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1 Einleitung

Was bisher geschah:
Klassische Mechanik, E-Dynamik, Quantenmechanik haben deterministische Bewe-
gungsgleichungen. Machen die Physik quantitativ und prädiktiv.

And now for something completely di�erent ...

• In der Statistischen Physik werden keine Bewegungsgleichungen, z.B. für die
Wärme, abgeleitet

• Stattdessen: Verständnis des kollektiven Verhaltens vieler Teilchen

Beispiele:

• Neue Begri�e wie Temperatur & Druck

• Wirkungsgrad von Wärmemaschinen

• Eis, Wasser, Gas: Phasenübergänge

• Fermionische und bosonische Systeme

• ...

Statistische Physik besteht aus

• Thermodynamik, allerdings nicht sehr dynamisch

• Statistische Mechanik

• Nicht-Gleichgewichtssysteme

• Stochastische Prozesse

Thermodynamik und Statistische Mechanik

• Gleichgewichtszustände

• Anzahl Teilchen makroskopischer Systeme ist in der Gröÿenordnung 1023

• Orte und Impulse de�nieren Mikrozustand
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• Mikroskopische Dynamik ist chaotisch, i.e. nicht periodisch.

Frage: Chaos klar ?

• Detailierte Lösung der Bewegungsgleichungen ho�ungslos ...

• ... und auch sinnlos, Anspielung auf Human Brain Project

• Beobachtung: Makrozustand beschreibbar durch wenige Zustandsvariablen wie
Volumen, Druck, Temperatur, Energie

Thermodynamik:

• Theorie von Makrosystemen

• Beschreibt Abhängigkeiten der Zustandsvariablen

• Beschreibt mögliche Zustandsänderungen

• Partiell prädiktiv, partiell beschreibend

Statistische Mechanik:

• Stellt Zusammenhang zwischen Mikro- und Makrozuständen her

• Leitet makroskopische Eigenschaften aus mikroskopischen Eigenschaf-
ten/Wechselwirkungen ab, Anspielung auf emergentes Verhalten

• Prädiktiv, obwohl statistisch

Bonbon: Es kann keine konsistente konsequent klassische Statistische Mechanik
nicht geben kann, essentiell quantenmechanisch

Stichworte

• Gibbs'sches Paradoxon

• Spezi�sche Wärme, speziell groÿer Moleküle

• Normierung der Zustandssumme

• Planck'sches Strahlungsgesetz
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2 Thermodynamische Systeme

Thermodynamisches System:
Eine Menge von Materie - Gase, Fluide, Festkörper - deren physikalischen Ei-
genschaften eindeutig und vollständig durch Angabe bestimmter makroskopischer
Variablen beschrieben werden kann.

Ein thermodynamisches System heiÿt

• abgeschlossen oder isoliert, wenn es nichts mit Umwelt austauscht.

Gesamtenergie, Teilchenzahl und Volumen sind erhalten und damit zur Be-
schreibung des Systems geeignet.

Beispiel: Perfekte Thermoskanne

• geschlossen, wenn es keine Materie mit Umwelt austauscht.

Energieaustausch ist erlaubt. Temperatur wird wichtige Grösse

Beispiel: Milchtüte

• o�en, sonst. Austausch von Energie und Teilchen erlaubt.

Chemisches Potential wird wichtige Gröÿe

• homogen, wenn es in allen Bereichen gleich ist

• inhomogen, wenn es verschiedene Phasen aufweist

Beispiel: �üssige und gasförmige Phase

• Workhorse der Thermodynamik: Das ideale Gas

Zustandsgröÿen sind makroskopische Variablen, die den Zustand des Systems cha-
rakterisieren.
Beispiele: Volumen, Energie, Entropie, Temperatur, Druck

• Sie sind wegunabhängig, hängen nicht davon ab, wie das System in seinen
Zustand gekommen ist

• extensiv: proportional zur Systemgröÿe

Beispiele: Volumen, Energie

• intensiv: unabhängig von Systemgröÿe

Beispiele: Temperatur, Druck
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Thermodynamische Zustandsgleichungen

• stellen Beziehungen zwischen Zustandsgröÿen dar

• werden in der Thermodynamik meist empirisch bestimmt

• haben eingeschränkten Gültigkeitsbereich

• Systematische Ableitung in der Statistischen Mechanik

Thermodynamischer Limes:

N →∞, V →∞, N

V
= ρ = const.

Thermodynamisches Gleichgewicht:

• Die (makroskopischen) Zustandsgröÿen ändern sich nicht.

• Die Mikrozustände natürlich dauernd.

3 Der 1. Hauptsatz der Thermodynamik

3.1 Thermodynamische Zustandsgleichungen

Thermische Zustandsgleichung setzt p, V , T und N in Beziehung

• Beispiel: Ideales Gas

� Boyle (1664) und Mariotte (1676): pV = const. für T = const.

� Gay-Lussac: (1802): V
T

= const. für p = const.

Zusammen, siehe Übung:

pV

T
= const. ∝ N, da extensiv

ergibt Gasgleichung:

pV = NkT oder p = ρkT
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mit Boltzmann-Konstante

k = 1.38 · 10−23 J

K

Gilt für geringe Drücke, geringe Dichte, hohe Temperaturen und im thermody-
namischen Limes

• Beispiel: Reales Gas

Ideales Gas vernachlässigt:

� Eigenvolumen b der Teilchen

V → V −Nb

Kleiner E�ekt

� Attraktive Wechselwirkung der Teilchen bewirkt Druckminderung pbinnen
Proportional zur quadrierten Dichte :

(
N
V

)2

pideal = preal + pbinnen, p→ p+

(
N

V

)2

a

Relevanter E�ekt

� Ergibt van der Waals Gleichung (1873), siehe Übung(
p+

(
N

V

)2

a

)
(V −Nb) = NkT

Systematische Herleitung in Statistischer Mechanik

Kalorische Zustandsgleichung: Eine Energiegleichung

Betrachte Ideales Gas in abgeschlossenem System:

• Im thermischen Gleichgewicht ändern sich die Geschwindigkeiten der Teilchen
ständig

• Aber im Mittel werden immer gleich viele Teilchen in einem Geschwindigkeits-
kubus d3v vorliegen
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• Geschwindigkeits-Verteilung f(~v) ändert sich nicht

Es gilt
∫∞
−∞ f(~v)d3v = 1 und Anzahl dN von Teilchen im Kubus d3v

dN = Nf(~v)d3v

• Druck entsteht durch Impulsübertrag bei Re�exion an Wänden

Sei x−Achse senkrecht zu Wand-Flächenelement O, Impulsübertrag: 2mvx

• Frage: Wieviele Teilchen mit Geschwindigkeit ~v tre�en in dt auf O ?

Anzahl der Teilchen in Parallelepiped

dN = N
dV

V
f(~v)d3v

mit dV/V Bruchteil des Volumens des Epipeds vom Gesamtvolumen mit dV =
Ovxdt

• Damit Kraftstoÿ dFO auf Fläche O

dFOdt = 2mvxdN = 2Nmv2
xf(~v)d3v

Odt

V

�Kürze� dt und sammele alle Teilchen mit positiver Geschwindigkeit vx auf:

p =
1

O

∫
dF0 =

N

V

∫ ∞
0

dvx

∫ ∞
−∞

dvy

∫ ∞
−∞

dvzf(~v)2mv2
x
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Beachte: f(~v) kann nicht von Richtung von ~v abhängen, nur von |~v|
Folge: ∫ ∞

0

dvx . . . =
1

2

∫ ∞
−∞

dvx . . .

• Damit

pV = mN

∫ ∞
−∞

d3vf(~v)v2
x

Integral: Mittlere quadradratische Geschwindigkeit senkrecht zur Fläche

• Wegen Isotropie ∫ ∞
−∞

d3vf(~v)v2
x = 〈v2

x〉 = 〈v2
y〉 = 〈v2

z〉

Wegen
~v2 = v2

x + v2
y + v2

z

gilt

〈v2
x〉 =

1

3
〈~v2〉

und

pV = mN
1

3
〈~v2〉 =

2

3
N〈εkin〉, 〈εkin〉 : mittlere kinetische Energie eines Teilchens

• Mit pV = NkT und E = N〈εkin〉 erhalten wir

E =
3

2
NkT

• Beachte: f(~v) muss nicht bekannt sein

• Temperatur erklärt sich aus kinetischer Energie
Termin14
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3.2 Mathematisches Vorspiel

• Erinnere Taylorentwicklung

f(x) = f(x0) + f ′(x0)(x− x0) + ...

oder in�nitesimal: df(x) = f ′(x)dx

• Mehr-dimensionaler Fall

df(x, y) =
∂f

∂x

∣∣∣∣
y

dx+
∂f

∂y

∣∣∣∣
x

dy

Beschreibt Tangentialebene

• De�nition: Das totale (oder vollständige oder exakte) Di�erential einer di�e-
renzierbaren Funktion ist

df =
N∑
i=1

∂f

∂xi
dxi = ~∇f · d~x

mit

~F (~x) = ~∇f(~x)

f ist Stammfunktion von ~F

• Wegintegral über ~F hängt nur von Anfangs- und Endpunkt ab, aber nicht vom
Integrationsweg.

• Beispiel: Arbeit W an Teilchen entlang einer Kurve C von ~x1 nach ~x2 in kon-
servativem Kraftfeld ~F (~x) mit Potential V (~x)

W =

∫
C

~F (~x) · d~x = −
∫
C

~∇V (~x) · d~x = −V (~x2) + V (~x1)

• Test auf Exaktheit:

Sei f(x, y) zweimal di�erenzierbare Funktion mit

df(x, y) =
∂f

∂x
dx+

∂f

∂y
dy =

(
Fx
Fy

)
·
(
dx
dy

)
= ~F · d~x
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Es gilt der Satz von Schwarz

∂2f

∂x∂y
=

∂2f

∂y∂x

oder
∂Fy
∂x

=
∂Fx
∂y

Damit: Drehe es herum. Gehe von beliebigem Di�erential und damit ~F (~x) aus
und teste, ob es exakt ist.

• Beispiele:

� In 1-D ist jedes Di�erential trivial exakt

� Betrachte

~F · d~x = ydx+ xdy

Dann gilt

∂Fx
∂y
− ∂Fy

∂x
= 1− 1 = 0

und das Di�erential ist exakt

� Betrachte
~F · d~x = yx dx+ x2 dy

Es folgt

∂Fx
∂y
− ∂Fy

∂x
= x− 2x = −x 6= 0

und das Di�erential ist nicht exakt.

• Nicht-exakte Di�erentiale:

� Wegintegral hängt vom Weg ab

� werden mit δf bezeichnet
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• In drei Dimensionen

df =

 Fx
Fy
Fz

 ·
 dx

dy
dz

 = ~F · d~x

rot~F = 0 =⇒ df ist vollständiges Di�erential

• Integrierender Faktor

� Trick, aus einem nicht-exakten Di�erential ein exaktes zu machen

� Betrachte zweites Beispiel und ergänze 1
x

1

x

(
yx dx+ x2 dy

)
� Es folgt

∂Fx
∂y
− ∂Fy

∂x
= 1− 1 = 0

ein exaktes Di�erential.

� 1
x
ist der integrierende Faktor für nicht exaktes Di�erential yx dx+ x2 dy

� Siehe Übung

3.3 Innere Energie und Temperatur, 0. Hauptsatz

Ein isoliertes System erhält die Gesamtenergie.
Diese innere Energie U ist

• die Summe aller Energien

• eine Zustandsgröÿe

• extensiv

• im allgemeinen in Bezug auf ihre Änderung interessant

Beispiel: Ideales Gas

U =
3

2
NkT
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• Der 0. Hauptsatz: Es gibt eine intensive Zustandsvariable Temperatur T , so
dass sich Systeme genau dann miteinander im thermischen Gleichgewicht be-
�nden, wenn sie den selben Wert von T aufweisen.

• Bei einem isolierten System ist die innere Energie identisch mit der aus Me-
chanik und Elektrodynamik bekannten Gesamtenergie.

• Für nicht-isolierte Systeme kommt noch Arbeit und/oder Wärmeaustausch hin
zu.

3.4 Arbeit

• Die innere Energie U ist im isolierten System erhalten.

• U ändert sich aber bei Interaktion mit Umgebung.

Betrachte Kolben, der mit Kraft ~Fa auf System drückt

Im Gleichgewicht: ~Fa = −~Fi
Verschiebe Kolben um d~s

δW = ~Fa · d~s = −~Fi · d~s

Vorzeichenkonvention:

� System leistet Arbeit, Energie wird abgeführt: δW < 0

� Am System wird Arbeit geleistet, Energie wird zugeführt: δW > 0
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Da ~Fa‖d~s und dV = Ads, folgt

~Fi · d~s =
Fi
A
Ads = pdV

und somit:

δW = −pdV, beachte: dV < 0

Beachte: Die Arbeit ist keine Zustandsgröÿe

Beispiel: Kompression eines Gases

V1 → V2, V2 < V1

∆W = −
∫ V2

V1

p(V )dV

Proof by examples:

• Isotherme Kompression

N = const., T = const.

Mit

pV = NkT

p(V ) =
NkT

V

∆W = −
∫ V2

V1

NkT

V
dV

= NkT log

(
V1

V2

)
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V1V2

• Isobare Kompression

N = const., p = p0 = const.

∆W = −
∫ V2

V1

p0dV = −p0(V2 − V1)

V1V2

• Ergo: ∆W hängt vom Vorgehen ab.
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Es gilt:

• Die Gröÿe X ist genau dann eine Zustandsgröÿe, wenn sie ein vollständiges
Di�erential dX besitzt.

1. week
Weitere Beispiele für Arbeit

• Änderung der elektrischen Ladung q im elektrischen Potential φ

δW = φdq

Widerstand des Systems gegen Zuführung weiterer Ladung analog zu Druck
als Widerstand gegen Kompression

• Änderung der Teilchenzahl N , mit chemischem Potential µ

δW = µdN

Widerstand gegen Zuführung von weiteren Teilchen

• δW ist immer ein Produkt aus einer intensiven und einer extensiven Zustands-
gröÿe, Energie-konjugierte Variablen

• Alle Arten von Arbeit können (im Prinzip) ineinander überführt werden

Integrierender Faktor revisited:

• δW kein exaktes Di�erential

δW = −pdV

• 1/p ist integrierender Faktor

dV = −1

p
δW
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3.5 Wärme

Antoine Laurent de Lavoisier (1787) Kalorische Theorie: Wärme als Substanz

• Ein weiteres Element, nicht zu erzeugen, nicht zu vernichten

• Unsichtbar

• Gewichtslos

• Selbstabstoÿend, darum gleichen sich Temperaturunterschiede aus

• Lockerung der Moleküle durch Ansammlung der kalorischen Substanz führt
zum Schmelzen/Verdampfen

• Widerlegung der Theorie: Sir Benjamin Thompson, Graf Rumford (1789) Ge-
genbeispiel: Reibung (beim Bohren von Kanonen)

Mayer (1845):
Wärme ist eine Form der Energie(änderung), keine Zustandsgröÿe.

De�nition:
δQ ist die Wärmemenge, die eine Temperaturänderung einer Substanz von dT bewirkt

δQ = C(T ) dT

mit C, der totalen Wärmekapazität der erwärmten Substanz

• C ist extensive Gröÿe, da δQ extensiv und dT intensiv

• Zur Charakterisierung einer Substanz besser intensive Gröÿe:

c =
C

N
spezi�sche Wärme(kapazität)

oder

cM =
NA

N
C molare spezi�sche Wärme(kapazität)

mit Avogadro-Konstante NA ≈ 6 · 1023 die Anzahl der Teilchen pro Mol (12 g
C12)
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CV und Cp

• Wärmekapazität hängt von Prozessführung ab, p = konstant (Cp) oder V =
konstant (CV )

• Allgemeinen gilt Cp > CV , da bei p = const. auch Volumenausdehnungsarbeit
geleistet werden muss

• Betrachte ideales Gas bei V = const. und Temperaturänderung dT

dU = dQ = δQ = CV dT

Dann gilt

CV =

(
∂U

∂T

)
V

Ideales Gas:

U =
3

2
NkT

CV =

(
∂U

∂T

)
V

=
3

2
Nk

cV =
CV
N

=
3

2
k

Termin15

3.6 Der 1. Hauptsatz

Ein System, das mit Umgebung Arbeit δW und Wärme δQ austauscht, verändert
seine innere Energie U nach

dU = δW + δQ

Vorzeichenkonvention:

• δQ > 0 : dem System zugeführte Wärme

• δQ < 0 : vom System abgegebene Wärme

• δW > 0 : dem System zugeführte Arbeit

18



• δW < 0 : vom System abgegebene Arbeit

Beachte:

• Energieerhaltung

• Innere Energie U ist eine Zustandsgröÿe

• dU damit ein vollständiges Di�erential

• δW und δQ im allgemeinen pfadabhängig, keine vollständigen Di�erentiale

• Interpretation: Es gibt kein Perpetuum mobile (sich ständig Bewegendes)
1. Art, d.h. keine Maschine, die nichts anderes macht als Arbeit zu leisten

• Seit 1775: Französische Akademie der Wissenschaften nimmt keine Vorschläge
mehr an

Anwendung:
Betrachte Zustandsgleichung des idealen Gases

pV = NkT

• Im folgenden N konstant.

• 3 Variablen: p, V und T

Hält man jeweils eine konstant, ergeben sich drei mögliche Prozesse.

• 4. Prozess: Adiabatischer Prozess mit δQ=0

Ausgangspunkt: 1. Hauptsatz mit U(V, T )

dU =

(
∂U

∂V

)
T

dV +

(
∂U

∂T

)
V

dT

Betrachte ideales Gas

U =
3

2
NkT

CV =
3

2
Nk

pV = NkT
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• V = V0 = konstant. Isochore Zustandsänderung

Experiment: Erhitzen von Gas in geschlossenem Gefäÿ von T1 nach T2

(V0, p1, T1)
∆Q→ (V0, p2, T2)

In Abhängigkeit von Änderung von T

dU = δQ− p dV︸︷︷︸
=0

= δQ = dQ = CV dT

∆U = U2 − U1 =

∫ T2

T1

CV dT = CV (T2 − T1) = ∆Q

In Abhängigkeit von Änderung von p

Mit Ti = piV0
Nk

folgt:

∆U =
CV V0

Nk
(p2 − p1)

Merke :
∆U = ∆Q = CV (T2 − T1) (1)

• p = p0 = konstant. Isobare Zustandsänderung

(V1, p0, T1)
∆Q,∆W→ (V2, p0, T2)

Experiment: Gefäÿ mit �exibler masseloser Abdeckung unter Luftdruck

dU = δQ+ δW

∆W = −
∫ V2

V1

p0 dV = −p0(V2 − V1)

∆U =

∫ T2

T1

CV dT = CV (T2 − T1) =
CV p0

Nk
(V2 − V1)

Damit Wärmeänderung:

∆Q = ∆U −∆W = p0

(
CV
Nk

+ 1

)
(V2 − V1)
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Mit

Vi =
NkTi
p0

folgt
∆Q = (CV +Nk)(T2 − T1)

Merke:

� ∆Q ist wegen Ausdehnungarbeit im isobaren Fall gröÿer als in isochoren,
Gl. (1).

� Für ideales Gas gilt

Cp = CV +Nk =
5

2
Nk

• T = T0 = konstant. Isotherme Zustandsänderung

(V1, p1, T0)
∆Q,∆W→ (V2, p2, T0)

Experiment: Expansion in Gefäÿ im Wärmebad

U =
3

2
NkT0 → ∆U = 0

∆W = −
∫ V2

V1

p(V )dV = −NkT0

∫ V2

V1

dV

V
= −NkT0 log

(
V2

V1

)
= NkT0 log

(
p2

p1

)
∆Q = −∆W = NkT0 log

(
V2

V1

)
• δQ=0. Adiabatischer Prozess, kein Wärmeaustausch

Experiment: Isoliertes Gefäÿ

(V1, p1, T1)
∆W→ (V2, p2, T2)

Mit

dU = δW + δQ︸︷︷︸
=0

= δW = dW

dU = CV dT

dW = −pdV = −NkT
V

dV
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folgt:

CV
T
dT = −Nk

V
dV

CV

∫ T2

T1

dT

T
= −Nk

∫ V2

V1

dV

V

CV log

(
T2

T1

)
= −Nk log

(
V2

V1

)
T2

T1

=

(
V2

V1

)− Nk
CV

=

(
V1

V2

)2/3

Entsprechend, mit Hilfe der Gasgleichung: Die Adiabaten-Gleichungen:

(
T2

T1

)5/2

=
p2

p1

,
p1

p2

=

(
V2

V1

)5/3

pV -Adiabaten (Isentropen) verlaufen mit pV 5/3 = const. steiler als Isothermen
mit pV = const.

Lessons learned

• Für ideales Gas gilt:

pV = NkT, U =
3

2
NkT, CV =

3

2
Nk

• Wärme ist kein Sto�

• Wärme und Arbeit sind keine exakten Di�erentiale

• Innere Energie ist exaktes Di�erential und damit erhalten

• Adiabaten verlaufen steiler als Isothermen
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Die d-Zoologie1: ∂, d, δ, ∆

• ∂: partielle Ableitung

d

dx
f(y(x)) =

∂f

∂y

∂y

∂x

• d: exaktes Di�erential
df(x, y) =

∂f

∂x
dx+

∂f

∂y
dy

mit
∂2f

∂x∂y
=

∂2f

∂y∂x

• δ: nicht exaktes Di�erential

δf(x, y) = g(x, y)dx+ h(x, y)dy

mit
∂g

∂y
6= ∂h

∂x

• ∆: Endliche Änderung

∆W =

∫ V2

V1

dV....

4 Der 2. Hauptsatz der Thermodynamik

Extremalprinzipien in der Physik:

• Klassische Mechanik: Minimierung der Wirkung, Hamilton'sches Prinzip,
Euler-Lagrange Gleichungen

• Optik: Fermat'sches Prinzip: Kürzeste optische Weglänge

• Dissipatives mechanisches System: Minimierung der Energie

• Globales �als ob� vs. lokales �what's next�
1Auch als Deologie bezeichnet
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• Was ist Extremalprinzip für Ausdehnung eines Gases ?

Beachte: Für ideales Gas ändert sich hierbei die innere Energie nicht

• Allgemein: Gibt es ein Extremalprinzip, das für die Einstellung eines Gleich-
gewichtes �verantwortlich� ist ?

4.1 Reversible und irreversible Prozesse

• Beobachtung: Im isoliertem System laufen Zustandsänderungen �von selbst�
�spontan� ab, bis Gleichgewichtszustand erreicht ist. Diese Art von Änderungen
sind irreversibel, d.h. kehren sich von selbst nicht um.

Beispiele:

� Aus der Thermodynamik:

∗ Ausdehnung eines Gases von kleinem in grosses Volumen
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∗ Temperaturausgleich

� Aus der Mechanik: Pendel mit Reibung

Spontane Umkehrung ist nie beobachtet wurden. Ist aber energetisch (1. Haupt-
satz) möglich

Aber beachte: Tropfen Wasser genau in Mitte eines Wasserglases, Spinecho

• Eigenschaften von irreversiblen thermodynamischen Prozessen:

� Irreversible Prozesse laufen über Nichtgleichgewichtszustände ab

� Zustandsgröÿen, z.B. p, haben während des Prozesses keine global de�-
nierten Werte. Es gibt räumliche Inhomogenitäten

� Klar machen an Ausdehnung von kleinem in grosses Volumen

• Reversible Prozesse laufen über Gleichgewichtszustände

� Idealisierung: Ist System im Gleichgewicht, passiert nix

� Zustandsgröÿen haben zu jedem Zeitpunkt de�nierte Werte.

� Totale Änderung der Zustandsgröÿen kann über Integration bestimmt
werden.

• Realistische Näherung: Quasi-reversible Prozesse

� In�nitesimale, langsame quasi-statische Änderung der Zustandsgröÿen

� �Langsam�: Änderung langsamer als Relaxationszeit des Systems
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Beispiel: Isotherme Expansion

Irreversible Prozessführung (Graphik ist suboptimal, bessere Graphik in Vorlesung)

• Abrupte Wegnahme des Gewichtes, zur Seite stellen

• Gas dehnt sich (turbulend) auf Volumen V2 aus (minimalstes Restgewicht)

T = const. M

M

• Es wird keine Arbeit geleistet, δW = 0.

• Prozess irreversibel, da zur Seite gelegtes Gewicht nicht nach oben hüpfen kann

Reversible Prozessführung

• Verkleinere Masse schrittweise um dM und hebe Massestücke an entsprechen-
der Höhe auf

• Mache dies so langsam, dass System stets im (Quasi-)Gleichgewicht bleibt
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• System leistet Arbeit

∆W = −
∫ V2

V1

pdV = −NkT
∫ V2

V1

dV

V
= −NkT log

(
V2

V1

)
• Prozess reversibel, da man Massenstücke dM sukzessive wieder au�egen kann.

Der 1. Hauptsatz gilt unabhängig von Prozessführung

• Damit
dU = δWrev + δQrev = δWirr + δQirr

• Expansion

δWirr ≥ δWrev = −pdV
δQirr ≤ δQrev = siehe Kap. 4.3

• Beachte: δW = pdV gilt nur bei reversibler Prozessführung

• Bei reversibler Prozessführung wird am meisten Arbeit verrichtet (Expansion),
bzw. am wenigsten benötigt (Kompression)

• Bei irreversibler Prozessführung wird Teil der Arbeit in (Ab-)wärme verwandelt

• Wieder einmal:

δW und δQ hängen von der Prozessführung ab.

Sie können daher keine Zustandsgröÿen sein

Der 1. Hauptsatz reicht zur Beschreibung irreversibler Prozesse nicht aus, da
er sie nicht verbietet:
Es braucht weitere Zustandsgröÿe

Termin16
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4.2 Carnot'scher Kreisprozess

Betrachte Kreisprozess

• Arbeitsmedium wird nach Reihe von Zustandsänderungen wieder in Ausgangs-
zustand gebracht

• Es gilt ∮
dU = 0

Carnot'scher Kreisprozess (1824)

• Beispiel für Wärmekraftmaschine

• Arbeitsmedium: Ideales Gas

• Besteht aus zwei isothermen und zwei adiabatischen Prozessen

A

B

C

D

adiabatisch

isotherm

Die vier Prozesse:

• A→ B: Isotherme Expansion, T = Th

∆UAB = 0

∆QAB = −∆WAB =

∫ VB

VA

pdV = NkTh log

(
VB
VA

)
> 0

System verrichtet Arbeit, ∆QAB wird aus dem Wärmebad aufgenommen.
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• B → C: Adiabatische Expansion, ∆QBC = 0

Tl
Th

=

(
VB
VC

)2/3

System verrichtet Arbeit und kühlt ab. Geleistete Arbeit wird der inneren
Energie entnommen

∆UBC = ∆WBC =

∫ Tl

Th

CV dT = CV (Tl − Th) < 0

• C → D: Isotherme Kompression , T = Tl, ∆UCD = 0

∆QCD = −∆WCD = NkTl log

(
VD
VC

)
< 0

Arbeit wird zugeführt, Wärme ans Wärmebad abgegeben

• D → A: Adiabatische Kompression, ∆QDA = 0

Th
Tl

=

(
VD
VA

)2/3

∆UDA = ∆WDA = CV (Th − Tl) > 0

Dem System wird Arbeit zugeführt

Energiebilanz:

∆Utotal =
4∑
i=1

∆Ui,i+1modulo 4
= CV (Tl − Th) + CV (Th − Tl) = 0

Glück gehabt ! :-)

Wärme und Arbeit:

∆QAB = NkTh log

(
VB
VA

)
> 0 (2)

∆QCD = NkTl log

(
VD
VC

)
< 0 (3)
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• Mit (
Th
Tl

)3/2

=
VB
VC

=
VA
VD

folgt

∆Qtotal = Nk log

(
VB
VA

)
(Th − Tl) > 0 (4)

• Wärme wird zugeführt

• Und damit wegen ∆U = 0

∆Wtotal = −∆Qtotal < 0

Arbeit wird verrichtet.

• Eine Maschine, die Wärme in Arbeit umwandelt !

Aber wie gut ?

• Wirkungsgrad η: Der in Arbeit umgewandelte Teil der aufgenommenen Wärme

η =
|∆Wtotal|
∆QAB

=
∆QAB + ∆QCD

∆QAB

= 1 +
∆QCD

∆QAB

= 1− Tl
Th

< 1 (5)

Wärme kann nie vollständig in Arbeit umgewandelt werden.

• Übung: Man kann zeigen: Im beliebigen Kreisprozess bildet Gl. (5) obere
Schranke für η

• Beispiel Wärmekraftwerk:

Th = 800K, Tl = 300K

ηideal = 1− 300K

800K
=

5

8
≈ 60%

ηreal ≈ 45%

2. week
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4.3 Thermodynamische De�nition der Entropie

• Gl. (4): Wie zu erwarten: Q im Carnot-Prozess keine Zustandsgröÿe

• Aus Gl. (2, 3) folgt aber

∆QAB

Th
+

∆QCD

Tl
= 0

• Zerlege den Prozess in in�nitesimal kleine Teilstücke, so folgt:∮
δQrev

T
= 0

1
T
ist der integrierende Faktor, der aus dem nicht-exakten Di�erential δQrev ein

exaktes und damit eine Zustandsgröÿe macht !

• Man kann zeigen:

� δQ
T
ist für jeden reversiblen Kreisprozess ein exaktes Di�erential, Übung ?

� Ebenso für jeden reversiblen thermodynamischen Prozess

• Ergo: Es muss eine Zustandsvariable geben, die durch

dS =
δQrev

T
, SB − SA =

∫ ZustandB

ZustandA

δQrev

T

de�niert ist

• Die Gröÿe S heiÿt Entropie, Clausius (1865)

� Kunstwort aus εν = in und τρoπη = Verwandlung: Entropie

� �Da die Entropie ebenso wichtig ist, soll sie auch so ähnlich heissen wie
die Energie�

� �Wandlungspotential�, misst �Energieentwertung�

� Damit wird auch �Isentrope� bei adiabatischer Zustandsänderung klar

• Carnot-Maschine im S-T Diagramm
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T

S

• Für reversible Prozesse gilt

dS =
δQrev

T

• S ist extensiv

• Bei irreversibler Prozessführung gilt

δQirr ≤ δQrev = TdS

• Für mikroskopischen Zugang zur Entropie, der Vortrag am Do. 21.7

Entropie des idealen Gases in Abhängigkeit von T und V

• Sei N = const.

• 1. Hauptsatz
dU = TdS − pdV

mit Zustandsgleichungen

U =
3

2
NkT, pV = NkT
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• Damit 1. Hauptsatz aufgelöst nach dS

dS =
3

2
Nk

dT

T
+Nk

dV

V

Startend von Zustand (T0, V0) mit Entropie S0, integriere auf

S(T, V )− S0(T0, V0) =
3

2
Nk log

T

T0

+Nk log
V

V0

= Nk log

[(
T

T0

)3/2(
V

V0

)]
(6)

Ergebnis: Entropie nimmt mit T und V zu

• Betrachte (irreversible) freie Ausdehnung eines idealen Gases von kleinem in
grosses Volumen in geschlossenem System

� Thermisch isoliert: ∆Q = 0

� Volumenerhöhung: ∆V > 0

� Es wird keine Arbeit verrichtet: ∆W = 0

� 1. Hauptsatz: ∆U = 0. Ideales Gas: U = U(T ), damit ∆T = 0

� Aber Entropieänderung

∆S = S(T, V1, N)− S(T, V0, N) = Nk log
V1

V0

> 0

� Erster Hinweis: Entropie auch jenseits von δQrev

T
wichtig

• In Abhängigkeit von (T, p)

S(T, p)− S0(T0, p0) = Nk log

[(
T

T0

)5/2(
p0

p

)]

• Da Entropie extensiv muss gelten

S(T, p) = Nk

(
s0(T0, p0) + log

[(
T

T0

)5/2(
p0

p

)])
(7)

Details in der Statistischen Physik
Termin17
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4.4 Der 2. Hauptsatz

• Clausius (1850)

• Betrachte abgeschlossenes System, es gilt

δQirr ≤ δQrev = TdS

• Im Gleichgewicht:

δQirr = δQrev = 0 =⇒ dS = 0

Ergo: Die Entropie ist in einem abgeschlossenen System im Gleichgewicht ex-
tremal.

Minimum oder Maximum ?

• Betrachte ein zusammengesetztes, insgesamt isoliertes System

TA 6= TB

t < 0: Subsysteme seien isoliert

t ≥ 0: Subsysteme gehen ins thermische Gleichgewicht

• Da
UA + UB = const. =⇒ dUA = −dUB

Mit

dUA = δQ+ δW = dQ = TAdSA

dUB = TBdSB
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• Entropie ist extensiv:

dS = dSA + dSB =
dUA
TA

+
dUB
TB

dS = dUB

(
1

TB
− 1

TA

)
Die Entropie ist nicht erhalten !

� Für TB > TA: Wärme �ieÿt von B nach A → dUB < 0 → dS > 0

� Für TB < TA: Wärme �ieÿt von A nach B → dUB > 0 → dS > 0

� Ist TA 6= TB läuft spontaner Prozess ab und es gilt dS > 0

� Ist TA = TB: Thermisches Gleichgewicht und dS = 0

2. Hauptsatz:
In einem abgeschlossenen System im thermischen Gleichgewicht gilt:

dS = 0, S = maximal

Für spontane Prozesse gilt:
dS > 0

Entropie de�niert über ein Extremalprinzip den Gleichgewichtszustand.

Alternative Formulierungen

• Clausius: �Es gibt keinen thermodynamischen Prozess, der ausschlieÿlich Wär-
me von einem kälterem in ein wärmeres Reservoir überführt. Es existiert keine
ideale Kältemaschine�
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Beweis:

� Da Gesamtsystem keine Arbeit leistet noch Wärme austauscht, kann es
als abgeschlossen betrachtet werden.

� Sei T1 < T2

� Dann:

dS1 = −δQ
T1

, dS2 =
δQ

T2

Damit

dS = dS1 + dS2 = −δQ
T1

+
δQ

T2

= δQ
T1 − T2

T1T2

< 0

Widerspruch

� Beachte: Wärme vom wärmeren zum kälteren Reservoir �iessen lassen
geht :-)

• Kelvin: �Es gibt keinen periodischen2 thermodynamischen Prozess, der aus-
schlieÿlich Wärme in Arbeit verwandelt. Es existiert keine ideale Wärmekraft-
maschine�

oder

Planck: �Es gibt kein Perpetuummobile 2. Art: Periodisch arbeitende Maschine,
die Wärme zu 100 % in Arbeit umwandelt und speichert�

2periodisch ist wichtig, einzelne Prozesse können das. Erinnere isotherme Expansion
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Beweis:

Wärme Maschine Speicher

• Nach einem Arbeitszyklus

∆UM = ∆Q︸︷︷︸
>0

+ ∆W︸︷︷︸
<0

= 0

∆Utotal = ∆Q+ ∆W = 0

1. Hauptsatz ist erfüllt

Betrachte 2. Hauptsatz

Nach einem Arbeitszyklus:

∆Stotal = ∆SB + ∆SM + ∆SS ≥ 0

∆SB = −∆Q

T
< 0

∆SM = 0

∆SS = 0

=⇒ ∆Stotal < 0

Widerspruch zum 2. Hauptsatz

�• Mit Entropie lautet der 1. Hauptsatz für reversible Zustandsänderungen:

dU = δQrev + δWrev = TdS − pdV + µdN + . . .

Analogie:

Entropie für Austausch vonWärme entspricht Volumen bei Kompressionsarbeit
gegen Druck

• �Wärmewertigkeit�

Für T2 > T1 gilt
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dS1 =
δQ

T1

>
δQ

T2

= dS2

Wärme bei höherer Temperatur ist �mehr wert� als bei niedriger.

An Beispiel Sonne => Erde => Weltraum klarmachen
3. Halb-
woche

4.5 Fundamentalrelationen

• Betrachte Kombination von 1. Hauptsatz mit Entropie-De�nition für reversible
Prozesse

dU = δQrev + δWrev = TdS − pdV + µdN

Innere Energie U in Abhängigkeit der extensiven Zustandsgröÿen S, V,N .

• S, V,N werden als die natürlichen Variablen der inneren Energie bezeichnet

• Mit

dU =

(
∂U

∂S

)
V,N

dS +

(
∂U

∂V

)
S,N

dV +

(
∂U

∂N

)
V,S

dN

ergeben sich die intensiven Zustandsgröÿen

T (S, V,N) =

(
∂U

∂S

)
V,N

, p(S, V,N) = −
(
∂U

∂V

)
S,N

, µ(S, V,N) =

(
∂U

∂N

)
V,S

(8)

• Die Kenntins von U(S, V,N) bestimmt das thermodynamische System kom-
plett

Daher wird

dU = TdS − pdV + µdN (9)

auch als Fundamentalrelation oder Gibbs'sche Fundamentalform bezeichnet.
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Entropie-Darstellung

• Umstellen der Fundamentalrelation nach dS liefert Fundamentalrelation in der
Entropie-Darstellung

dS(U, V,N) =
1

T
dU +

p

T
dV − µ

T
dN (10)

dS =

(
∂S

∂U

)
V,N︸ ︷︷ ︸

1/T

dU +

(
∂S

∂V

)
U,N︸ ︷︷ ︸

p/T

dV +

(
∂S

∂N

)
U,V︸ ︷︷ ︸

−µ/T

dN

mit

T = T (U, V,N), p = p(U, V,N), µ = µ(U, V,N)

• U, V,N sind die natürlichen Variablen der Entropie

Zustandsgleichungen revisited

• Zustandsgleichungen: Relationen, die im Gleichgewicht zwischen den thermo-
dynamischen Variablen eines Systems bestehen

• Bestimmungsgleichungen der intensiven Zustandsvariablen Gl. (8) liefern
Zustandsgleichungen

• Beispiel: Ideales Gas

� Rechnung analog zu Gl. (6, 7) liefert für Entropie in den natürlichen Va-
riablen U, V,N :

S(U, V,N) = Nk

(
s0(U0, V0, N0) + log

[(
U

U0

)3/2(
V

V0

)(
N0

N

)5/2
])

� Damit
1

T
=

(
∂S

∂U

)
V,N

=
3

2
Nk

1

U
=⇒ U =

3

2
NkT

p

T
=

(
∂S

∂V

)
U,N

=
Nk

V
=⇒ pV = NkT
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Variablentransformation

• Gleichungen (9) und (10) gehen direkt auseinander hervor

• Beachte: T , p, und µ hängen nicht von denselben Variablen ab

• Beispiel Temperatur

T (S, V,N) =: f(S, V,N) Energie-Darstellung

T (U, V,N) =: g(U, V,N) Entropie-Darstellung

• Sei N = const.

• Umrechnung T (S, V ) in T (U, V ) per Variablentransformation

• Start: T (S, V )

dT (S, V ) =

(
∂T

∂S

)
V

dS +

(
∂T

∂V

)
S

dV

Für S → U , betrachte S(U, V )

dS(U, V ) =

(
∂S

∂U

)
V

dU +

(
∂S

∂V

)
U

dV

• Eingesetzt:

dT (U, V ) =

(
∂T

∂S

)
V

[(
∂S

∂U

)
V

dU +

(
∂S

∂V

)
U

dV

]
+

(
∂T

∂V

)
S

dV

=

(
∂T

∂S

)
V

(
∂S

∂U

)
V

dU +

[(
∂T

∂S

)
V

(
∂S

∂V

)
U

+

(
∂T

∂V

)
S

]
dV

• Ergo: f(S, V,N) 6= g(U, V,N)

40



Lessons learned

• Reversible und irreversible Prozesse

• Carnot'scher Kreisprozess funktioniert nur, weil Arbeit und Wärme keine ex-
akten Di�erentiale sind

• Entropie als exaktes Di�erential und Zustandsgröÿe

• 2. Hauptsatz: dS ≥ 0, im Gleichgewicht: S = maximal

• Fundamentalrelationen

• Zustandsgleichungen folgen aus Bestimmungsgleichungen der intensiven Va-
riablen

Termin18

5 Der 3. Hauptsatz der Thermodynamik

Auch als Nernst'sches Theorem (1918) bezeichnet.

• Vor der Hand Existenz eines absoluten Nullpunktes der Temperatur nicht klar.

• Früher Verdacht: Erinnere Gay-Lussac: (1802)

V

T
= const. für p = const.

Eingeschränkter Gültigkeitsbereich ?

• Ergibt a�ne Beziehung, Celsius, Fahrenheit, Kelvin

V = a(T − b)
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b

T

V

• Er kann keine negativen Volumina geben: b = Tmin = 0◦ Kelvin

3. Hauptsatz

• Nernst: Für T → 0 gilt für isotherme Prozesse:

∆S → 0

• Später von Planck verschärft:

T → 0 =⇒ S → 0

Impliziert Nernst'sche Formulierung

• Begründung und Ausnahmen in der Statistischen Mechanik

Drei Implikationen:
Unerreichbarkeit des absoluten Nullpunktes

• Es ist unmöglich, den absoluten Nullpunkt der Temperatur in endlich vielen
Schritten zu erreichen

• Beispiel: Abfolge von isothermer Kompression und adiabatischer Expansion
zwischen zwei Volumina V1 und V2
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S

T

• Allgemeinheit des Argumentes:

Egal was man macht, z.B. adiabatische Entmagnetisierung, alle Kurven gehen
nach (S(T = 0), T = 0) = (0, 0)

Carnot Prozess mit Tl = 0

• Erinnere:

Wirkungsgrad Carnot-Prozess:

η = 1− Tl
Th

Für Tl = 0 =⇒ η = 1

• Entropie-Beiträge:

� isotherme Expansion bei Th: ∆SAB = ∆QAB

Th

� isotherme Kompression bei Tl: ∆SCD = ∆QCD

Tl

� Entropie in einem Zyklus: ∆Stotal = 0

• Nun aber nach Nernst ∆SCD = 0, da Tl = 0, es knirscht im Gebälk

• Damit ∆SAB = 0

• Maschine setzt keine Wärme um =⇒ ∆W = ∆Q = 0
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• Von Wirkungsgrad kann keine Rede sein

• Ergebnis gegen jede (klassische) Intuition

• Irgendwas stimmt da nicht !

Spezi�sche Wärme

• Erinnere

δQ = CV dT, dS =
δQ

T
, ideales Gas: CV =

3

2
Nk = const.

• Damit

dS = CV
dT

T

und

S(T ) = S(T = 0) +

∫ T

0

dT ′
CV
T ′

3. Haupsatz: S(T = 0) = 0

• Aber Integral

∫ T

0

dT ′
CV
T ′

= CV log

(
T

0

)
divergiert !

S(T ) = S(T0) +

∫ T

T0

dT ′
CV
T ′

= S(T0) + CV log

(
T

T0

)
sieht für T0 → 0 auch nicht gut aus

• Einzige Chance für Konvergenz: CV ist CV (T ) mit

CV (T )→ 0 für T → 0

und zwar schneller als der Logarithmus für T → 0 divergiert, also mindestens
linear

• Reminder: Das gilt nicht für das ideale Gas.
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• Noch schlimmer: Gilt nicht für jedes klassische thermodynamische System

• CV (T )→ 0 für T → 0 löst auch das Problem des Wirkungsgrades des Carnot-
Prozesses für T = 0, da er unter der Annahme CV = const. abgeleitet wurde.

• Visionäres Ergebnis vor Einführung der Quantenmechanik, die es erklärt

Lessons learned

• In der Regel: limT→0 S(T ) = 0

• Unerreichbarkeit des absoluten Nullpunktes

• Wärmekapazität: limT→0C(T ) = 0 in Widerspruch zu klassischer Physik

6 Zusammenfassung Thermodynamik

• Gleichgewichtszustände de�niert über Zustandsgröÿen

� Diese sind exakte Di�erentiale

• Zustandsgleichungen, Beispiel ideales Gas:

kalorisch : U =
3

2
NkT

thermisch : pV = NkT

• 1. Hauptsatz: Energieerhaltung

� Wärme ist keine Substanz, sondern Form von Energie(austausch)

� Arbeit und Wärme sind keine exakten Di�erentiale

• 2. Hauptsatz: Entropie kann in abgeschlossenem System nur erzeugt werden

� Reversible und irreversible Prozesse

� Carnot'scher Kreisprozess, Grenze der Umwandlung von Wärme in Arbeit

� Geht über alle bisherige Physik hinaus.

� E�ekt kollektiven Verhaltens vieler Teilchen
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• 3. Hauptsatz
lim
T→0

S(T ) = 0

� Unerreichbarkeit des absoluten Temperaturnullpunktes

� Wärmekapazität muss in Widerspruch zur klassischen Theorie tempera-
turabhängig sein.

• Thermodynamische Potentiale

� Sag mir Deine konstant gehaltenen Gröÿen, und ich sage Dir Dein be-
quemstes thermodynamisches Potential

� Legendre-Transformation

� Erfüllen Extremaleigenschaften.
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