Mathematische Methoden zur Analyse von Zeitreihen komplexer Systeme

PROF. DR. JENS TIMMER

Aufgabenblatt 2

Aufgabe 1 Integration van der Pol-Oszillator

• Integriere den van der Pol-Oszillator

$$\dot{x}_1 = x_2
\dot{x}_2 = \mu (1 - x_1^2) x_2 - x_1$$

für $\mu = 1, 5, 10$ für 100s.

- Wie kritisch, und warum nicht, ist die Wahl der Startwerte?
- Plote das Ergebnis im Zeit- und im Phasenraum.

Aufgabe 2 Integration Rössler-System

• Integriere das Rössler-System:

$$\dot{x} = -y - z
\dot{y} = x + ay
\dot{z} = b + (x - c)z$$

mit
$$a = b = 0.1$$
, $c = 14$.

- Plote das Ergebnis im Zeit- und im Phasenraum.
- Betrachte das Phasenraumverhalten für verschiedene $c \in [1, 14]$.
- Was macht den Prozess chaotisch?