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Exercise Sheet Nr. 8

Exercise 1: Robust linear regression

Consider the model

yvi=a+bxi+e¢g, i€{l,...,N} (1
for x; ~N(0,1),a =0, b =1, N = 1000 and Laplace-distributed random noise &;, p(&;) = %e“gi‘.

a) Generate M = 200 realizations of simulated data with N = 1000 data points each. Hint: You can generate
the Laplace distributed noise via & ~ —1og (U (0,1)/U(0,1)).

b) Estimate the parameters a and b using the least squares estimator (LSE): write a function LSE_ab(x,y)
that returns d.s and b,y for a given realization {x;,y; }i=1,. n:
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with ¥ and y as averages of x; and y;, respectively.

c) Estimate the parameters a and b again, this time using the maximum likelihood estimator (MLE) for double-
exponential distributed noise: implement the MLE function MLE (x,y) . See end of chapter 10.1 of the script
for an iterative procedure via bisection root search.

d) Compare the results of both estimators: plot histograms of the estimated parameters for each of the M
realisations and compute their mean values and variances. Which estimator is performing better?

Var(®y1r)

e) Compute the efficiency of the least squares estimator, ef f = Var(Oysg)

variances and efficiency on N.

. Analyze the dependency of the

f) Repeat the exercise by simulating data with normally distributed noise (& ~ N(0,0?2)). Do not change
the implementation of the estimators. Explain the different behaviour of the two estimators for normally
distributed noise.

2) Repeat the exercise by simulating data with Cauchy distributed noise. Can you explain why the MLE
estimator of (c) still yields good results even though it is based on exponential noise? And how reliable is
the LSE estimator now?
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