temperatur erklart sich aus kinetischer Energie
Terminl4



3.2 Mathematisches Vorspiel

e Erinnere Taylorentwicklung
f(l’) = f(.%o) + f/<l'0)(l' — .Z'o) + ...
oder infinitesimal: df (x) = f'(x)dx

e Mehr-dimensionaler Fall

0 0
df (z,y) = 8_£' dm—i—a—gjj dy
y

xT

Beschreibt Tangentialebene

e Definition: Das totale (oder vollstandige oder exakte) Differential einer diffe-
renzierbaren Funktion ist

mit

f ist Stammfunktion von F

e Wegintegral iiber F hangt nur von Anfangs- und Endpunkt ab, aber nicht vom
Integrationsweg.

e Beispiel: Arbeit W an_’Teilchen entlang einer Kurve C' von #; nach 75 in kon-
servativem Kraftfeld F'(¥) mit Potential V()

W:/Cﬁ(f = /vv di = =V (73) + V(71)

o Test auf Exaktheit:

Sei f(x,y) zweimal differenzierbare Funktion mit

df(x,y):a—fdx+% y:<§z)~(g‘;):ﬁ-df

10



Es gilt der Satz von Schwarz

*f  Of
oxdy  Oydx
oder
or, _ or,
or Oy

Damit: Drehe es herum. Gehe von beliebigem Differential und damit F(Z) aus
und teste, ob es exakt ist.

e Beispiele:

— In 1-D ist jedes Differential trivial exakt

— Betrachte
F - d7 = ydr + zdy
Dann gilt
F
OF, — % =1-1=0
oy ox
und das Differential ist exakt
— Betrachte .
F.dZ = yrds + 2* dy
Es folgt
oF, O0F,
——2 = —2r=— 0
dy ox ¢ z7

und das Differential ist nicht exakt.

e Nicht-exakte Differentiale:

— Wegintegral hiangt vom Weg ab

— werden mit 0 f bezeichnet

11



e In drei Dimensionen

F, dx .
df = | F, dy | =F-d¥
F, dz

rotF =0 = df ist vollstédndiges Differential

e Integrierender Faktor

— Trick, aus einem nicht-exakten Differential ein exaktes zu machen

— Betrachte zweites Beispiel und erginze %
1 2
- (yz dr + x dy)
x

— Es folgt

oF. _or, _
oy or

1-1=0

ein exaktes Differential.
- % ist der integrierende Faktor fiir nicht exaktes Differential yx dx + 22 dy

— Siehe Ubung

3.3 Innere Energie und Temperatur, 0. Hauptsatz

Ein isoliertes System erhélt die Gesamtenergie.
Diese innere Energie U ist

e die Summe aller Energien

e cine Zustandsgrobe

e extensiv

e im allgemeinen in Bezug auf ihre Anderung interessant

Beispiel: Ideales Gas
U==-NkT

12



e Der 0. Hauptsatz: Es gibt eine intensive Zustandsvariable Temperatur 7', so
dass sich Systeme genau dann miteinander im thermischen Gleichgewicht be-
finden, wenn sie den selben Wert von T aufweisen.

e Bei einem isolierten System ist die innere Energie identisch mit der aus Me-
chanik und Elektrodynamik bekannten Gesamtenergie.

e Fiir nicht-isolierte Systeme kommt noch Arbeit und/oder Wéarmeaustausch hin
zZu.

3.4 Arbeit

e Die innere Energie U ist im isolierten System erhalten.

e U dndert sich aber bei Interaktion mit Umgebung.

Betrachte Kolben, der mit Kraft F, auf System driickt

| 0

ds |

—
~

Im Gleichgewicht: ﬁa = —F’i
Verschiebe Kolben um ds

—

SW =F,-ds=—F,-ds

Vorzeichenkonvention:

— System leistet Arbeit, Energie wird abgefiihrt: 6 < 0
— Am System wird Arbeit geleistet, Energie wird zugefiihrt: 6/ > 0

13



Da F,||d5 und dV = Ads, folgt

F
—Ads = pdV

F; - ds
T

und somit:

OW = —pdV, beachte: dV < 0

Beachte: Die Arbeit ist keine Zustandsgrofe

Beispiel: Kompression eines Gases
ViV Vo<Vy
Va
AW = — / p(V)dV
Vi

Proof by examples:

e Isotherme Kompression

N = const., T = const.

Mit
pV = NET
p(V) = NTkT
AW = —/V2 MdV
vw Vv
= NkT log (%)

14



PA

5
\
<

e Isobare Kompression

N = const., p=py= const.

Vo
AW = —/ podV = —po(Vs — V)

\%1

PA

5

=
\

<

e Ergo: AW hingt vom Vorgehen ab.

15



Es gilt:
e Die Groke X ist genau dann eine Zustandsgrofe, wenn sie ein vollstdandiges

Differential dX besitzt.
1. week

Weitere Beispiele fiir Arbeit

e Anderung der elektrischen Ladung ¢ im elektrischen Potential ¢

SW = dg

Widerstand des Systems gegen Zufiihrung weiterer Ladung analog zu Druck
als Widerstand gegen Kompression

e Anderung der Teilchenzahl N, mit chemischem Potential s

oW = pdN

Widerstand gegen Zufiihrung von weiteren Teilchen

e SV ist immer ein Produkt aus einer intensiven und einer extensiven Zustands-
grobe, Energie-konjugierte Variablen

e Alle Arten von Arbeit kénnen (im Prinzip) ineinander iiberfiihrt werden

Integrierender Faktor revisited:

e O kein exaktes Differential

oW = —pdV
e 1/p ist integrierender Faktor
1
dV = —=6W
p

16



3.5 Warme

Antoine Laurent de Lavoisier (1787) Kalorische Theorie: Wirme als Substanz

e Ein weiteres Element, nicht zu erzeugen, nicht zu vernichten

e Unsichtbar

e Gewichtslos

e Selbstabstofiend, darum gleichen sich Temperaturunterschiede aus

e Lockerung der Molekiile durch Ansammlung der kalorischen Substanz fiihrt
zum Schmelzen /Verdampfen

e Widerlegung der Theorie: Sir Benjamin Thompson, Graf Rumford (1789) Ge-
genbeispiel: Reibung (beim Bohren von Kanonen)

Mayer (1845):
Wiirme ist eine Form der Energie(dnderung), keine Zustandsgrofe.

Definition:
0@ ist die Warmemenge, die eine Temperaturdnderung einer Substanz von d7" bewirkt

5Q = C(T)dT

mit C, der totalen Warmekapazitit der erwidrmten Substanz

e ( ist extensive Grofe, da 6Q) extensiv und dT intensiv

e Zur Charakterisierung einer Substanz besser intensive Grofe:

c=— spezifische Warme(kapazitét)

oder
Ny . N -
cp = WC’ molare spezifische Warme(kapazitét)

mit Avogadro-Konstante Ny =~ 6 - 10 die Anzahl der Teilchen pro Mol (12 g
ClQ)

17



Cy und C,

e Wirmekapazitdt hingt von Prozessfilhrung ab, p = konstant (C,) oder V =

konstant (Cy)

o Allgemeinen gilt C}, > CYy, da bei p = const. auch Volumenausdehnungsarbeit

geleistet werden muss

e Betrachte ideales Gas bei V' = const. und Temperaturdanderung d7T’

dU = dQ = 6Q = CydT

Dann gilt

Ideales Gas:

Cv

Cy

3.6 Der 1. Hauptsatz

Terminlb

Ein System, das mit Umgebung Arbeit 6/W und Wiarme 0@) austauscht, verindert

seine innere Energie U nach

dU = §W + 6Q

Vorzeichenkonvention:
e 0() > 0 : dem System zugefiihrte Warme
e 0() <0 : vom System abgegebene Wirme

e 0 > 0 : dem System zugefiihrte Arbeit

18



e O < 0 : vom System abgegebene Arbeit
Beachte:
e Energieerhaltung

Innere Energie U ist eine Zustandsgrdfe

e dU damit ein vollstindiges Differential
e O und 0Q) im allgemeinen pfadabhingig, keine vollstindigen Differentiale
e Interpretation: Es gibt kein Perpetuum mobile (sich stdndig Bewegendes)
1. Art, d.h. keine Maschine, die nichts anderes macht als Arbeit zu leisten
e Seit 1775: Franzosische Akademie der Wissenschaften nimmt keine Vorschlige
mehr an
Anwendung:

Betrachte Zustandsgleichung des idealen Gases

pV = NkT
e Im folgenden N konstant.

e 3 Variablen: p, V und T

Hélt man jeweils eine konstant, ergeben sich drei mogliche Prozesse.
e 4. Prozess: Adiabatischer Prozess mit 6QQ=0
Ausgangspunkt: 1. Hauptsatz mit U(V,T")
ou ou
AU = | = | dV — | dT
(aV)T (o) y

Betrachte ideales Gas

3
U = SNkT
2
o = b
pV = NkT

19



e V =1} = konstant. Isochore Zustandsinderung

Experiment: Erhitzen von Gas in geschlossenem Gefaft von T} nach T;

(Vo, p1, Th) A—%? (Vo, p2, T2)
In Abhéngigkeit von Anderung von T
dU = 0Q —p d_V =0Q =dQ = CydT

=0

Ts
AU = UQ—Ul :/ Cvdeov(Tg—T1> :AQ

T

In Abhingigkeit von Anderung von p
Mit T; = % folgt:

Cv Vi
AU = ]1\/%0 (pz —p1)
Merke :
AU =AQ = Cyv(Tr — T1) (1)

e p = po = konstant. [sobare Zustandsinderung
AQ, AW
Vi,po, T1) — =" (Va,po, T2)

Experiment: Gefafs mit flexibler masseloser Abdeckung unter Luftdruck

dU = 6Q + oW

Va
AW = —/ podV = —po(Vs — V1)

Vi

T Cypo
T

Damit Warmeéanderung;:

AQ:AU—AW:pO(%—i—l)(Vz—Vl)

20



Mit

NET;
‘/7; ey
Po
folgt
AQ = (Cy + Nk)(Ty — Tv)
Merke:

— AQ ist wegen Ausdehnungarbeit im isobaren Fall grofier als in isochoren,
Gl (1).
— Fiir ideales Gas gilt

C’p:C’VJrNk:gNk

T =Ty = konstant. Isotherme Zustandsdnderung

AQ, AW
Vi, p1, To) S48 (Va, o, Th)

Experiment: Expansion in Gefafl im Warmebad

U = gNkTO%AU:()

& Vv Va
AW = — [ p(V)dV = =NkT, | —+ = —NkTylog | —= | = NkTylog
" w Vv Vi
V5
AQ = —AW = NkT,log 7
1

0QQ—0. Adiabatischer Prozess, kein Warmeaustausch

Experiment: Isoliertes Gefaf

(V1>Z71>T1) A—V>V (V27p27T2)

Mit
dU = W+ 6Q =0W =dW
~—~

=0

dU = CydT
NET
AW = —pdV:—%dV

21
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folgt:

N
%dT = —7kdv
2 qr V2 qv
— = —Nk -
CV/TI T /V %
Ty Vy
log [ =) = —Nklog| —=
Cv Og(T1> kOg(‘G)

Entsprechend, mit Hilfe der Gasgleichung: Die Adiabaten-Gleichungen:

(§>5/2:22 ]2:<E)5/3
Ty p1 D2 Vi

pV-Adiabaten (Isentropen) verlaufen mit pV>/3 = const. steiler als Isothermen
mit pV = const.

Lessons learned

e Iiir ideales Gas gilt:

oV = NkT, U= gNkT, Cy = gNk:

e Wirme ist kein Stoff

Warme und Arbeit sind keine exakten Differentiale

Innere Energie ist exaktes Differential und damit erhalten

Adiabaten verlaufen steiler als Isothermen

22



Die d-Zoologie': 9, d, §, A

e O: partielle Ableitung

e d: exaktes Differential

_Of 401
df (z,y) axdaz+aydy
mit
’f  9*f
0xdy  Oyox

e J: nicht exaktes Differential

6f(x,y) = g(z,y)dx + h(z,y)dy

mit
0y , o
dy "~ Ox
e A: Endliche Anderung
Va
AW = av....
1

4 Der 2. Hauptsatz der Thermodynamik

Extremalprinzipien in der Physik:

e Klassische Mechanik: Minimierung der Wirkung, Hamilton’sches Prinzip,
Euler-Lagrange Gleichungen

e Optik: Fermat’sches Prinzip: Kiirzeste optische Weglange
e Dissipatives mechanisches System: Minimierung der Energie

e Globales als ob” vs. lokales "what’s next”

! Auch als Deologie bezeichnet

23



e Was ist Extremalprinzip fiir Ausdehnung eines Gases 7

Beachte: Fiir ideales Gas dndert sich hierbei die innere Energie nicht

e Allgemein: Gibt es ein Extremalprinzip, das fiir die Einstellung eines Gleich-
gewichtes "verantwortlich” ist 7

4.1 Reversible und irreversible Prozesse

e Beobachtung: Im isoliertem System laufen Zustandsdnderungen "von selbst”
“spontan” ab, bis Gleichgewichtszustand erreicht ist. Diese Art von Anderungen
sind irreversibel, d.h. kehren sich von selbst nicht um.

Beispiele:

— Aus der Thermodynamik:

% Ausdehnung eines Gases von kleinem in grosses Volumen

24



x Temperaturausgleich
— Aus der Mechanik: Pendel mit Reibung

Spontane Umkehrung ist nie beobachtet wurden. Ist aber energetisch (1. Haupt-
satz) moglich

Aber beachte: Tropfen Wasser genau in Mitte eines Wasserglases, Spinecho
Eigenschaften von irreversiblen thermodynamischen Prozessen:

— Irreversible Prozesse laufen iiber Nichtgleichgewichtszustinde ab

— Zustandsgrofen, z.B. p, haben wihrend des Prozesses keine global defi-
nierten Werte. Es gibt rdumliche Inhomogenitéten

— Klar machen an Ausdehnung von kleinem in grosses Volumen

Reversible Prozesse laufen iiber Gleichgewichtszustinde

— Idealisierung: Ist System im Gleichgewicht, passiert nix
— Zustandsgrofen haben zu jedem Zeitpunkt definierte Werte.

— Totale Anderung der Zustandsgrofen kann iiber Integration bestimmt
werden.

Realistische Ndherung: Quasi-reversible Prozesse

— Infinitesimale, langsame quasi-statische Anderung der Zustandsgréfen

— "Langsam”: Anderung langsamer als Relaxationszeit des Systems

VA VA

25



Beispiel: Isotherme Expansion

Irreversible Prozessfithrung (Graphik ist suboptimal, bessere Graphik in Vorlesung)

e Abrupte Wegnahme des Gewichtes, zur Seite stellen

e Gas dehnt sich (turbulend) auf Volumen V5 aus (minimalstes Restgewicht)

p27‘/2

e Es wird keine Arbeit geleistet, 6W = 0.

e Prozess irreversibel, da zur Seite gelegtes Gewicht nicht nach oben hiipfen kann
Reversible Prozessfiihrung

e Verkleinere Masse schrittweise um dM und hebe Massestiicke an entsprechen-
der Hohe auf

e Mache dies so langsam, dass System stets im (Quasi-)Gleichgewicht bleibt

>

p27‘/2

26



e System leistet Arbeit

VQ V2
AW = —/ pdV = —NkT/ % = —NkT log (%)

Vi 1% 1
e Prozess reversibel, da man Massenstiicke dM sukzessive wieder auflegen kann.
Der 1. Hauptsatz gilt unabhéngig von Prozessfiihrung

e Damit
dU = 5W7"ev + 5@7‘61} = 5VV1'7‘7‘ + 5@1’7‘7‘

e [xpansion
5Wirr > 5Wrev = _pdv
0Qirr < 0Q,e, = siehe Kap. 4.3
e Beachte: W = pdV gilt nur bei reversibler Prozessfiihrung

e Bei reversibler Prozessfithrung wird am meisten Arbeit verrichtet (Expansion),
bzw. am wenigsten bendotigt (Kompression)

e Beiirreversibler Prozessfithrung wird Teil der Arbeit in (Ab-)wéirme verwandelt

e Wieder einmal:
OW und 6@ héngen von der Prozessfithrung ab.

Sie kénnen daher keine Zustandsgréften sein

Der 1. Hauptsatz reicht zur Beschreibung irreversibler Prozesse nicht aus, da
er sie nicht verbietet:
Es braucht weitere Zustandsgrofbe

Terminl6
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4.2 Carnot’scher Kreisprozess

Betrachte Kreisprozess

e Arbeitsmedium wird nach Reihe von Zustandsinderungen wieder in Ausgangs-
zustand gebracht
% dU =0

o Es gilt

Carnot’scher Kreisprozess (1824)
e Beispiel fiir Warmekraftmaschine
e Arbeitsmedium: Ideales Gas

e Besteht aus zwei isothermen und zwei adiabatischen Prozessen

P A A adiabatisch

B

isotherm

Y

\Y
Die vier Prozesse:
e A — B: Isotherme Expansion, T = T),
AUsg = 0
Vi VB
AQAB = —AWAB = / pdV = N]{?Th log (—) >0
Va Va

System verrichtet Arbeit, AQ g wird aus dem Warmebad aufgenommen.
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e B — (' Adiabatische Expansion, AQgc =0

ﬂ_ E 2/3
T, \ Vo

System verrichtet Arbeit und kiihlt ab. Geleistete Arbeit wird der inneren
Energie entnommen

T;
AUBC = AWBC = / CvdT = C\/(T‘l — Th) <0

Th

e C — D: Isotherme Kompression , T'="T;, AUcp =0

v
AQcp = —AWep = NET; log (%) <0
C

Arbeit wird zugefithrt, Warme ans Warmebad abgegeben
e D — A: Adiabatische Kompression, AQps =0

T, (Vb 2/3
T \Va
AUDA = AWDA = Cv(Th — T‘l) >0
Dem System wird Arbeit zugefiihrt

Energiebilanz:

4
AUsotal = Z AU i1 =Cv(l,—Ty)+Cy(T, = 1) =0

i=1

modulo 4

Gliick gehabt ! :-)

Wairme und Arbeit:

\%

AQaz = NkTylog <—B) >0 (2)
Va
Vb

AQCD = NKT, lOg — | <0 (3)
Ve



o Mit - 3/2 . .
(LYt

) Vo W
folgt
Vi
AC?i&otal = Nk IOg VA (Th - n) >0 (4)

e Wiérme wird zugefiihrt

e Und damit wegen AU =0

AWiotal = —=AQ1otar < 0
Arbeit wird verrichtet.
e Eine Maschine, die Warme in Arbeit umwandelt !
Aber wie gut ?

e Wirkungsgrad n: Der in Arbeit umgewandelte Teil der aufgenommenen Wérme

y = | AWiotai _ AQap + AQcp 4 AQcp T -
AQap AQap AQap T

Wirme kann nie vollstdndig in Arbeit umgewandelt werden.

e Ubung: Man kann zeigen: Im beliebigen Kreisprozess bildet Gl (5) obere
Schranke fiir 7

e Beispiel Warmekraftwerk:
T, = 800K, T; = 300K

300K 5
ideal — l———==-%=60
Mlideal 800K 8 %

Nreal =~ 45%
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4.3

Thermodynamische Definition der Entropie

GL (4): Wie zu erwarten: () im Carnot-Prozess keine Zustandsgrofe
Aus Gl. (2, 3) folgt aber

A A
Qap 4 Qcp

=0
T T

Zerlege den Prozess in infinitesimal kleine Teilstiicke, so folgt:

5@7‘61}_
7{ 7 Y

ist der integrierende Faktor, der aus dem nicht-exakten Differential 6@, ., ein
xaktes und damit eine Zustandsgréfe macht !

D Nl

Man kann zeigen:

- % ist fiir jeden reversiblen Kreisprozess ein exaktes Differential, Ubung ?

— Ebenso fiir jeden reversiblen thermodynamischen Prozess

Ergo: Es muss eine Zustandsvariable geben, die durch

5@7“51} ZustandB 5@7’61}
dS = , Sp—8S4= /
T o ZustandA T

definiert ist
Die Grofe S heifst Entropie, Clausius (1865)

— Kunstwort aus ev = in und 7porn = Verwandlung: Entropie

— "Da die Entropie ebenso wichtig ist, soll sie auch so &hnlich heissen wie
die Energie”

— "Wandlungspotential”, misst "Energieentwertung”

— Damit wird auch "Isentrope” bei adiabatischer Zustandsinderung klar

Carnot-Maschine im S-T Diagramm
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A

e Fiir reversible Prozesse gilt

. 5@7‘81}

as a

e S ist extensiv

e Bei irreversibler Prozessfiithrung gilt

6Qirr < 5@7‘6’0 =TdS
e Fiir mikroskopischen Zugang zur Entropie, der Vortrag am Do. 21.7

Entropie des idealen Gases in Abhéngigkeit von 7" und V'

e Sei N = const.

e 1. Hauptsatz
dU =TdS — pdV

mit Zustandsgleichungen

U= ;Nk;T, pV = NkT
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e Damit 1. Hauptsatz aufgelost nach d.S

3 dl av
s = §Nk? + Nkv

Startend von Zustand (7p, Vo) mit Entropie Sy, integriere auf

(7))

3 T Vv
S(T, V) — So(To, Vo) = §Nk:log?0 +Nk10g70 = Nklog

(6)
Ergebnis: Entropie nimmt mit 7" und V' zu

e Betrachte (irreversible) freie Ausdehnung eines idealen Gases von kleinem in
grosses Volumen in geschlossenem System

— Thermisch isoliert: AQ =0

— Volumenerhéhung: AV > 0

— Es wird keine Arbeit verrichtet: AW =0

1. Hauptsatz: AU = 0. Ideales Gas: U = U(T'), damit AT =0
Aber Entropiednderung

V;
AS = S(T,Vi,N) — S(T,Vy, N) = Nk:logvl >0
0

6Qrev
T

— Erster Hinweis: Entropie auch jenseits von

()" ()]

wichtig
e In Abhéngigkeit von (7', p)

S(T,p) — So(Tv, po) = Nklog

e Da Entropie extensiv muss gelten

S(T,p) = Nk (SO(T()’ZJO) + log

E .] . ] S . . C] P] .]
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4.4 Der 2. Hauptsatz
e Clausius (1850)

e Betrachte abgeschlossenes System, es gilt

5Qirr < (SQrev =TdS

e Im Gleichgewicht:

6Q’iTT == 5@7”@1} - 0 :> dS — O

Ergo: Die Entropie ist in einem abgeschlossenen System im Gleichgewicht ex-
tremal.

Minimum oder Maximum 7

e Betrachte ein zusammengesetztes, insgesamt isoliertes System

A1 AQ

Ty #Tg
t < 0: Subsysteme seien isoliert

t > 0: Subsysteme gehen ins thermische Gleichgewicht

e Da
Uy + Upg = const. = dUy = —dUp

Mit
AUy = 0Q + oW =dQ = TxdSx
dUB = TBdSB
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e Entropie ist extensiv:

dUy dUp
S Sy +dSg T + T

1 1
ds = dUg|—— —
B(ﬂs @J
Die Entropie ist nicht erhalten !

— Fir Tg > T4: Warme fliefst von B nach A — dUg < 0 — dS > 0
— Fir T < T4: Warme fliefst von A nach B — dUg > 0 — dS > 0
Ist Ty # Tp lauft spontaner Prozess ab und es gilt dS > 0

Ist Ty = Tg: Thermisches Gleichgewicht und dS = 0

2. Hauptsatz:
In einem abgeschlossenen System im thermischen Gleichgewicht gilt:
dS =0, S =mazrimal

Fiir spontane Prozesse gilt:
as >0

Entropie definiert {iber ein Extremalprinzip den Gleichgewichtszustand.

Alternative Formulierungen
e Clausius: "Es gibt keinen thermodynamischen Prozess, der ausschlieflich Wir-

me von einem kilterem in ein warmeres Reservoir Uiberfiithrt. Es existiert keine
ideale Kaltemaschine”
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T

TQ T2>T1

Ty

Beweis:

— Da Gesamtsystem keine Arbeit leistet noch Warme austauscht, kann es
als abgeschlossen betrachtet werden.

— Sei Tl < TQ
— Dann: 50 50
dSl - —?1, dSQ - ?2
Damit 50 50 T
dS =dS; +dSy = ——=2 + = =§Q —2
S 81 + SQ Tl T2 Q T1T2 <0
Widerspruch

— Beachte: Warme vom warmeren zum kilteren Reservoir fliessen lassen
geht :-)

e Kelvin: "Es gibt keinen periodischen? thermodynamischen Prozess, der aus-
schliefllich Wirme in Arbeit verwandelt. Es existiert keine ideale Warmekraft-
maschine”

oder

Planck: "Es gibt kein Perpetuum mobile 2. Art: Periodisch arbeitende Maschine,
die Warme zu 100 % in Arbeit umwandelt und speichert”

2periodisch ist wichtig, einzelne Prozesse kénnen das. Erinnere isotherme Expansion
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Beweis:

- AQ . AW :
Wérme Maschine Speicher

e Nach einem Arbeitszyklus

AUy = AQ +AW =0
>0 <0

AUptar = AQ + AW =0

1. Hauptsatz ist erfiillt

Betrachte 2. Hauptsatz
Nach einem Arbeitszyklus:

ASiotar = ASp+ ASy +ASs >0

A
ASB = —TQ <0
ASy = 0
ASs = 0

— AStotal < O

Widerspruch zum 2. Hauptsatz

+ Mit Entropie lautet der 1. Hauptsatz fiir reversible Zustandsdnderungen:

AU = 6Qrep + 0Wiew = TdS — pdV + udN + . ..

Analogie:

Entropie fiir Austausch von Warme entspricht Volumen bei Kompressionsarbeit
gegen Druck

e "Wirmewertigkeit”
Fir Ty > T gllt
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4.5

Wiérme bei hoherer Temperatur ist "mehr wert” als bei niedriger.

An Beispiel Sonne => Erde => Weltraum klarmachen

3. Halb-
woche
Fundamentalrelationen
Betrachte Kombination von 1. Hauptsatz mit Entropie-Definition fiir reversible
Prozesse
AU = 0Q ey, + OW,ey =TdS — pdV + pudN
Innere Energie U in Abhéngigkeit der extensiven Zustandsgrofen S, V, N.
S, V, N werden als die natiirlichen Variablen der inneren Energie bezeichnet
Mit
dU = 8_U ds + 6_U av + 8_U dN
oS VN oV SN ON )y g
ergeben sich die intensiven Zustandsgrofsen
ou ou oU
TS, V,N)=|=— S,V,N)=— | =— SV.N)=[=—2
( ) ) ) (aS)VJV) p( ) Y ) (av)SJV? [j’( Y ) ) (aN)‘/,S
(8)

Die Kenntins von U(S,V, N) bestimmt das thermodynamische System kom-
plett

Daher wird

dU = TdS — pdV + udN (9)

auch als Fundamentalrelation oder Gibbs’sche Fundamentalform bezeichnet.
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Entropie-Darstellung

e Umstellen der Fundamentalrelation nach dS liefert Fundamentalrelation in der
Entropie-Darstellung

1
dﬂammsz+§w>%m7 (10)

08 a8 08
s = == £ o N
(o), () (),

—r — —
/T p/T —u/T

mit
T=T(UV,N), p=pUV,N), p=upUV,N)
e U,V N sind die natiirlichen Variablen der Entropie

Zustandsgleichungen revisited

e Zustandsgleichungen: Relationen, die im Gleichgewicht zwischen den thermo-
dynamischen Variablen eines Systems bestehen

e Bestimmungsgleichungen der intensiven Zustandsvariablen Gl. (8) liefern
Zustandsgleichungen

e Beispiel: Ideales Gas

— Rechnung analog zu Gl (6, 7) liefert fiir Entropie in den natiirlichen Va-

riablen U, V, N :
UNY2 /v AN
@) @) (&)

S(U, V, N) = Nk (S()(U(), %,NQ) + 10g

— Damit . 59 5 .
S (A S U=°NkT
= (50),, = 3"
P oS Nk
£ _ (=22 ———— = NkT
T (av)UN o T PV =Nk



Variablentransformation

e Gleichungen (9) und (10) gehen direkt auseinander hervor

e Beachte: T, p, und p héngen nicht von denselben Variablen ab

Beispiel Temperatur

T(S,V,N) =: f(S,V,N) Energie-Darstellung
T(U,V,N) =: ¢g(UV,N) Entropie-Darstellung

e Sei N = const.

Umrechnung T'(S, V') in T'(U, V') per Variablentransformation

Start: T'(S, V)

or or
mis)- (2 as (22)

Fiir S — U, betrachte S(U, V)

dS(U,V) = (Z—i) dU + <g—§> %
\%4 U

e Eingesetzt:
oT 08 08 oT
V) = (%)v K%)ﬂ“ (W)ﬂ * (W)SW
oT 05 oT 0S8 oT
- (%X(@)ﬂ“K%)V(W)J(W)JW

e Ergo: f(S,V,N) # g(U,V,N)
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Lessons learned

Reversible und irreversible Prozesse

Carnot’scher Kreisprozess funktioniert nur, weil Arbeit und Warme keine ex-
akten Differentiale sind

Entropie als exaktes Differential und Zustandsgrofe
2. Hauptsatz: dS > 0, im Gleichgewicht: S = maximal
Fundamentalrelationen

Zustandsgleichungen folgen aus Bestimmungsgleichungen der intensiven Va-
riablen

5 Der 3. Hauptsatz der Thermodynamik

Auch als Nernst’sches Theorem (1918) bezeichnet.

e Vor der Hand Existenz eines absoluten Nullpunktes der Temperatur nicht klar.

e Friither Verdacht: Erinnere Gay-Lussac: (1802)

1% ..
== const. fiir p = const.

Eingeschrankter Giiltigkeitsbereich ?

e Ergibt affine Beziehung, Celsius, Fahrenheit, Kelvin

V =a(T —b)
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b
/

>V

e [r kann keine negativen Volumina geben: b = T,,,;, = 0° Kelvin

3. Hauptsatz

e Nernst: Fiir 7" — 0 gilt fiir isotherme Prozesse:

AS =0

e Spiter von Planck verscharft:

T—-0=S5S—0

Impliziert Nernst’sche Formulierung
e Begriindung und Ausnahmen in der Statistischen Mechanik

Drei Implikationen:
Unerreichbarkeit des absoluten Nullpunktes

e [Is ist unmoglich, den absoluten Nullpunkt der Temperatur in endlich vielen
Schritten zu erreichen

e Beispiel: Abfolge von isothermer Kompression und adiabatischer Expansion
zwischen zwei Volumina V; und Vs
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HV

e Allgemeinheit des Argumentes:

Egal was man macht, z.B. adiabatische Entmagnetisierung, alle Kurven gehen
nach (S(T'=0),7 =0) = (0,0)

Carnot Prozess mit 1T} = 0

e Erinnere:

Wirkungsgrad Carnot-Prozess:

T,
=1og,
FirTj=0=n=1
e Entropie-Beitrage:
— isotherme Expansion bei Tj: ASup = %:B

— isotherme Kompression bei T;: AScp = %}CB

— Entropie in einem Zyklus: ASiota = 0
e Nun aber nach Nernst AScp = 0, da T; = 0, es knirscht im Gebélk
e Damit AS4p =0

e Maschine setzt keine Warme um =— AW = AQ =0
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e Von Wirkungsgrad kann keine Rede sein
e Ergebnis gegen jede (klassische) Intuition
e Irgendwas stimmt da nicht !

Spezifische Wirme

e Erinnere

) 3
0Q = CydT, dS = %27 ideales Gas: Cy = §Nk: = const.

e Damit T
dS == C\/ ?
und
T /CV
S(T)=S(T=0)+ dT"—-
0 1

3. Haupsatz: S(T'=0) =0

e Aber Integral

T
,Cv T
/0 dTF—C’Vlog<O)

divergiert !

roCy T
S(T) = S(Tv) —|—/ dT'—- = S(Tp) + Cy log (—)
rn, T To
sieht fiir 7y — 0 auch nicht gut aus
e Einzige Chance fiir Konvergenz: Cy ist Cy(7') mit
Cy(T)—0 firT—0

und zwar schneller als der Logarithmus fiir 7" — 0 divergiert, also mindestens
linear

e Reminder: Das gilt nicht fiir das ideale Gas.
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e Noch schlimmer: Gilt nicht fiir jedes klassische thermodynamische System

e Cy(T) — 0 fiir T — 0 16st auch das Problem des Wirkungsgrades des Carnot-
Prozesses fiir T'= 0, da er unter der Annahme C\, = const. abgeleitet wurde.

e Visiondres Ergebnis vor Einfiihrung der Quantenmechanik, die es erklért

Lessons learned
e In der Regel: limy_,o S(T) =0
e Unerreichbarkeit des absoluten Nullpunktes

e Wirmekapazitit: limp_,o C(T) = 0 in Widerspruch zu klassischer Physik

6 Zusammenfassung Thermodynamik

e Gleichgewichtszustinde definiert {iber Zustandsgrofen
— Diese sind exakte Differentiale
e Zustandsgleichungen, Beispiel ideales Gas:
kalorisch : U= gN kT

thermisch : pV = NkT

e 1. Hauptsatz: Energieerhaltung

— Wiirme ist keine Substanz, sondern Form von Energie(austausch)

— Arbeit und Warme sind keine exakten Diflerentiale

e 2. Hauptsatz: Entropie kann in abgeschlossenem System nur erzeugt werden

— Reversible und irreversible Prozesse

— Carnot’scher Kreisprozess, Grenze der Umwandlung von Wiarme in Arbeit
— Geht iiber alle bisherige Physik hinaus.

— Effekt kollektiven Verhaltens vieler Teilchen
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e 3. Hauptsatz
lim S(T) =0
T—0
— Unerreichbarkeit des absoluten Temperaturnullpunktes
— Wirmekapazitit muss in Widerspruch zur klassischen Theorie tempera-
turabhéngig sein.
e Thermodynamische Potentiale
— Sag mir Deine konstant gehaltenen Grofen, und ich sage Dir Dein be-
quemstes thermodynamisches Potential

— Legendre-Transformation

— Erfiillen Extremaleigenschaften.
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